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ABSTRACT

Heavy rainfall has consistently acted as the primary catalyst for floods, result-
ing in numerous casualties and significant economic losses globally. Rainfall
forecasting is accomplished by analysing existing rainfall data, which is then
used to analyse the hydraulic system’s features. Gaining an understanding of
rainfall requirements is a crucial challenge for every location, particularly in the
case of India, given its diverse geographical area, population, and other influ-
encing factors that impact various demands. This study evaluated the rainfall
data for a span of 1990-2021 in six districts of Kerala State, India. To match the
rainfall data from all districts, we utilized both Kaumarasamy-distribution and
Dagum-distributions. Various Probabilistic tests, were employed to comparing
these distributions. The results revealed that, in Kasargod, the Kumarasamy
distribution demonstrates superior goodness-of-fit with the lowest Kolmogorov-
Smirnov statistic (0.0597) and Anderson-darling statistic (2.271). However, in
Wayanad, Malappuram, Palakkad, Idukki, and Trivandrum, the Dagum dis-
tribution consistently exhibits the most accurate fit, evident from its lowest
Kolmogorov-Smirnov statistics (0.07447, 0.05435, 0.0556, 0.03636, 0.04291)
and favourable Chi-Squared statistics (19.471, 8.4907, 19.239, 5.7318, 7.5297).
These results emphasize the regional variation in precipitation data and the suit-
ability of specific distribution models for accurate representation across different
locations.
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1. INTRODUCTION
Global climate models (GCM) precipitation behavior links to climate change, shifting distribution

model mean. Annual maximum rainfall (AMR) categorizes into extreme rainfall regions, crafting future
intensity-duration-frequency (IDF) curves. Envisioned: Framework cuts climate model bias, estimates reliable
AMR rainfall by Sojan et al. [1]. The study aims to assess rainfall erosivity changes in Brazil’s Tocantins-
Araguaia basin amid future climate conditions. Employing daily rainfall data from regional climate models
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(BESM, CanESM2, MIROC5, HadGEM2-ES) and RCP4.5/RCP8.5 scenarios, it examines 30-year intervals
(2011–2040, 2041–2070, 2071–2099), contrasting with the 1961–1990 historical period by Santos et al. [2].
Northern Portugal has a low probability (0.01 to 0.05) of extreme rainfall in spring and harvest. While the
chance of a 1993-like year is minimal, heavy rainfall in one or both seasons could cause significant harm, guid-
ing decisions on adaptation measures by Sandersen et al. [3]. The study suggests an XGBoost-based stochastic
framework for analyzing unsaturated slope stability during rainfall infiltration. Using a hypothetical slope with
an initial groundwater table, the paper examines how rainfall intensity and pattern affect the probability of slope
failure in spatially variable soils by Gu et al. [4]. The study assesses lasting trends in Estonia’s annual peak
rainfall intensities, focusing on short-term rainfall for urban stormwater system design. It analyzes climate
change impacts on design storm intensities by Tamm et al. [5]. To improve urban planning and enhance the
resilience of our communities against extreme rainfall events. They have been successfully applied in various
scenarios to model precipitation extremes, such as the most precipitation in a single day during summer in
Switzerland as well as the heaviest one day precipitation during autumn in France and drought in Rwanda,
Africa by Saunders et al. [6]. The researchers develop a stochastic hydrological modeling system to improve
daily streamflow prediction in uncertain conditions, scrutinizing error parameters and interactions by Shen et
al. [7]. Anticipating heightened climate extremes, researchers evaluate diverse water quality models in Asia
to address concerns about future drinking water quality and health risks by Fabian et al. [8]. The researchers
explain that due to unpredictable rainfall peaks during rapid response precipitation (RRPs) and limited soil
hydraulic conductivity, there exists a maximum threshold for the cumulative landslide area, and its dispersion
increases with longer return periods, contributing to understanding the diverse and systematic progression of
rainfall-induced landslides, Zhao et al. [9]. The insights gained from probable maximum precipitation (PMP)
studies, crucial for designing structures like dams and reservoirs, also serve as a design parameter for hydraulic
structures and water resources management by Panday et al. [10]. Researchers assess the strengths and limita-
tions of radar-raingauge merged rainfall products versus traditional radar-only and raingauge-only products for
both deterministic and stochastic discharge simulations in UK catchments using the project data management
(PDM) model and generalized likelihood uncertainty estimation (GLUE) method, Nanding et al. [11]. This
process continues iteratively until the desired resolution is obtained, as demonstrated by McIntyre et al. [12].
The researchers examined the spatiotemporal variability of rainfall across 33 sub-basins of the National College
Health Assessment (NCHA) over a 105-year period (1911-2015), conducting trend and homogeneity tests on
monthly, seasonal, and annual timescales by Animashaun et al. [13].

Various methods have been extensively suggested to estimate rainfall using data from GEO satellites,
despite the absence of a direct physical connection with precipitation. However, the key advantage of utilizing
geostationary earth orbit (GEO) satellite data for rainfall estimation lies in its exceptional temporal resolution
and spatial coverage by Lazri and Ameur [14]-[16]. CLIMACS generates ensembles of stochastically sampled
rain events not aiming to match the true climate and precipitation pattern but to statistically represent rainfall
for designing hydrological systems. The paper investigates ensemble variability and the required ensemble
size in a given design process by Thorndahl and Andersen [17]. Historical research efforts have predominantly
emphasized the fitting and evaluation of statistical distributions to analyze rainfall patterns. In the work by Juras
[18], various studies analyzing diverse statistical distributions to achieve precise fitting of precipitation data are
discussed. Legates globally assessed eight statistical distributions, including Kappa and Weibull, focusing on
Rio de Janeiro’s diverse topography; the analysis of rainfall data from 110 stations revealed Gumbel probability
distribution function (PDF) ranking highest via the 2 test, while generalized extreme value (GEV) PDF was
favored by the Anderson-Darling test by Lima et al. [19]. Sarfaraz [20] and Naheed et al. [21] research
uncovers two main precipitation seasons in Pakistan in where summer and winter monsoons that affecting
distinct regions. Trend analysis aids in understanding water resources and assessing rainfall impact, Yonus et
al. [22]. A continuous probabilistic model simulated catchment-scale water transport, investigating the impact
of spatial rainfall variability on streamflow distribution tail heaviness in five catchments of varying sizes and
shapes. The study validated results using recorded data from 175 river catchments by Wang et al. [23]. The
notable likelihood of extreme streamflow occurrences emphasizes an elevated flood risk concerning both the
frequency and magnitude of the flow. Across different catchments worldwide, the presence of streamflow
patterns with heavy tails has been observed by Wang et al. [24]. Rainfall has been largely overlooked in
the majority of prior investigations, with only a small subset of recent studies concentrating on forecasting
the yearly likelihood due to rainfall-induced slope failure on particular slopes [25], [26]. Nevertheless, the
approach may face computational inefficiency, requiring multiple iterations for seepage and stability analyses
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on various random samples and rainfall patterns for slope assessment by Liu and Wang [27]. Within engineering
practice, the proposal hurricane technique is extensively employed from a synthetic rainstorm of equivalent
probability by Breinl et al. [28]. Deterministic quantitative precipitation forecast (QPFs) from numerical
weather prediction (NWP) models offer a single-valued forecast but often contain errors due to disregarding
inherent weather uncertainty. In contrast, probabilistic forecasts with multiple members depict various potential
scenarios, capturing weather uncertainty by Samal et al. [29].

Numerous studies conducted by various authors have attempted to find the best appropriate proba-
bilistic perceptions for analyzing observed wind and solar data. However, as far as the contributors are aware,
there appears to be limited assessment regarding rainfall information. This research specifically focuses about
choosing the best allocation of probabilities for monthly rainfall statistics in six districts of Kerala, India. To
achieve this objective, multiple probability distributions are analyzed and utilized by certain trials, aiming to
identify the optimal probability dataset. The study aims to identify the most suitable probability distribution
for each district, shedding light on the statistical characteristics of rainfall in the region. This research is cru-
cial for improving the precision of rainfall modeling and forecasting in the specified districts, contributing to
better-informed water resource management and disaster preparedness strategies [30]-[34].

2. SELECTED BOUNDARY LOCATIONS
We collected average monthly rainfall data for six districts in Kerala spanning from 1990 to 2022.

Figure 1 visually delineates the chosen districts for this study, including Kasargod, Wayanad, Malappuram,
Palakkad, Idukki, and Thiruvananthapuram (Trivandrum). These districts were specifically selected to investi-
gate rainfall patterns and trends over the specified time period.

Figure 1. Location of study area

2.1. Kasargod
Kasaragod experiences a tropical monsoon climate influenced by its coastal location along the Arabian

Sea. The district enjoys a relatively hot and humid climate throughout the year. Kasaragod is characterized
by a varied topography. The district consists of coastal plains, undulating hills, and valleys. It is situated at
the foothills of the Western Ghats. The district is well-connected through road and rail networks, facilitating
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transportation between major cities and towns in the region.

2.2. Wayanad
Wayanad experiences a tropical monsoon climate influenced by its location in the Western Ghats

mountain range. The district enjoys a pleasant climate throughout the year, with moderate temperatures. It is
characterized by lush green forests, rolling hills, valleys, and beautiful water bodies. The district is situated in
the Western Ghats, a mountain range known for its rich biodiversity. The highest peak in Wayanad is Chembra
Peak, standing at an elevation of 2,100 meters (6,890 feet).

2.3. Malappuram
Malappuram experiences a tropical monsoon climates influenced by its proximity to the Arabian Sea.

Malappuram is characterized by diverse topography. The district consists of coastal plains, undulating hills, and
fertile river valleys. It is located at the foothills of the Western Ghats. Malappuram is known for its greenery,
extensive paddy fields, and rich biodiversity. It is located in the northern part of Kerala, sharing its borders with
the districts of Kozhikode, Thrissur, and Palakkad.

2.4. Palakkad
Palakkad experiences a tropical wet and dry climates, influenced by its inland location and proximity

to the Western Ghats. Palakkad is characterized by its flat to undulating terrain, interspersed with small hills
and valleys. The district is situated in the Palakkad Gap, a low-lying area between the Western Ghats and the
Nilgiri Hills. The Bharathapuzha River, one of the longest rivers in Kerala, flows through Palakkad.

2.5. Idukki
Idukki experiences a tropical monsoon climate due to its geographical location and its proximity to

the Western Ghats mountain range. Idukki is characterized by its rugged and mountainous terrain. The district
boasts numerous peaks, valleys, and dense forests. Anamudi, the highest point in Idukki and South India,
stands tall at an elevation of 2,695 meters (8,842 feet). It shares its borders with the neighboring states of Tamil
Nadu and Karnataka. The district is traversed by the Periyar River, one of Kerala’s longest rivers.

2.6. Thiruvananthapuram
Thiruvananthapuram experiences a tropical climate influenced by its coastal location along the Ara-

bian Sea. Thiruvananthapuram is located on the southwestern coast of India and is characterized by a varied
topography. The city features a mix of coastal plains, low-lying areas, and small hills. Thiruvananthapuram is
bordered by the Arabian Sea to the west and is surrounded by other districts of Kerala, including Kollam and
Pathanamthitta. Table 1 demonstrates that the region of Idukki is more than the other five districts. Similarly,
population in Trivandrum is more than the other five districts. Table 2 shows a description of statistical rainfall
data for six districts in Kerala from 1990 to 2022. Kasaragod district receives the maximum rainfall of 52.96
(mm/day) and Palakkad district receives the minimum rainfall of 0.1(mm/day).

Table 1. Study area details
Districts units Kasaragod Wayanad Malappuram Palakkad Idukki Trivandrum

Geographical degree 12°N 11°24’ N 11°12’N 10°34’ N 9°48’ N 8°29’ N
Location 74°E 75°46’ E 76°27’ E 76°12’ E 76°55’ E 76°52’ E

Area km2 4358 2132 1992 3554 4482 2192
Mean rainfall mm 69.51 501.2 923.15 609.74 464.82 331.09

Papulation lakhs 10.9 8.47 13.9 44.9 29.5 36.64

Table 2. Summary of rainfall data
District Minimum Maximum Mean Standard deviation Skewness Kurtosis

(mm/day) (mm/day) (mm/day) (mm/day) (mm/day)
KASARGOD 0.5 52.96 9.4371 11.626 1.3037 0.8369
WAYANAD 0.6 25.24 5.0768 5.3162 1.1885 0.9645

MALAPPURAM 0.4 24.61 5.3949 5.3562 1.0237 0.4060
PALAKKAD 0.1 12.99 3.1403 2.6671 0.6799 -0.2441

IDUKKI 0 .7 32.51 5.563 4.8578 0.98881 1.6497
TRIVANDRUM 0.9 29.68 4.9181 4.3561 1.145 2.3871
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3. METHOD
In order to evaluate hypothesis and select the most suitable likelihood distribution for rainfall records,

we employ various methods for model comparison. Our study utilizes non-parametric distribution tests optimal
variables for each likelihood distributions, we employ least-squares testing and subsequently conduct each
assessment. Let’s now provide clear definitions for these assessment techniques.

3.1. K-S test
This assessment compares the data-based distribution functions of two samples. This test indicator,

which is the supreme transformation between theoretical and data-based distributions, serves as a quantity of in
what manner the hypothetical spreading fits this data .In essence, it quantifies the level of agreement between
a data-based F (x) and a theoretical based F0(x). The goodness-of-fit calculates the maximum difference
between F (x) and F0(x), denoted as L in (1). If the difference is significant, it indicates a disparity between
the observed data with the mathematical simulations.

L = max
x

|FX(x)− F0(x)| (1)

3.2. A-D test
It is a metric used to examine if a collection of statistical data fits into a certain distribution. the

test assigns greater importance to the extremities of the distribution. It incorporates the particular distribution
model to calculate critical values, which adds complexity to the assessment. One drawback is that the critical
values must be determined independently for each distribution.

AD = −n− 1

n

n∑
i−1

(2i− 1)(lnF (xi) + ln(1− F (xn−i+1))) (2)

3.3. C-S test
The C-s test and goodness-of-fit test are commonly employed when dealing with binned data. It

can assess various distributions, including Bernoulli and Poisson, but it is limited to testing only continuous
distributions. Let’s now define the expression for the C-s test statistic represents the observed frequencies of
sample items and Ei represents the predicted frequency.

x2 =
∑(

(Oi − Ei)
2

Ei

)
(3)

3.4. Probability distributions
The best-fit probability distribution was determined using the subsequent approach. Within the proba-

bility distributions offered for adjusting precipitation outcomes are the x and y distributions. The mathematical
formulae for the probability density function for the aforementioned distributions is provided in (4)-(5).

f(x | a, b) = (abx)a−1(1− xa)b−1 (4)

f(x | p, a, b) = ap

b
(1 +

(x− b)2

a2
)−p−1 (5)

where in a and b are positive form variables. In the study area’s rain fall data, the aforementioned goodness-of-
fit tests were employed. The calculated test statistic yielded a value of computed and assessed at significance
level. Consequently, the minimum test statistic rank was utilized to compare the probability distributions.
Detailed descriptions of distribution factors and goodness-in-fit, can be found in Tables 3 and 4.

Table 3. Distribution factors
TYPES KASARGOD WAYANAD MALAPPURAM PALAKKAD IDUKKI TRIVANDRUM

α1 = 0.35067 α1 = 0.24966 α1 = 0.24479 α1 = 0.45956 α1 = 0.55486 α1 = 0.39296

Kumarasamy α2 = 1.3225 α2 = 1.091 α2 = 0.79919 α2 = 1.6648 α2 = 1.9339 α2 = 1.5234
a=-1.723E-15 a=1.1371E-14 a=7.0729E-15 a=1.1348E-15 a=1.7368E-1 a=4.891E-15

b=53.128 b=28.887 b=27.471 b=13.467 b=32.797 b=31.298
K = 0.04238 K = 0.08626 K = 0.0706 K = 0.06942 K = 0.07552 K = 0.1106

Dagum α = 8.461 α = 5.8686 α = 7.2667 α = 8.7515 α = 7.9056 α = 5.8902

β = 37.316 β = 15.151 β = 16.006 β = 8.1194 β = 14.226 β = 11.822
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Table 4. Extraction of goodness in six various districts
Place Type Kolmogorov Smirnov rank Anderson Darling rank Chi-Squared rank

KASARGOD Kumarasamy 0.0597 1 2.271 1 33.067 7
Dagum 0.07411 4 9.4802 3 24.641 3

WAYANAD Kumarasamy 0.1605 29 96.053 38 N/A N/A
Dagum 0.07447 1 36.938 11 19.471 3

MALAPPURAM Kumarasamy 0.14905 29 69.720 39 N/A N/A
Dagum 0.05435 1 26.408 11 8.4907 2

PALAKKAD Kumarasamy 0.18851 38 61.56 40 N/A N/A
Dagum 0.0556 1 19.732 11 19.239 2

IDUKKI Kumarasamy 0.10399 16 26.016 29 N/A N/A
Dagum 0.03636 1 10.323 6 5.7318 1

TRIVANDRUM Kumarasamy 0.15309 29 58.371 36 N/A N/A
Dagum 0.04291 1 19.086 12 7.5297 1

4. RESULTS AND DISCUSSION
4.1. Probability distributions analysis

In the study area’s rain fall data, the aforementioned goodness-of-fit tests were employed. The calcu-
lated test statistic yielded a value of computed and assessed at significance level. Consequently, the minimum
test statistic rank was utilized to compare the probability distributions. Detailed descriptions of distribution
factors and goodness-in-fit, can be found in Tables 3 and 4.

To ascertain the optimal likelihood fit for annual rainfall data, we conducted a probability analysis
using recorded data from six districts spanning the years 1990 to 2022. For this analysis, we considered
probability distributions such as the Kumarasamy-distribution and Dagum-distribution. Table 3 provides a
summary of the distributions along with their corresponding parameters for the rainfall data. Additionally,
Table 4 presents the results of 3 tests. We ranked each PDF in descending order based on the rank value
obtained through the three comparison procedures, considering each district separately. By evaluating the rank
and select the distribution with lowest overall rank, we determine the suitable distribution for each district.
Table 4 displays the district-specific distribution selection based on this ranking method. The findings of our
analysis reveal that the Kumarasamy-distribution yields a perfect match for the rainfall data in Kasaragod, as
indicated by the 2 tests.

Figure 2(a) and 2(b) display the rainfall data represented as probability density functions (PDFs) for
Kasargod and Wayanad districts. It is detected that the rainfall data for Wayanad district exhibits the closest
resemblance to the Dagum-distribution. The Figure 3(a) provide a visual representation of the PDFs of the
various distributions analyzed in this study. The count of approved extreme level of standards identified using
the probability density function outlines is directly related to magnitude of Dagum-distribution component.
Similarly, in both the K-S test and C-s test, Dagum-distribution demonstrates a remarkable alignment with the
rainfall data observed in Malappuram. Figure 3(b) illustrates the PDFs of the various distributions investigated
in this study. The overall count of approved extreme level of standards is directly associated with the Dagum-
distribution module. The graph clearly depicts the precise suitable of the Dagum-distribution to the rainfall
statistics in the Malappuram district. Likewise, the Dagum-distribution provides a satisfactory correlation with
the rainfall data observed in Palakkad.

Figure 4(a) visually presents the PDFs of various distributions. Magnitude of Dagum-distributions
component directly corresponds to the overall count of accepted extreme level of standards. The figure un-
equivocally demonstrates the accurate fit of the Dagum-distribution to the data from Palakkad district. From
the above we observed a satisfactory alignment of the Dagum-distribution with the rainfall data recorded in
Idukki. Figure 4(b) visually displays the PDFs of various distributions analyzed in this study of rainfall data.
The magnitude of the Dagum-distribution component directly correlates with the overall count of accepted ex-
treme level of standards. From this figure, it may be concluded that the Dagum-distribution accurately fits to
Idukki district.

Similarly, the K-S test and C-s test demonstrate that the Dagum-distribution adequately fits the Trivan-
drum district data. Figure 4(b) visually represents the PDFs of the different distributions determined in this
learning. The magnitude of the Dagum-distribution component is closely associated with the overall number
of accepted extreme criteria. The figure clearly demonstrates the accurate fit of the Dagum-distribution to the
data from Trivandrum.
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(a)

(b)

Figure 2. Rainfall data PDF for (a) Kasargod and (b) Wayanad

(a)

(b)

Figure 3. Rainfall data PDF for (a) Malappuram and (b) Palakkad
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(a) (b)

Figure 4. Rainfall data PDF for (a) Idukki and (b) Trivandrum

5. CONCLUSION
We conducted comprehensive analysis to determine the suitable distribution for average rainfall data

records in six districts of Kerala. This study began with the consideration of two unique probability distri-
butions, and the properties of each distribution were analysed. Various tests were then apply to identify the
perfect statistical distribution. To match the rainfall data from all districts, we utilized both Kaumarasamy-
distribution and Dagum-distributions. Various tests were employed to comparing these distributions.The re-
sults revealed that the Kumarasamy distribution has the lowest Kolmogorov-Smirnov statistics: 0.0597 (rank
1) and Anderson-Darling statistics: 2.271 (rank 1), it indicating a better fit compared to the Dagum distribution
in Kasaragod. However, the Dagum distributions has the lowest Kolmogorov-Smirnov statistic: 0.07447 (rank
1) and Chi-Squared statistic: 19.471 (rank 3) in Wayanad, Kolmogorov-Smirnov statistic: 0.05435 (rank 1)
and Chi-Squared statistic: 8.4907 (rank 2) in Malappuram, Kolmogorov-Smirnov statistic: 0.0556 (rank 1)
and Chi-Squared statistic: 19.239 (rank 2) in Palakkad, Kolmogorov-Smirnov statistic: 0.03636 (rank 1) and
Chi-Squared statistic: 5.7318 (rank 1) in Idukki and Kolmogorov-Smirnov statistic: 0.04291 (rank 1) and Chi-
Squared statistic: 7.5297 (rank 1) in Trivandrum. The solution includes statistical analyses and assessments
to determine the distribution(s) that best characterize the average rainfall data in the specified districts, con-
tributing to an improved understanding of the precipitation dynamics in the regions. Localised hydro energy
planning aspects the appropriate probability distributions that have been established can be used to increase the
accuracy of hydro energy planning in each district. Local hydroelectric power plants can better manage their
energy production and distribution by understanding the statistical nature of rainfall patterns, resulting in more
effective utilisation of resources and lower environmental impact. Water resource management aspects using
the selected distributions, local governments and water resource management organisations can better plan for
water supply, irrigation, and flood control. Accurate forecasting can aid in improving water usage, reducing
drought and excess water challenges, and assuring long-term water management procedures.
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