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 To achieve the best performance in terms of accuracy and complexity of 

massive multiple-input multiple-output (Massive MIMO) in wireless 

communication systems, hybrid beamforming (HBF) is a promising 

technique that provides high data rate multiplexing gains and enhances the 

spectral efficiency (SE) of the system. In this paper, a novel received signal 
strength indicator (RSSI) method is proposed to design an HBF for Massive 

MIMO BF via multitasking deep learning (DL) that minimizes the reliance 

on the channel state information (CSI) feedback. The trade-off between the 

enhancement SE of the system and the deep neural networks (DNNs) 
performance is optimized, and the results reveal that the proposed novel DL 

techniques achieve predicted spectral efficiencies with accuracy of 99.23% 

and 95.64% for Deep-HBF and Deep-AFP, respectively. The processing 

times for Deep-HBF and Deep-AFP are 709.2914 sec and 1425.864 sec, 
respectively. Notably, Deep-AFP exhibits a higher range of computational 

complexity compared to Deep-HBF. It is worth mentioning that the 

proposed techniques utilize the same DNN architecture. 
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1. INTRODUCTION 

Nowadays, many researchers are seeking to explore new advanced methodologies and technologies 

in fifth generation (5G) mobile networks, to support data traffic with less power consumption and better 

quality of service (QoS). Therefore, some enabling technologies, such as Massive MIMO technologies, 

heterogeneous networks (HetNets), and millimeter wave (mmWave) technologies have been identified to 

achieve a 5G mobile network [1]. Wireless access technologies Massive MIMO antenna array systems are 

the main enabling technologies for current and future wireless communication systems [2]. It is used for 

increasing data rates, multiplexing gains, and enhancement of the SE of the system, which can enhance the 

area throughput. These benefits can be achieved by using these technologies in different propagation 

environments. However, the using of very large numbers of antennas poses critical challenges for a Massive 

MIMO system in enhancing system reliability, enabling low-complexity base station coordination, and highly 

mobile users [3], [4]. Beamforming (BF) is one of the most practical solutions to overcome high path loss 

and atmospheric attenuation in mm-Wave ranges [5]. How to implement it is a matter of great importance to 

the radio frequency (RF) industry due to the conflicting requirements for efficiency and flexibility. In the 

trade-off between cost, size, and complexity, analog and digital BF modulation are combined to generate a 

https://creativecommons.org/licenses/by-sa/4.0/
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hybrid solution, a preferred architecture in current 5G Massive MIMO systems. However, digital BF is 

inevitably the direction of the future, and it is only a matter of time before they are used in 5G networks at 

high bands as well [6], [7]. This technology is based on new versions of artificial neural networks (ANNs) 

which are called DNNs [8]. It is assumed that DNN performance generally outperforms classical ANN 

performance at the expense of greater training time, which can be reduced by using advanced hardware (e.g., 

GPU), and/or proprietary techniques (e.g., transfer learning). DNN design is critical to the success of one of 

these architectures called convolutional neural networks (CNNs) which have a large number of layers, and 

nodes and need less pre-processing compared to other classification schemes [9]. 

Recently, interesting and important can be introduced applications in mm-wave and Massive MIMO 

systems using DL technologies [10]. Which can generally be used in large training associated with large 

channel arrays and system feedback. However, these channels are intuitively some environmental 

engineering functions, building materials, and transmission/reception sites. This was motivated by the use of 

machine/DL tools that take advantage of low generic features of the environment and user settings and learn 

how to use them for prediction of the channels/beams of Massive MIMO systems, proactive handoff, 

enhance system reliability and enable low-complexity base station coordination [11], [12]. DL has been 

revolutionizing many areas of research as it has the potential to learn better models from large amounts of 

data. It can be able to solve problems in telecommunication systems [13]. The unique DL network 

architecture can approximate any function under specific conditions, eliminate the complexity caused by 

many iterations, and perform real-time calculations to solve the BF design [14] optimization problem. 

Therefore, this technique is a good way to solve complex optimization problems [15]. Although the training 

process takes a long processing time, the training takes place in an offline mode. Therefore, DL technology is 

an effective way to reduce cellular network delay. Hence, in [16] a predictive network for BF in the offline 

mode was proposed. In studies [17] and [18], a supervised learning-based method was proposed for offline 

DNN training. When working on the design of BF, we had difficulty finding a suitable optimizer that 

departed from traditional methods. Therefore, we resorted to using additional computing resources called 

unsupervised learning instead of supervised learning labels in BF design and training problems to improve 

the BF design to increase the sum rate at which it can be achieved. 

In this paper, the provided methodology proposes the utilization of a trained and optimized received 

signal strength indicator (RSSI) for modeling Massive MIMO BF systems. This is accomplished through a 

multi-task DL approach, as depicted in Figure 1. The key aspect of this approach is the use of an 

unsupervised deep neural network (UDNN) to significantly enhance the SE of the system, which is trained 

and evaluated using only the RSSI as input. To achieve this, the quantized RSSIs are utilized as inputs for the 

DNN architecture, thereby eliminating the need for channel state information (CSI). CSI is only used for 

computing the loss function to update the weight of the UDNN. This allows for obtaining a simplified form 

for Massive MIMO, focusing on achieving the best design of precoders (analog/digital). The classification 

and regression tasks in the proposed model relate to accurately determining the optimal precoding schemes 

for the system. By following this methodology, the aim is to maximize the accuracy of the proposed model, 

ultimately leading to improved design and performance of precoders in Massive MIMO BF systems. 

Accordingly, the following points explain the results of the study: i) Providing a comprehensive framework 

for designing Massive MIMO BF; ii) Achieving a novel DL technique based on the RSSI model to minimize 

CSI feedback; iii) Proposing a novel DL technique that achieves predicted SE with high accuracy for the BF 

methods; iv) Building a reliable DL model by splitting the dataset into training, validation, and test sets to 

give better model accuracy; and v) Calculating the processing times of each BF method. 

 

 

 
 

Figure 1. The structure of the proposed system for Massive MIMO BF 
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2. MATERIAL AND METHOD 

This section is structured into three distinct parts. The acquisition process for the DeepMIMO 3D 

modeling of the Urban Environment mm-Wave/Ma-MIMO channel dataset is described in the first section 

2.1. A BF design method based on the RSSI model is described in the second section 2.2. The third section 

2.3 presents a suggested framework for Massive MIMO BF modeling. This framework integrates two types 

of BF approaches using the RSSI model as the foundation for the BF process. 

 

2.1.  Channel model and dataset generation  

A generic mm-Wave/Massive MIMO channel dataset known as DeepMIMO 3D modeling of the 

urban environment dataset, is used for generating the training and testing dataset. The generation of the 

DeepMIMO channels is based on ray tracing data obtained accurately from "Remcom Wireless InSite" [19]. 

The generation process entails implementing an outdoor tracing scenario labeled "O1". This scenario 

involves 18 base stations and a total of 1,184,923 users, as depicted in Figure 2. The "O1" scenario is two 

streets surrounded by buildings with one intersection between them where many random users are placed, 

with a top view as shown in Figure 2(a). The intersection of two perpendicular streets is placed in the middle 

of the map. The horizontal is 40 m wide and 600 m long, and the vertical is the same wide and 440 m long as 

shown in the model [20]. Additionally, the users are distributed in three x-y grids, as illustrated in  

Figure 2(b). There are 181 users per row in the first grid, which has 2751 rows (designated as R1 through 

R2751). The second grid, which is represented in Figure 2, has 1101 rows with 181 users each, ranging from 

R2752 to R3852. From R3853 to R5203, the third grid consists of 1,351 rows, each containing 361 users. 

Finally, each user is outfitted with a single dipole antenna, and the antenna's axis aligns with the z-direction. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. ‘O1’: Model channel scenario (a) top view of the model and (b) bird's-eye view of the model 
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From this model, the channel vector h with length 𝑁𝑇 can be obtained for each user location on a 

quantized network, and then the channel matrix H (𝑁𝑇 × 𝑁𝑘 ) into the dataset which can be obtained by 

concatenating the randomly selected 𝑁𝑘 channel vectors of 54,481 potential user locations on the master 

street of the considered limited area [21]. The channel parameters for this model can be summarized as 

shown in Table 1. Through synchro signal burst (SSB), which maximizes the information exchanged between 

users and the BS, the design of a matrix of quantitative RSSIs was obtained, which provides complete 

information about CSI with a small amount of data that will be sent in the feedback channel. After being able 

to calculate the RSSI values, the RSSIs are trained by the CNN to have an optimal design for the precoders 

(analog precoder (AP), digital precoder (DP), and fully digital precoder (FDP)) that maximizes the sum rate 

of the system. 

 

 

Table 1. Channel parameters for the DeepMIMO dataset 
 System No. of BS Antennas Users for Area 

Parameter Ray-tracing 

scenario 

Bandwidth 

(BW) 

Num-

Subcarriers- 

OFDM 

Num_paths Num-

UPA-

ant-x 

Num -

UPA-

ant-y 

Num-

UPA-

ant-z 

Ant_spacing Active-

BS 

Active-

user-first 

Active-

user-last 

Value “O1” 0.5 GHz 1024 10 1 8 8 0.5 7 1000 1300 

 

 

2.2.  Beamforming design based on the RSSI model 

The proposed structure of the system for Massive MIMO BF depends on the proposed DNN 

network that is used to evaluate by using the RSSIs as input to dramatically increase SE, as minimal CSI 

feedback is required. The training dataset of RSSIs used to design the analog precoder (AP) in the 

classification task by using the codebook and design the digital precoder (DP) in the regression task. We can 

get optimum accuracy for the system as related to the design of precoders then the data can be downloaded to 

each user as illustrated in Figure 1. Three main steps of beam training must be followed to obtain the 

quantized RSSIs as shown in Figure 1. In the first step, synchronization signal (SS) bursts are transmitted as 

the base station (BS) sends n SS bursts, where each n burst uses different analog precoders  𝐴(𝑆𝑆)𝑛 with a 2-

bit phase shift [22]. In the cell, SS 𝐴(𝑆𝑆)𝑛 is received for all users. As a result, the received signal 𝑅(𝑘)𝑛 for 

𝑛𝑡ℎ bursts after adding the channel model with additive white Gaussian noise 𝐺𝑁(𝑘)𝑛 can be defined as:  

 

𝑅(𝑘)𝑛 = 𝐻(𝑘)𝑛 𝐴(𝑆𝑆)𝑛 + 𝐺𝑁(𝑘)𝑛 (1) 

 

where 𝐻(𝑘)𝑛 denotes the channel vector from the 𝑁𝑇 antennas at the BS of user u. In the second step, which 

is called RSSI feedback, the average value of RSSI 𝛽(𝑘)𝑛 is measured for the 𝑛𝑡ℎ SS burs after receiving 

𝑅(𝑘)𝑛 by the 𝑘𝑡ℎ user. 

 

𝛽(𝑘)𝑛 =∣ 𝐻(𝑘)𝑛 𝐴(𝑆𝑆)𝑛 ∣2+ 𝑁2     (2) 

 

where 𝑁2 is the power spectral density for AWGN. Through a dedicated error-free feedback channel, all 

RSSI values from each user are sent to the BS. These first two steps correspond to establishing initial access 

between BS and all users. RSSIs have to be specified due to the limited accuracy of the measurements and 

limitations in the feedback channel in practical systems. Therefore, the linear quantization has been used 

then, we specify �̂�(𝑘)𝑛 as the user u quantized the RSSI vector sent to the BS [23].  

 

�̂�(𝑘)𝑛 =
𝑅𝑜𝑢𝑛𝑑⌈𝛽(𝑘)𝑛(2𝑁𝑏−1)⌉

(2𝑁𝑏 −1)
     (3) 

 

where 𝑁𝑏 is the No. of quantization bit. Downlink the data is the final step where the BS downlinks the data 

to each user location.  

 

2.2.1. Hybrid beamforming design (Deep-HBF) 

The purpose of BF is to achieve better coverage due to the provision of amplitude/phase variation 

with the help of an antenna array [24]. The design of the hybrid fully connected BF type combines analog 

and digital BF techniques. In a single-cell multiple-antenna system, the M single-antenna users are served by 

providing the BS with 𝑁𝑇 antennas and 𝑁RF RF chains. The aim of all hybrid BF architectures within 

Massive MIMO systems is to reduce the complexity of hardware and signals processing, as it provides 

optimal performance, i.e. near the pure digital performance of purely digital BF. The benefits of this 
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technology are that it can be used on mm-wave frequencies, providing digital flexibility by being able to 

dynamically configure many beams and nulls without any hardware change [25]. Just a complete RF chain 

per array provides extreme flexibility with the number of beams and nulls. Which provides a large number of 

beams, achieves a high data rate, and improves SE [26]. The user index u of each data symbol can be 

encoded by designing the matrix of DP (𝑊). The AP is designed and applies to all users to send 𝑁𝑅𝐹 RF 

series output to 𝑁𝑇 antennas. An AP(𝐴) was obtained from codebook A, which consists of analog beam 

codewords l for reducing the complexity of the HBF architecture. The SINR of the 𝑘𝑡ℎ signal received by the 

user for a given HBF is then expressed as (4) [22]. 

 

𝑆𝐼𝑁𝑅(𝐴 , 𝑊𝑘) =
∣𝐻(𝑈)𝐾 𝐴𝑙 𝑊𝑘∣2

∑ ∣𝐻(𝑈)𝐾 𝐴𝑙 𝑊𝑗∣𝑗≠𝑘
2

+𝑁2
    (4) 

 

Then the SE of this system is obtained by sum rate evaluation that is expressed as (5) [27].  

 

𝑆𝑅(𝐴, 𝑊) = ∑ 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅(𝐴, 𝑊𝑘))
𝑁𝑘
𝑘=1  (5) 

 

The entire CSI was used for the calculation of the unsupervised loss function. The loss function has 

been only used for training DP and AP without any objective. RSSIs have only been used at the BS and CSI 

cannot be accessed by the BS. In this approach, both AP and DP tasks have been designed by training the 

DNN for the HBF approach. The loss is determined as (6) [23]. 

 

𝑙𝐷𝑒𝑒𝑝−𝐻𝐵𝐹 = − ∑ 𝑃𝑙   𝑆𝑅(𝐴𝑙 , 𝑊∗)𝑙
𝑖=1       (6) 

 

𝑃𝑙 is an AP output vector, 𝑖𝑠 the 𝑙th AP of the codebook, and 𝑊∗ as DP output. 

 
 

2.2.2. Fully digital precoder design (Deep-AFP) 

By taking advantage of massive array gain, to overcome the severe loss path experienced by the 

propagation channel, analog BF has been proposed as a practical solution to this problem. Analog BF also 

has lower hardware requirements and thus consumes less power; Therefore, it is favorable compared to the 

full digital configuration in terms of hardware complexity and power consumption in Massive MIMO [27], 

[28]. Compared to the SE gain provided by the full digital beam configuration, the link budget has been 

considered more significant. Designing this type of profile is a complex task as each RF series of each 

antenna. This approach maintains compatibility between analog and digital precoders. So, we must have a 

design DP from FDP (F) and AP (𝐴𝑙) based on the DNN prediction, the DP (𝑊l) was calculated if we 

specify:  

 

𝑊l = 𝐴𝑙  F (7) 

 

To compute the loss function of this approach. The FDP and AP must be obtained and then DP can be 

calculated. If we specify [23]: 

 

SR(U) = ∑ 𝑙𝑜𝑔2 (1 +
∣𝐻(𝑈)𝐾 𝐹𝑘 ∣2

∑ ∣𝐻(𝑈)𝐾 𝐹𝑘 ∣𝑗≠𝑘
2

+𝑁2
)

𝑁𝑘
𝑘=1     (8) 

 

The FDP loss is expressed as (9) [23]: 

 

𝑙𝑜𝑠𝑠𝐹𝐷𝑃 = −SR(U∗)   (9) 

 

where U∗ is the FDP output vector. The AP loss is expressed as (10) [23]: 

 

𝑙𝑜𝑠𝑠𝐴𝑃 = − ∑ 𝑃𝑙  SR(𝐴𝑙 , 𝑊l
∗) l

i=1  (10) 

  

where 𝐴𝑙 is the 𝑙𝑡ℎ AP of the codebook, and 𝑊l
∗ is the DP output. The total loss for Deep-AFP is expressed 

as (11): 

 

lDeepAFP
= 𝑙𝑜𝑠𝑠𝐹𝐷𝑃 + 𝑙𝑜𝑠𝑠𝐴𝑃             (11) 
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2.3.  The DNN framework and architecture for bf design via multi-task DL based on the RSSI method 
 

There are two approaches to dealing with a BF problem. The proposed model is designed to train the 

BS for an optimal architecture of BF-based RSSI inputs. The DNN model has been used to optimize the 

weights of the AP and DP. The weights of precoders can be updated based on the loss calculation for each 

iteration. In the first one, a DNN (Deep-HBF) is designed for prediction AP in a classification task and DP in 

a regression task. In the other approach, the DNN (Deep-AFP) predicts the analog from the codebook in the 

classification task directly predicts FDP in the regression task, and then computes the digital precoder using 

the pseudo inverse. The DNN framework and architecture for two approaches of BF contains the following 

three main stages as shown in Figure 3. First, the type of BF is chosen and then the quantized RSSIs for the 

CNN structure are entered. Secondly, the data is trained by the CNN network and Nadam algorithm as 

network optimizers. Finally, we can evaluate the accuracy of the optimized structure of the system in 

classification and regression tasks. 

After the users can measure the RSSIs, BS will receive the quantized RSSIs, �̂�(𝑘)𝑛 =

[�̂�(𝑈1) … … … … �̂�(𝑈𝑘)] through an allotment free of the errors feedback channel. These input values are then 

processed by a neural network architecture consisting of a series of three convolutional layers (CL), and two 

pooling layers. The first CL has 32 layers, the second CL has 64 layers and the third CL has 64 layers, each 

of them having the LeakyReLU as an activation function [29]. Convolutional layers are interspersed with 

max pooling layers. Then followed by two fully connected layers (FCL) layers, each of which has 4069 

neurons and has the ReLU as an activation function [30]. Then followed by an output layer for each task. The 

first task is a regression task for FDP and DP and the second task is a classification task for AP in each 

network. 

 

 

 

 

Figure 3. DNN framework and architecture 
 

 

Both approaches of BF have the same dimensions as the AP task and are equal to the size of the 

codebook (𝑙 = 𝑁𝐶𝐵). The real and imaginary parts of the output will be separated and the output layer 

dimension of the DP task in Deep-HBF is (2 × 𝑁𝐶𝐵 × 𝑁𝑅𝐹), and (2 × 𝑁𝑘 × 𝑁𝑇) for the FDP task in  

Deep-AFP. Batch normalization can be used to reduce internal variable transformation and speed up learning. 

To avert the over-regulation problem, the dropout probability of all layers was set to the value of (0:05). The 

activation function for classifying the layer is SoftMax [30]. The activation function for the regression layer 

is defined as a linear function [31]. Finally, the “Nadam” algorithm has been used as a network optimizer, 

having coefficients 𝛽1, and 𝛽2 were used for computing running averages of the gradient and its square. The 

“ReduceLROnPlateau” is used to schedule the reduction of the learning rate. Figure 4 shows the RSSI 

training flowchart for designing BF methods. The DNN dataset for the scenario of the channel model can be 

described as; the training set consisting of 80% of the original size of the DNN dataset. The remaining ones 

are divided into testing which consists of 10% of the original size of the DNN dataset and validation which 

consists of 10% of the original size of the DNN dataset. Performance as a test set and valid set has been 

evaluated based on the use of both the test and validation data set. 
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Figure 4. RSSI training flowchart for designing BF types 

 

 

3. RESULTS AND DISCUSSION  

The performance of the two proposed BF architectures has been evaluated based on the sun rate 

calculation when the No. of users, 𝑁𝑘 is set as 4, the No. of antennas, 𝑁𝑇 is set as 64, the No. of RF chains, 

NRF is set as 8, the value of noise power, 𝑁2 is set as -130 dBw and the average of SNRs is 14.35 dB. We 

require (K×𝑁𝑘×𝑁𝑏=1024 bits) for RSSI feedback where 𝑁𝑏 = 8 bits. A new RSSI method for designing HBF 

is implemented by PyTorch DL at Massive MIMO systems. The suggested work claims to have better 

performance in terms of SE than other techniques since minimal CSI feedback is required. The DNN has 

been implemented to compare the predicted value and optimum value of SE for two BF approaches. Six 

different models of optimizers have been planned with the specific goal of exploring the best model 

accuracy. The proposed CNN model has been utilized by using AdaDelta, Adam, AdaGrad, Nadam, 

RMSProp, and the stochastic gradient descent (SGD) optimizer. The accuracy of the proposed CNN model 

has been illustrated as shown in Figure 5, which measures how well the model predicts the correct output. It 

has been observed that the Nadam optimizer achieves the highest accuracy among all the optimizers, 

indicating that it produces more accurate predictions in the BF system. The accuracy of the proposed work 

has reached about 99.23%, with a higher value using the Nadam optimizer approach compared to other sex-

different models of optimizers. This result indicates that the proposed research has improved the accuracy of 

the BF system over the latter by 0.81%. Furthermore, it has achieved a remarkable increase of 6.85% in 

performance over the RMSProp optimizer. Figure 6 presents the performance of each optimizer based on the 

loss metric, which quantifies the error between the predicted output and the actual output. A lower loss value 

suggests a better fit of the model to the data. The highest accuracy with the lowest loss has been achieved 

based on the most effective optimizer for the deep learning-based BF system. It is found that the Nadam 

optimizer achieves the lowest loss value of -5.208, indicating that it minimizes the error effectively and 

improves the overall performance of the BF system.  

Start Time
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Figure 5. Graphical chart for different accuracies of 

optimization 

 
 

Figure 6. Graphical chart for different losses of 

optimization 

 

 

Figures 7 and 8 illustrate the unsupervised loss that is used to train both AP tasks and DP or FDP 

tasks in both BF approaches. It is observed that the reduction in loss leads to an increase in average SE. The 

negative sign in the loss makes the DNN's training process focus on minimizing the loss function, which in 

turn maximizes the sum rate. Figure 7 illustrates the loss shape of the Deep-HBF network that was used to 

design the DP and AP directly from RSSIs with the number of iterations. The loss of Deep-HBF decreases 

over time, indicating that the algorithm is improving with each iteration. The progress of the Deep-HBF 

network in reducing the loss over time reached -5.208. Figure 8 presents the total loss of the Deep-AFP 

network, with the number of iterations reaching -10.271 concerning (11). The rate of decrease in loss may 

vary at different stages of the iteration. The loss function of this approach is used to design AP and DP based 

on the FDP. It is worth mentioning that the CSI can be used fully in training mode for loss calculation. 

 

 

  
 

Figure 7. Loss with iteration No. for Deep-HBF 

 

Figure 8. Loss with iteration No. for Deep-AFP 

 

 

Figure 9 shows the achievable optimal values that can be achieved for the sum rate by Deep-HBF 

with different numbers of iterations. With this approach, the performance can be improved by reducing the 

loss with each iteration. Hence, it can be concluded that the performance of Deep-HBF achieves an accuracy 

of 99.23% with a predicted value of 5.23. Figure 10 illustrates the achievable optimum values for the sum 

rate by Deep-AFP with different numbers of iterations. It demonstrates the effectiveness of the Deep-AFP in 

reducing the loss and improving the accuracy of the BF process as the iterations progress. Hence, it can be 
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concluded that the performance of Deep-AFP achieves an accuracy of 95.42% with a predicted value of 5.38. 

Figure 11 visually demonstrates the comparison between the system performances of each approach, where 

Deep-HBF indicates a better performance outcome than other approaches. Figure 12 presents the sum-rate 

performance of BF designs versus a different logarithmic scale for power noise. It displays how changes in 

power noise impact the SE of the system. The Deep-AFP achieves high SE performance with different noise 

power values than other networks. 

 

 

  
 

Figure 9. The optimum and predicted values for 

Deep-HBF 

 

Figure 10. The optimum and predicted values for 

Deep-AFP 

 

 

 

  
 

Figure 11. Performance accuracy of different 

methods for BF 

 

Figure 12. Sum-rate of BF types with different values 

of power noise 

 

 

Based on the provided information, Table 2 compares the performance of different BF techniques, 

including the Deep-HBF, HBF-Net, Deep-AFP, and AFP-Net methods. The performance of DNN in each 

approach is exhibited for BF design by estimating the value of the accuracy of testing, validation, and 

runtime processing. The proposed Deep-HBF method achieves the highest test and valid spectral efficiencies 

with an accuracy of 99.23% and 99.03%, respectively, by reducing the learning rate to 1e-08. The runtime for 

the proposed Deep-HBF is 709.2914 sec. The accuracy of the proposed Deep-AFP achieves test and valid 

spectral efficiencies with an accuracy of 95.64% and 95.42%, respectively, with a runtime of 1425.864 sec. 

The results reveal that Deep-HBF performs better than HBF-Net by a rate of 0.81%, and Deep-HBF performs 

better than AFP-Net by a rate of 1.3%. However, he proposed that the approach of Deep-HBF has an increase 

in time of 87.1572 sec compared to HBF-Net. The approach of Deep-AFP has an increase in time (53.68 sec) 

compared to AFP-Net. Finally, the optimization process aimed at balancing the enhancement of the system's 

SE and the performance of DNNs. Remarkably, Deep-AFP outperformed AFP-Net by 0.06 in terms of SE, 

surpassed Deep-HBF by 0.15, and exceeded HBF-Net by 0.19. Moreover, Deep-HBF achieved an impressive 
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accuracy improvement of 0.81% compared to HBF-Net, a substantial gain of 3.81% over Deep-AFP, and a 

remarkable improvement of 4.89% when compared to AFP-Net. It is worth noting that the Deep-AFP 

network exhibited a higher range of computational complexity compared to the other networks. It has an 

increased runtime of (803.7298 sec) compared to the smallest runtime of the HBF-Net approach. Therefore, 

we need to look for an enhanced version of BF using DL that has little computational overhead and great 

performance. 

 

 

Table 2. The comparison between the performances of the system for each approach 
Approach Valid accuracy % Test accuracy % Runtime(s) 

Proposed Deep-HBF 99.03 99.23 709.2914 

HBF-Net [23] 98.31 98.42 622.1342 

Proposed Deep-AFP 95.42 95.64 1425.864 

AFP-Net [23] 93.07 94.34 1372.184 

 

 

4. CONCLUSION AND FUTURE WORK 

In the paper, new insight into BF design was provided by using DL. A two-approach BF scheme is 

designed to obtain the optimal performance for BF, which is a key technology that increases the SE for 

Massive MIMO systems. The simulation results showed that the proposed performance of BF despite the 

lack of CSI, designed BF through BS training with near-optimal sum rates. Finally, therefore, a trade-off 

between enhancement SE of the system and the DNNs performance has been optimized and found that the 

Deep-HBF achieved an optimum accuracy with 99.23% for prediction value with a low computational 

complexity of 709.2914 sec represented in processing time than HBF-Net. The Deep-AFP achieved an 

optimum accuracy with 95.64% for prediction value with a low computational complexity of 1425.864 sec 

represented in processing time than AFP-Net. The Deep-Net has better SE compared to other approaches. In 

future work, efforts should be directed toward developing an improved version of BF via DL that achieves a 

high level of performance with minimal computational requirements. This can be achieved by improving and 

expanding DL-based BF capabilities, focusing on innovative architectures, algorithms, and training 

techniques. It is worth noting the possibility of using a new database with different specifications in an 

alternative environment to evaluate the performance of DNNs, paving the way for more efficient and 

adaptable wireless communication systems. 
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