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 Reconfiguration strategies are used to reduce power losses and increase the 

reliability of the distribution systems. Since the optimal reconfiguration 

problem is a multi-objective optimization problem with non-convex 

functions and constraints, meta-heuristic algorithms are the most suitable 

choice for the problem-solving approach. One of the new meta-heuristic 

algorithms that exhibits excellent performance in solving multi-objective 

problems is the wild mice colony (WMC) algorithm, which is implemented 

based on aggressive and mating strategies of wild mice. In this paper, the 

distribution network reconfiguration problem is solved to reduce power 

losses, improve reliability, and increase the voltage profile of network buses 

using the WMC algorithm. In addition, the obtained results are compared 

with conventional multi-objective algorithms. The optimal reconfiguration 

problem is applied to the IEEE 33-bus and 69-bus test systems. The 

comparative study confirms the superior performance of the proposed 

algorithm in terms of convergence speed, execution time, and the final 

solution. 
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1. INTRODUCTION 

Owing to the massive increase in the demand for electric energy, it is necessary to strengthen and 

develop power networks at production, transmission, and distribution levels [1]. Since the distribution 

network is the last sector of the electricity supply chain connecting the loads to the transmission lines, it 

operates under low-voltage voltage conditions and thus suffers from considerable power losses. On the other 

hand, due to the large extent of these networks and the extensive number of equipment, maintaining their 

reliability is very critical [2], [3]. Distribution network reconfiguration (DNR) is an operation in which by 

changing the state of the tie and sectionalizing switches, the topology of the network is changed so that 

certain constraints are met and the objective function (s) is (are) optimized [4], [5]. This problem is a multi-

objective complex and non-convex problem due to including numerous objectives [6]. 

Numerous techniques have been proposed in the literature to solve the multi-objective DNR 

problem, including mathematical, heuristic, and meta-heuristic methods. The contribution of meta-heuristic 

methods in solving the DNR problem is more than the other two methods [7], [8]. Several optimization 

methods have been recently introduced. These include heap-based optimization [9], the SHADE optimization 

algorithm combined with the switch opening and exchange (SOE) method [10], the combined simulated 

annealing (SA) and modified particle mass optimization (MPSO) algorithms [11], mixed-integer linear 

programming (MILP) [12], the combined conventional particle swarm optimization and binary particle 

https://creativecommons.org/licenses/by-sa/4.0/
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swarm optimization (BPSO) [13], the enhanced artificial bee colony optimization (EABCO) method [14], the 

chaotic stochastic fractal search algorithm (CSFSA) [15], hybrid improved particle swarm optimization-

artificial bee colony optimization algorithm [16], the grasshopper optimization algorithm [17], and the 

modified sequential switch opening and exchange (MSSOE) [18]. 

A general comparison has been made in [19] between mathematical models and meta-heuristic 

methods to solve the DNR problem, which reveals that meta-heuristic algorithms are superior from the 

quality of solution and computational burden points of view. In study [20], the COOT and Aquila 

optimization algorithms have been used for optimal planning of thermal energy storage. The combination of 

two conventional meta-heuristic algorithms called the gray wolf whale optimization algorithm (GWWOA) 

has been proposed in [21]. The ant lion optimization (ALO) algorithm is also a newly introduced algorithm 

that has been utilized to solve the dynamic economic emission dispatch problem [22]. A modified version of 

the conventional bee colony optimization algorithm has been provided in [23], which aims for adaptive 

power scheduling in a power system. Amar et al. [24] have proposed the cat swarm meta-heuristic 

optimization method for the optimal design of a power system consisting of wind units, which pursues three 

goals, i.e., optimization of cost, capacity, and reliability.  

Most meta-heuristic algorithms in multi-objective form, e.g., BPSO, moth-flame optimization 

(MFO), and ABCO, suffer from low speed due to employing one or two tools to search for the objective. 

Thus, the performance of such algorithms in solving dynamic optimization problems is weakened. 

Furthermore, developing a meta-heuristic optimization algorithm to address multi-objective optimization 

problems without adding additional search tools or combining them with other optimization algorithms is a 

meaningful challenge. Most of the studies conducted in this field have shortcomings from the point of view 

of simultaneous optimization of objective functions. To cope with the aforementioned limitations, this paper 

proposes a new meta-heuristic algorithm called the wild mice colony (WMC) algorithm to solve the DNR 

problem. This algorithm is based on the natural behavior of a colony of wild mice in recruitment, new colony 

formation, and mating. Since there are multiple searching tools for the optimal solution, the WMC algorithm 

has outstanding performance in solving complex optimization problems; hence, it is suitable for solving the 

DNR problem for large-scale systems. In terms of convergence speed and execution time, a comparison 

between the proposed WMC algorithm and other conventional multi-objective algorithms is accomplished in 

this paper. In addition, the proposed WMC algorithm is tested on two standard IEEE 33-bus and 69-bus 

systems, which are used in most studies. 

The rest of the paper is organized as follows. The formulation of the proposed optimization 

problem, along with the objectives and constraints, are presented in section 2. The third section explains the 

problem-solving process and the proposed WMC algorithm. The numerical results of solving the 

optimization problem using the proposed WMC algorithm are presented in section 4. Finally, the fifth section 

concludes the article. 

 

 

2. OPTIMIZATION PROBLEM FORMULATION 

In this paper, the following objective functions are included in the objective function: active power 

losses, voltage profile, and reliability. Each objective is described in detail and formulated in the subsections. 

Eventually, the final combined objective function is obtained by summing the individual objectives.  

 

2.1.  Power loss minimization 

The first objective function is to minimize the active power losses of the distribution network 

feeders. According to Figure 1, this objective is defined as (1) [9]. 

 

𝑚𝑖𝑛  𝑃loss = ∑  𝑛𝑏
𝑖=1 𝑟𝑖

𝑃𝑖
2+𝑄𝑖

2

𝑉𝑖
2 ) (1) 

 

where nb is the number of nods, ri is resistance of the branch i. Pi, Qi, and Vi represent the active power, 

reactive power, and the voltage of the node I, respectively. 

 

 

 
 

Figure 1. Simple-line two-bus distribution system 
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2.2.  Reliability improvement 

An analytical method based on cut-set analysis is used in this paper to avoid complicated simulation 

efforts. The minimal cut-set is a set of system elements whose failure causes the system to fail. On the 

contrary, if any of these elements work appropriately, the system operation will not be affected. The 

probability of a cut-set is calculated using (2).  

 

𝑃(𝐶) = ∏ 𝑄𝑖𝑖 ) (2) 

 

where Qi is the unreliability corresponding to the ith cut-set. Next, the unreliability of the system will be 

calculated by serializing the cut-sets from (3): 

 

𝑄𝑖 = 𝑃(⋃ 𝐶𝑖𝑖 ), 𝑖 = 1,2, … , 𝑁) (3) 

 

For reliability assessment, the radiality of the studied distribution system is checked before performing any 

calculations. So, we can claim that there is only one path to feed each load when calculating the reliability 

indices. Thus, reliability can be obtained as 𝑅𝑖 = 1 − 𝑄𝑖 . One of the most common reliability indices is the 

energy not served (ENS). After performing the reliability calculations using the minimal cut-set method, it is 

easy to calculate the ENS for each load. Their summation gives the total ENS for the whole system, as 

defined in (4). 

 

𝑚𝑖𝑛  𝐸𝑁𝑆 = ∑  𝑛𝑏
𝑖=1 𝐿𝑖

𝑎𝑣𝑟𝑈𝑖) (4) 

 

where 𝐿𝑖
𝑎𝑣𝑟  is the average load connected to the bus i, Ui is the annual unavailability which is 

 𝑈𝑖 = 8760 × 𝑄𝑖 , and nb is the number of system buses. Also, the customer average interruption duration 

index (CAIDI) is defined as (5): 

 

𝑚𝑖𝑛  𝐶𝐴𝐼𝐷𝐼 =
𝑆𝐴𝐼𝐷𝐼

𝑆𝐴𝐼𝐹𝐼
) (5) 

 

where the system average interruption duration index (SAIDI), and the system average interruption frequency 

index (SAIFI) are obtained via: 

 

𝑆𝐴𝐼𝐷𝐼 =
∑  𝑖 𝐴𝐶𝐼𝑇𝑖×𝐶𝑖

∑  𝑖 𝐶𝑖
 (6) 

 

𝑆𝐴𝐼𝐹𝐼 =
∑  𝑖 𝐴𝐶𝐼𝐹𝑖×𝐶𝑖

∑  𝑖 𝐶𝑖
 (7) 

 

𝐴𝐶𝐼𝑇𝑖 = ∑  𝑘 (8760 × 𝑃𝑟𝑘 × 𝑓𝑟𝑎𝑐𝑖,𝑘) (8) 

 

𝐴𝐶𝐼𝐹𝑖 = ∑  𝑘 (𝑃𝑟𝑘 ×  𝑓𝑟𝑎𝑐𝑖,𝑘) (9) 

 

In (6) to (9), Ci is the number of loads connected to the ith bus, Prk and fraci,k are the probability of losing the 

kth load, and the amount of lost load connected to the ith bus, respectively. Also, ACITi and ACIFi show the 

average duration of interruption (h/a), and the average number of interruptions per customer (1/a) per year, 

respectively. 

 

2.3.  Voltage profile enhancement 

Taking into account the average voltage difference of all buses compared with the reference bus, the 

third objective function, i.e., the voltage profile enhancement is defined as (10). 

 

𝑚𝑖𝑛  𝑉𝐷 = ∑  𝑛𝑏
𝑖=1

|𝑉𝑏−𝑉𝑖|

𝑉𝑏
) (10) 

 

where VD is the voltage deviation index. Vb and Vi are the nominal voltage and the real voltage of ith bus, 

respectively. nb also indicates the number of buses.  

 

2.4.  The proposed objective function 

Eventually, the proposed objective function can be defined as (11). 

 

𝑚𝑖𝑛  𝑓 = 𝑐1𝑃𝑙𝑜𝑠𝑠 + 𝑐2𝐸𝑁𝑆 + 𝑐3𝐶𝐴𝐼𝐷𝐼 + 𝑐4𝑉𝐷) (11) 
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where cj (j=1,2,3,4) represent the weighting coefficients which are selected equal to 1 in this study. 

 

2.5.  Constraints 

The following constraints should be considered in the problem-solving procedure. The permitted 

voltage of buses constraint:  

 

𝑉𝑚𝑖𝑛 < 𝑉𝑖 < 𝑉𝑚𝑎𝑥) (12) 

 

where Vmin and Vmax are the minimum and maximum voltage allowed for the ith branch. Feeder current 

constraint: 

 
|𝐼𝑘| ≤ 𝐼𝑘𝑚𝑎𝑥) (13) 

 

2.5.1. Distribution network radiality constraint 

The distribution network must always maintain its radiality in all the structures obtained by the 

reconfiguration process. To comply with this requirement, in the case where there is a feeding substation, the 

number of branches must be equal to the number of buses minus 1, as (14).  

 

𝑟𝑎𝑛𝑘 (A) = 𝑛𝑏 − 1) (14) 

 

where 𝐴 denotes the node-to-branch incidence matrix, and rank (𝐴) represents the number of linearly 

independent rows or columns of 𝐴. 

 

 

3. METHOD 

In this section, the solving procedure for the proposed multi-objective optimization problem is 

presented. Before executing the optimization algorithm, an AC load flow is conducted to obtain the initial 

values of the technical parameters of the system. It is noteworthy that the backward/forward load flow 

strategy is employed in this study. 

 

3.1.  Optimization algorithm 

In this paper, a novel meta-heuristic algorithm is proposed, which is inspired by the behaviorism of 

wild mice colonies (WMCs). The foundation of this algorithm is the collaborative effort of the wild mice 

colonies to extend the colony. Each colony has a particular behavioral mechanism that leads the algorithm to 

find optimal solutions. During the optimality searching procedure, the WMC algorithm executes different 

phases that enhance solution-reaching tools. The WMC algorithm phases are described in the following. 

 

3.1.1. Generating the initial population 

Firstly, the initial population (IP) is created within the problem space. It is worth noting that the IP is 

equal to the product of the number of colonies by the number of members within the colony (e.g., 𝐼𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠 × 12). Among this population, the number of male and female mice is determined 

based on the predefined parameter (e.g., 𝑚𝑎𝑙𝑒 𝑚𝑖𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 =  
1

3
× 𝐼𝑃, 𝑓𝑒𝑚𝑎𝑙𝑒 𝑚𝑖𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 =

2

3
× 𝐼𝑃). 

Next, the highest-priority male mice create their colony.   

 

3.1.2. Determining the best male mice for creating colonies 

In the experiment conducted on mice, a rule named mice norm (MN) specifies their class 

preference. Indeed, mice with large NM values have a higher priority and can successfully create a new 

colony or mate. The initial population is sorted according to the NM criterion, and the high-sorted male mice 

are chosen to construct their colony or territory. The TYPE of these mice is changed to colony head (CH).  

 

3.1.3. Determining the male and female members of the colonies 

For each colony within the IP, members are recruited randomly. It is assumed in this study that each 

CH randomly selects 3 male and 8 female mice as the colony members. According to the results obtained 

from laboratory tests, it has been revealed that the age of female mice is influential in their social 

interactions. In other words, the younger female mice have a higher chance to mate. Furthermore, the NM 

value depends on the colony density. The higher the colony density, the lower the NM value in that colony. 

Two independent procedures are executed for normal members and CH to adjust the position of mice in each 

repetition of the algorithm. The movement of each CH is according to the best of the other CHs. In Figure 2, 
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the movement range of CHs belonging to 4 colonies is specified. As can be seen, the CHs move toward the 

other colonies to identify female mice prone to mating. 

 

 

 
 

Figure 2. The movement space of CHs 

 

 

3.1.4. Male and female mice mating 

Figure 3(a) shows the movement path of the two colonies in a (200×200)m2 hypothetical area. In 

order to execute the mating process, the best CH among all colonies (having the higher priority) is selected 

and mates with female mice belonging to another colony whose accept parameter (AP) is 1. The AP of 

female mice will be equal to 1 if they are in the mating phase, and their age is less than a threshold. Mating 

takes place three times a year. Therefore, the mating factor is obtained by dividing the number of iterations 

by 3. The CH mice randomly mate with female mice under three conditions and generate 5 to 15 new mice. 

The mating conditions are as follows: i) the selected member among the target colony is female, ii) the accept 

parameter of the selected member equals 1, and iii) the age of the selected member is less than the threshold. 

The gender of the new generation of mice is randomly determined. The newborn mice find their 

position using the nonlinear quadratic crossover operator. Then, the generated offspring fight with the young 

population of the same colony, and the weaker members are expelled to create a “reserve colony”, as shown 

in Figure 3(b). The remaining mice attack the next colony to recruit new members, including 4 male and 8 

female mice. If the next colony does not have the desired number of female or male mice, this shortage of 

members is absorbed from the reserve colony. The cost function corresponding to the newly created colony is 

calculated in each iteration, and the procedure is repeated until the stopping criterion is met. In the next step, 

the global best colony and best mice belonging to the best colony are determined as the optimization solution. 

Algorithm 1 shows the pseudo-code of the WMC algorithm. 

 

 

  
(a) (b) 

 

Figure 3. The hypothetical area for analyzing the behavior of the Mice colonies, (a) the CH movement to find 

the female mice and (b) the reserve colony creation process 
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3.2. Applying the proposed algorithm to the DNR problem 

There are two types of switches in a distribution network, i.e., normally closed (NC) and normally 

open (NO). Suppose that all NOs are closed. In this case, several loops are formed in the system, and their 

number is equal to the number of NOs. The switches set that form a loop are called loop vector (LV). In the 

proposed method, one colony is assigned for each LV, and one of the switches in each LV must always be 

open. This ensures the radiality of the distribution network structure. The flowchart of the proposed 

Algorithm 1 implementation for solving the DNR problem is depicted in Figure 4. 

 

 

 
 

Figure 4. Flowchart of the proposed WMC algorithm for solving the DNR problem 

 

 

Algorithm 1. Pseudocode of WMC optimization algorithm 

1. Start 

2. Determine the maximum iteration (MaxItr) 

3. Generate the initial population (N) 

4. Generate the colonies with M members 

5. Divide the colony into m Male and f Female Mice 

     Colony(j).index = rand[(𝑚𝑖𝑐𝑒. 𝑠𝑒𝑐 = 𝑚): 3] × 𝑟𝑎𝑛𝑑[(𝑚𝑖𝑐𝑒. 𝑠𝑒𝑐 = 𝑓): 8] 
6. Determine the age threshold (AgeThre)  

7. Determine the Colony Norm (CN) 

For j=1,2,…,N 

     If Std ∑  𝑛
𝑗=1 (mice(j).Position ) <  Treshold 

     mice(j).Norm = mice(j).Norm – 1 

8. Define the Position of Normal Mice 

     𝑚𝑖𝑐𝑒(𝑗). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙 𝑀𝑖𝑐𝑒 =
mice(j).Position+rand(j)×(𝑚𝑒𝑎𝑛(∑  M

𝑘=1 mice(k).Position-mice(j).Position)  
9. Determine the Position of Colony Head (CH) 

 𝑚𝑖𝑐𝑒(𝑗). 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐶𝑜𝑙𝑜𝑛𝑦 𝐻𝑒𝑎𝑑 = mice(j).Position+rand(j)×(best(CH)- mice(j).Position) 

10. Execute the Mating Process:  
Determine the Mating Accept parameter for Female Mice 

     MatingCount =
 Iteration 

2
  

For j=1,2,…,N      

     For k=1,2,…,f 

       If iteration=MaxItr 

         mice(j).accept=1; 

Start

Input data including, bus voltages, 

branch impedances, etc.

Generate the initial population, 

and  Colony members

Divide the Colony members 

into the Male and Female Mice

Calculate the 

Mice.Position index

Execute the Mating phase if the 

required conditions are met

Execute the Fighting phase

Create the New Colony

Calculate the Mice.Cost

for the New Colony members

Is the Stopping Criterion met?
No

Yes

Output the Optimal Result

Stop
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       else If 

       For i=1,2,…,m & k=1,2,…,f 

       If mice(i).Norm = 𝑀𝑎𝑥 & mice(k).sec = 𝑓 & mice(k).accept = 1 & mice(k).age ≥ 𝐴𝑔𝑒𝑇ℎ𝑟 
       The Mating is executed. 

          mice(i).couple = MatingCount = MatingCount+1, mice(k).accept = 0  
11. Execute Fighting phase: 

      For j=1,2,…,N 

          For k=1,2,…, M 

          mice(j).delete =
1

2
× (sort ∑  𝑀

𝑘=1 (mice(j).cost) 

12. Create new Colony in Reservation by Invader Mice: 

NewColony(j).Index =[(𝑚𝑖𝑐𝑒(𝑗). 𝑠𝑒𝑐 = 𝑚): 3] × 𝑟𝑎𝑛𝑑[(𝑚𝑖𝑐𝑒(𝑗). 𝑠𝑒𝑐 = 𝑓): 8]  
13. Determine the Best Mice belonging to the new Colony: 

ColonyGBest=min(mice(j).cost) 

14. Determine the Global Best of Total Colony: 
GBest=min(ColonyGBest) 

15. Stop 

 

 

4. RESULTS AND DISCUSSION 

In this section, to confirm the effectiveness of the proposed optimization WMC algorithm, the 

predefined DNR problem is solved for two distribution networks, i.e., IEEE 33-bus and 69-bus test systems, 

and the obtained results are analyzed. The simulations are carried out in MATLAB R2018b using a Core i7, 

2.4 GHz processor, 8 GB RAM computer. The 33-bus and 69-bus distribution systems initial data are given 

in [9]. Also, Table 1 gives the parameters of the proposed WMC algorithm. 

 

 

Table 1. Parameters of the proposed WMC algorithm 
Parameter Value 

Initial population 108 
Number of colonies 9 

Number of male mice per colony 4 

Number of female mice per colony 8 

Initial mice norm (MN) 0.1 

Initial accept parameter (AP) 0 

Maximum iteration 200 
Mating age threshold (Age threshold) 8 months 

Maximum radius of colonies (Position threshold) 10 m 

 

 

4.1.  Case study 1: IEEE 33-bus test system 1 

The IEEE 33-bus system, as shown in Figure 5, has a feeder substation and 32 buses. This network 

includes 5 open branches (tie switches or NO switches represented by red dash lines in Figure 5) and 32 

closed branches. The nominal voltage level is 12.66 kV, and the network's total active and reactive power 

consumption under normal conditions are 3,715 kW and 2,300 kVAr, respectively. 

 

 

 
 

Figure 5. IEEE 33-bus test system 

 

 

The optimization results are presented in two states, i.e., before the distribution network 

reconfiguration and after the distribution network reconfiguration. The results obtained by applying the 

proposed WMC algorithm for the 33-bus system are given in Table 2. According to Table 2, it is confirmed 

that after the reconfiguration, the total active power losses decreased from 202.67 to 108.7921 kW. The energy 
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not served reaches 40.1981 kWh/y, which indicates a decrease of 22.03%. The CAIDI index also reduced from 

5.5851 to 4.5403, and the SAIFI index decreased from 2.5966 to 1.9054. This reveals the impact of the 

reconfiguration in increasing the reliability indices. In addition, Figure 6 shows the voltage profile before and 

after reconfiguration for the 33-bus system. It can be seen that the reconfiguration has a satisfactory effect on 

the voltage profile so that the minimum voltage has increased from 0.9338 p.u to 0.9543 p.u. 

 

 

Table 2. Numerical results for IEEE 33-bus system 
Parameter Before reconfiguration After reconfiguration 

Total Active power losses (kW) 202.67 108.7921 
Minimum voltage profile (p.u) 0.9338 0.9543 

The opened switches 33 ،34 ،35 ،36،37 7،9،14 ،32 ،37 

Energy not served (kWh/y) 51.5579 40.1981 
SAIFI index 5.5854 4.5403 

CAIDI index 2.5966 1.9054 

 

 

 
 

Figure 6. Voltage profile before and after reconfiguration for IEEE 33-bus test system 

 

 

4.2.  Case Study 2: IEEE 69-bus test system 

The IEEE 69-bus network has one feeder substation and 68 buses, as depicted in Figure 7. The 

branches specified by red dash lines are normally open, and the other switches are normally closed. The 

nominal voltage level is 12.66 kV and the total active and reactive power consumption under normal 

conditions are 3802.19 kW and 2694.6 kVAr, respectively. Similarly, the numerical results are presented in 

Table 3. According to Table 3, it can be seen that after the reconfiguration, the total active power losses have 

decreased from 224.9804 kW to 94.6574 kW. Also, the ENS index has diminished from 462.3 kWh/y to 

251.4 kWh/y, which means a 45.62% decrease in this index. The CAIDI index decreased from 4.6791 to 

2.2593, and the SAIFI index reduced from 2.7654 to 1.2684. This indicates the effectiveness of the 

reconfiguration process in increasing the reliability indices. In addition, the voltage profile curves before and 

after reconfiguration are depicted in Figure 8 for the IEEE 69-bus test system. According to this figure, it can 

be seen that the reconfiguration decreases the voltage deviation index considerably so that the minimum 

voltage has increased from 0.9078 p.u to 0.9584 p.u. 

 

 

 
 

Figure 7. IEEE 69-bus test system 
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Table 3. Numerical results for the IEEE 69-bus system 
Parameter Before reconfiguration After reconfiguration 

Total Active power losses (kW) 224.9804 94.6574 
Minimum voltage profile (p.u) 0.9078 0.9584 

The opened switches 69 ،70 ،71 ،72،73 12 ،20 ،56 ،61،69 

Energy not served (kWh/y) 462.3 251.4 
SAIFI index 2.7654 1.2684 

CAIDI index 4.6791 2.2593 

 

 

 
 

Figure 8. Voltage profile before and after reconfiguration for the IEEE 69-bus test system 

 

 

4.3.  Comparative study 

Table 4 gives the results of the proposed algorithm WMC compared to other methods presented in 

the literature corresponding to the IEEE 33-bus and 69-bus test systems under the normal load conditions. 

Furthermore, Figure 9 illustrates the objectives, i.e., Figure 9(a) PLoss, Figure 9(b) ENS, Figure 9(c) CAIDI, 

and Figure 9(d) VD, obtained by applying enhanced genetic algorithm (EGA) [25], binary particle swarm 

optimization (BPSO) [26], teaching-learning-based optimization (TLBO) [27], and selective particle swarm 

optimization (SPSO) [28] optimization algorithms for the IEEE 33-bus test system. As can be seen in this 

figure, the algorithm proposed in this study has superior performance compared to other algorithms presented 

in the literature from the convergence characteristics and the final value of the objective function points of 

view. Since the proposed WMC algorithm works based on aggressive and mating behaviors of wild mice in 

the separated colonies, it can simultaneously calculate different cost functions for new colony members and 

distinguish the most optimal values. This capability is not seen in other multi-objective optimization 

algorithms, e.g., BPSO and EGA, where the multi-objective structure of the algorithm is different from the 

single-objective structure. In other words, the optimization algorithm calculates each objective in an 

independent step to optimize multiple objectives, and the optimal value is obtained by sorting the results in 

descending order. This will increase the execution time of conventional multi-objective algorithms, 

especially for complex optimization problems. In contrast, the proposed WMC algorithm does not depend on 

the number of objective functions, so its execution speed is higher. In addition, due to the classification of the 

initial solution space (initial population) in the proposed algorithm based on the age, gender, and position 

indices of mice, searching the whole possible solution space is more accessible, and the convergence speed of 

the algorithm will be increased. 

In order to further investigate, the percentage of power loss reduction and the percentage of 

minimum voltage enhancement for IEEE 33-bus and 69-bus test systems by applying different optimization 

algorithms are compared in Figures 10 and 11, respectively. The active power loss reduction and the 

minimum voltage enhancement in percentage for the 33-bus system are depicted in Figures 10(a) and 10(b), 

respectively. The same representations are also provided for 69-bus system in Figures 11(a) and 11(b), 

respectively. By executing the proposed WMC algorithm, the power loss reduction percentage for IEEE 33-

bus and 69-bus systems is 46.3206% and 57.9264%, respectively. Furthermore, the minimum voltage 

enhancement percentage by solving the optimization problem using the proposed WMC algorithm is 

2.1953% and 5.5739% for IEEE 33-bus and 69-bus systems, respectively. These results confirm that the 

proposed WMC algorithm performs better than other optimization algorithms from the power loss 

minimization and voltage profile enhancement points of view for the 69-bus test system. However, in the 

case of the 33-bus system, despite the superiority of the proposed algorithm in power loss minimization, the 

WMC algorithm ranks second after the gravitational search algorithm (GSA) algorithm from the voltage 

profile enhancement viewpoint. This result verifies that the proposed WMC algorithm has outstanding 

performance in solving DNR problems for large-scale distribution systems despite its satisfactory 

performance for small-scale distribution systems. 
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Table 4. The comparative study results Associated with the IEEE 33-bus and 69-bus test systems 
Algorithm Total active power loss (kW) Minimum voltage (p.u) Maximum iteration until convergence 

33-bus system 69-bus system 33-bus system 69-bus system 

HBO [9] 138.01 - 0.94234 - ~ 7 
MILP [12] 139.55 99.61 0.9378 0.9427 - 

MPSO [13] 131.0 98.86 0.9394 0.95239 ~ 20 

CSFSA [15] 138.91 - 0.94235 - ~ 18 
MSSOE [18] 139.55 99.69 0.9378 0.9428 - 

EGA [25] 139.55 99.62 - - ~ 90 

BPSO [26] 138.928 98.595 0.9378 0.9495 ~ 60 
TLBO [27] 139.52 99.55 0.9378 0.9428 ~ 75 

SPSO [28] 138.92 98.59 0.9423 0.9494 ~ 25 

WMC (This Work) 108.7921 94.6574 0.9543 0.9584 ~ 21 - 23 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 9. Convergence characteristics of the optimization algorithms for the normal load scenario–IEEE 33-bus 

test system, (a) active power loss, (b) energy not served (ENS), (c) CAIDI index, and (d) voltage deviation 
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Figure 10. Comparative study results for the IEEE 33-bus test system (a) power loss reduction percentage 

and (b) minimum voltage enhancement percentage 
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(a) 

 

 
(b) 

 

Figure 11. Comparative study results for the IEEE 69-bus test system (a) power loss reduction percentage 

and (b) minimum voltage enhancement percentage 

 

 

5. CONCLUSION 

A new meta-heuristic algorithm named the WMC algorithm is proposed in this paper to solve the 

optimal distribution network reconfiguration DNR problem. A multi-objective optimization problem 

including minimizing active power loss, improving reliability indices, and enhancing voltage profile, is 

defined and solved using the proposed algorithm for two IEEE 33-bus and 69-bus test systems. In addition, 

four recently proposed optimization algorithms, i.e., EGA, BPSO, TLBO, and SPSO, are also applied, and 

the results are compared with the proposed WMC algorithm to evaluate the performance of the proposed 

algorithm in solving the DNR problem. The numerical results confirm the superiority of the proposed WMC 

algorithm compared to other algorithms in terms of convergence speed and the converged objective function 

value. Furthermore, a comparative study is accomplished with literature. The comparison of the power loss 

reduction percentage demonstrates that the proposed WMC algorithm results in the highest loss reduction 

among the optimization algorithms utilized in the literature to solve the DNR problem with 46.3206% and 

57.9264% loss reduction for 33-bus and 69-bus systems, respectively. In addition, the proposed algorithm 

performs satisfactorily in increasing the minimum voltage so that it ranks second for the first case study 

while exhibiting the best performance for the second case study. This result confirms that the proposed WMC 

algorithm is a great candidate for solving the DNR problem for large-scale distribution networks. In addition, 

the proposed algorithm is not limited to the number of objectives, which is a noteworthy advantage. 

According to the acquired results, the proposed WMC algorithm can solve the DNR problem, including four 

objective functions, with higher convergence speed and accuracy compared with the EGA, BPSO, TLBO, 

and SPSO algorithms. By implementing the proposed method of determining the optimal configuration of the 

system in this paper, it is possible to make early and timely decisions in the event of faults in the power 

systems, which ultimately prevents extensive blackouts and damage to other parts of the system. On the other 

hand, the performance of protection relays in the system depends on the timely sending of control commands 

from the distribution system operator (DSO). Most of the strategies presented in the studies to determine the 

optimal configuration of the system challenge the system operator due to the long execution and presentation 

of results. In the next study, the optimal reconfiguration of the distribution network with high penetration of 

distributed generation units and plug-in electric vehicles will be investigated. In such a system, due to the 

presence of sensitive loads, fault propagation throughout the system can cause significant economic losses to 

the system; hence, it is critical to determine the optimal system configuration as soon as possible.  
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