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 As 5G mobile networks continue to proliferate in dense urban environments, 

it becomes increasingly important to understand and mitigate excessive 

electromagnetic field (EMF) exposure. This study investigates how the 

downlink EMF exposure levels of 5G millimeter wave (mm-wave) mobile 

networks are influenced by the integration of multi-active reconfigurable 

intelligent surfaces (RISs), using a ray-tracing approach. Our research 

employs a comprehensive two-step methodology: Firstly, we introduce a 

new RIS-assisted 5G mm-wave network planning technique. This technique 

leverages a machine learning (ML) approach for the classification of multi-

RIS clusters. The primary goal is to optimize coverage while minimizing the 

number of required RIS deployments. This is achieved by strategically 

placing RISs based on the ML classification, ultimately aiming to enhance 

network efficiency. Secondly, we conducted a thorough comparative 

analysis, evaluating the impact of both passive and active RISs on EMF 

exposure level throughout a dense urban environment. Passive RIS and 

active RIS differ in their adaptability to changing network conditions. The 

result shows that the influence of multi-active RISs on EMF exposure is 

significant (about 7.5 times higher) compared to passive RISs. 
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1. INTRODUCTION 

To support the increased demands for improved quality-of-service (QoS) and enhanced data 

throughput as specified in the standards of 5G and beyond, several novel technologies will be integrated into 

the upgraded networks. These enhancements include the adoption of beamforming antenna arrays, the 

utilization of millimeter wave (mm-wave) technology, the deployment of denser network infrastructures, the 

implementation of large-scale distributed antenna systems with reconfigurable capability [1], [2], and the 

extensive use of carrier aggregation. However, it is crucial to acknowledge that these innovations raise 

concerns about potential health risks, as they are anticipated to result in heightened levels of human exposure 

to electromagnetic field (EMF) radiation. For instance, high-gain mm-wave beamforming antenna arrays can 

generate narrow, concentrated electromagnetic beams to facilitate signal transmission [3]–[5]. High-intensity 

EMF exposures may lead to an increase in the absorption of EM energy by the human body and excessive 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Assessing electromagnetic field exposure levels in multi-active … (Mohammed Ahmed Salem) 

4111 

local tissue temperature [6]. Additionally, network densification will progressively shrink the size of network 

cells, allowing for the deployment of more base stations (BSs) in closer proximity to users, thereby 

enhancing connection quality. Consequently, due to their proximity to one or more BSs, mobile users may 

experience increased exposure to EMF radiation [7].  

Mm-wave transmission is well known to be highly sensitive to obstacles such as buildings and 

terrain irregularities. Therefore, in dense urban environments, the coverage of a gNodeB (gNB) utilizing mm-

wave bands relies heavily on the quality of the link, including both line-of-sight (LoS) and non-LoS (NLoS) 

connections, between the gNB and the spatially distributed users. As a result, network design solutions 

associated with traditional sub-6 GHz networks are not optimized for networks operating at mm-wave 

frequencies. Several studies have tackled this issue by deploying multiple gNBs to minimize outage areas. 

However, while this approach meets the minimum required QoS, it comes with a significant increase in 

deployment costs and power consumption. The intricate nature of mm-wave propagation also poses a 

significant challenge in accurately evaluating EMF exposure levels within mobile networks operating at mm-

wave frequencies. Ray-tracing simulations offer a promising solution to this challenge, providing detailed 

insights into signal propagation characteristics and interactions with surrounding obstacles. Chiaraviglio et al. 

[8] conducted an analysis of EMF levels in real-world pre-5G scenarios through the use of ray tracing. It is 

important to note that this analysis was limited to a base station with frequencies lower than 3 GHz and 

standard fixed-beam antenna. Chiaraviglio et al. [9] investigated the EMF effects of 5G base stations 

employing the pencil beamforming technique, specifically in terms of the power density (PD) metric. 

However, it is worth mentioning that the proposed EMF assessment procedure is limited to localization based 

beamforming and depends on the standard 3GPP propagation model [10]. Noé and Gaudaire [11] delves into 

the investigation of downlink EMF exposure generated by 5G beamforming antennas using ray tracing. 

Furthermore, the authors specifically compared the impact of various beamforming techniques on the level of 

EMF exposure in urban environments.  

This section examines previous works relevant to network optimization and EMF exposure 

evaluation of reconfigurable intelligent surface (RIS)-assisted mm-wave mobile network. Recently, 

researchers have turned their attention to deploying RISs to optimize mm-wave signal coverage in outage 

areas. Integrating RISs can improve the coverage performance of mm-wave networks, particularly in NLoS 

scenarios, offering a cost-effective solution. Consequently, from an economic perspective, deploying RISs 

alongside gNBs could be a prudent strategy for significantly expanding coverage in densely populated urban 

environments. However, most recent works on RIS utilization in 5G network design have focused on meeting 

spectral efficiency (SE) or energy efficiency (EE) requirements, overlooking the EMF exposure constraint. 

In the literature, few studies have investigated the EMF exposure for 5G networks assisted by RIS. 

These studies are summarized in Table 1. However, they have predominantly focused on the use of passive 

RISs.  

 

 

Table 1. Related works on RIS-assisted gNB deployment and EMF exposure level 
Ref. Objective Type 

of RIS 

Frequency 

band 

Channel 

Model 

EMF 

metric 

[12] Optimize energy efficiency subject to EMF constraints Passive  mm-wave RP-PLM SAR 
[13] Optimize exposure index subject to a minimum QoS requirement. Passive  mm-wave 3GPP EI 

[14] Enhance spectral efficiency while adhering to EMF constraint. Passive  mm-wave MPCM 𝑃𝑅 

[15], [16] Optimize beamforming while adhering to EMF constraints. Passive  mm-wave MPCM 𝑃𝑅 

Notations: Specific absorption rate (SAR), exposure index (EI), radio propagation path loss model (RP-PLM), and multipath 

propagation channel model (MPCM). 

 

 

Based on [12], the authors conclude that the use of passive RIS does not increase the amount of 

EMF radiation. However, the influence of active RIS on EMF exposure levels is not considered. Zhang et al. 

[17] compared the performance of an active RIS and a passive RIS based on the signal-to-noise ratio (SNR) 

and concluded that the SNR achieved by the active RIS was about 40 dB higher than the that achieved by the 

passive RIS. However, the study did not assess the impacts in terms of EMF exposure levels. These research 

gaps motivate us to investigate the effects of multi-active RISs in terms of EMF exposure when compared 

with multi-passive RISs within the same environmental scenarios. Addressing these identified gaps, this 

work presents the following original contributions: 

− A new EMF evaluation framework for multi-RIS assisted mm-wave network: building upon our previous 

work [18], we extend the ray-tracing-based EMF evaluation framework by incorporating a machine 

learning-based multi-RIS clustering approach. 
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− New results on downlink EMF exposure levels of multi-active RIS assisted mm-wave network: Unlike 

[12], our spatial EMF distribution and user density analysis conclude that the influence of multi-active 

RISs on EMF exposure is significant compared to passive RISs. 

The outline of this paper is organized as follows: section 2 introduces the system model and the 

proposed extended framework. Section 3 focuses on optimizing RIS placement, clustering, and performance 

comparison. In section 4, the results and discussions regarding the investigation of the impact of both passive 

and active RISs on EMF exposure levels in a dense urban environment are presented. Finally, section 5 

summarizes the conclusions drawn in this paper. 

 

 

2. SYSTEM MODEL AND PROPOSED FRAMEWORK 

The proposed framework for evaluating downlink EMF exposure levels in multi-active RIS assisted 

mm-wave networks consists of five modules: (a) system modelling and 3D map configuration, (b) Ray-

tracing simulation, (c) RISs placement, (d) ML-based clustering, and (e) post-processing. The details of the 

RIS placement, ML-based clustering, and post-processing modules are provided in section 3. The RIS 

placement and ML-based clustering modules are the core components, responsible for computing the optimal 

locations of the RISs and determining the minimum number of RISs required to serve the UEs. This 

framework serves as a comprehensive guide to addressing the primary research question: What are the 

impacts of using multi-active RISs in 5G networks assisted by MIMO and beamforming technique on EMF 

exposure levels? Figure 1 shows the flowchart of the proposed EMF evaluation framework based on ray-

tracing. 

 

 

 
 

Figure 1. Flowchart of the proposed EMF evaluation framework 

 

 

A 3D map is needed for ray-tracing simulation, where the EM properties of the materials such as 

building, and vegetation are defined according to the recommendation from previous literature. In this work, 

we focus on a 5G mm-wave mobile network incorporating a downlink multiple-input multiple-output 

(MIMO) system assisted by multi-active RISs. The system comprises of a base station (BS) with an M×M 

antenna array and R RISs equipped with an N×N array of reflective elements (REs) each. The base station 

serves K single-antenna user equipment (UE) with the assistance of the RISs. These RISs dynamically adjust 

the reflection beamforming (also referred to as reflecting coefficients at the REs) to control the phase shift 

and power amplification of the incident signals as needed. Consequently, the UE receives the signal through 
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two links: the RIS-aided link (BS-RIS-UE) and the direct link (BS-UE). UEs receiving signals via the direct 

link are considered within the base station’s coverage area (base station cluster). 

Ray tracing is employed to calculate the channel state information (CSI) at the transmitter by 

simulating the interactions of the propagation channel with the transmitted signal. To ensure the accuracy and 

reproducibility of our results, we utilize a commercial software package called Wireless InSite [19]. In the 

simulation, a 3D ray-tracing approach is employed, which integrates various techniques, including geometric 

optics (GO), the uniform theory of diffraction (UTD) method, and the shooting and bouncing rays (SBR) 

method [20], [21]. This combination enables a comprehensive modelling of electromagnetic wave behavior 

in complex environments. The ray paths are initiated from the source point, representing the transmitted 

signal, and traced as they propagate through the environment. Upon interaction with building walls and 

objects, the rays can undergo specular reflection. Subsequently, these reflected rays are traced, considering 

multiple reflections until they either reach the boundary of the study area or the maximum allowable number 

of reflections. The UTD and GO are then used to determine the received power at grid points and building 

surface points. In study [18], a detailed discussion is provided on obtaining the 5G MIMO channel 

coefficients and received power using 3D ray tracing. The data from grid points and building surfaces are 

collected for subsequent modules (RIS placement and ML-based clustering). 

 

 

3. OPTIMIZATION OF RIS PLACEMENT AND CLUSTERING 

The service area, defined as the outdoor areas excluding the area occupied by buildings that is 

served by a base station, must first be maximized using the minimum number of RISs selected from a set of 

possible locations. The receiver’s location is considered covered if the received power at that point equals or 

exceeds the minimum allowable received power threshold, (or denoted as receiver sensitivity (𝑃𝑅𝑚𝑖𝑛)). 

Conversely, if the total received power falls below 𝑃𝑅𝑚𝑖𝑛, the corresponding point is classified as 

experiencing an outage. The value of 𝑃𝑅𝑚𝑖𝑛  can be derived from the mm-wave link budget analysis of 5G 

new radio (NR) systems [22], [23]. For example, 𝑃𝑅𝑚𝑖𝑛 can be expressed as follows (assuming the minimum 

required SNR is 0 dB): 

 

PRmin=NT +NF + 10 log10(BW),  (1) 

 

Considering thermal noise of 𝑁𝑇 = −174 dBm/Hz, noise figure of 𝑁𝐹 = 10 dB, and bandwidth of 

𝐵𝑊=100 MHz, the minimum allowable received power threshold is -84 dBm.  Based on this threshold, the 

grid points are split into two sets, namely the set of the covered area (𝑆𝐶𝐴) and the set of the outage area 

(𝑆𝑂𝐴). For downlink transmission, the received power can be expressed as [19]. 

 

PRk=|hk
H
wk|

2
  (2) 

 

where 𝑤𝑘 is the beamforming weights vector for the k-th UE, ℎ𝑘 = [ℎ𝑘[1], … , ℎ𝑘[𝑁]]
𝑇
is the complex-valued 

channel coefficients vector, and (. )𝐻 represents the conjugate transpose. The beamforming weights for the  

k-th UE is set to be proportional to the channel gains of the respective antenna elements: 

 

wk=
hk

|hk| √pt    (3) 

 

where 𝑝𝑡  is the transmitted power toward the k-th UE. In conclusion, the minimum allowable received power 

threshold expressed in (1) and the received power expressed in (2) are used to satisfy Constraint (b) in (5.2). 

We assume the RISs can only be placed on the outer surfaces of buildings and can be oriented in any 

direction. The set of building surface locations can be expressed as 3D coordinates [24]. 

 

𝑆𝑏𝑢𝑖𝑙𝑑 = {(𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏)|∀𝑏 ∈ 𝐵}  (4) 

 

where B is the set of all points on the outer surface of the buildings. The set of all visible points (LoS) on the 

buildings from the base station and from the points in 𝑆𝑂𝐴 are denoted as 𝑆𝑉𝐵𝑆 and 𝑆𝑉𝑂𝐴, respectively. The 

datasets 𝑆𝑏𝑢𝑖𝑙𝑑 , 𝑆𝑉𝐵𝑆 , and 𝑆𝑉𝑂𝐴 are derived from the simulation using Wireless InSite. The set of candidate 

locations for the RISs (𝑆𝐶𝑅𝐼𝑆𝑠) comprises the intersection points of the three datasets (𝑆𝑏𝑢𝑖𝑙𝑑 , 𝑆𝑉𝐵𝑆, and 𝑆𝑉𝑂𝐴). 

The locations to deploy the R RISs (𝑆𝑅𝐼𝑆 = {(𝑥1
∗, 𝑦1

∗, 𝑧1
∗), … , (𝑥𝑅

∗ , 𝑦𝑅
∗ , 𝑧𝑅

∗ )}) are decided by maximizing the 

Enhanced Coverage, which is defined as the ratio of |𝑆𝐶𝑂𝐴| (the portion of the outage area that is now 

covered due to the utilization of RISs) to the outage area (|𝑆𝑂𝐴|). This metric quantifies the improvement in 

coverage achieved by deploying RISs. The placement optimization problem (POP) is defined as follows: 
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3.1.  Placement optimization problem (POP) 

The placement optimization problem is defined as follows: 

 

𝑀𝑎𝑥
𝑆𝑅𝐼𝑆

  𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|𝑆𝐶𝑂𝐴| 

|𝑆𝑂𝐴|
× 100%  (5) 

 

s. t. {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ [𝑆𝑉𝐵𝑆⋂𝑆𝑉𝑂𝐴⋂𝑆𝑏𝑢𝑖𝑙𝑑]} for 𝑖 = 1, … , 𝑅  (5.1) 

 

𝑆𝐶𝑂𝐴 = {𝑘|𝑃𝑅𝑘
≥ 𝑃𝑅𝑚𝑖𝑛 , 𝑘 ∈ 𝑆𝑂𝐴}  (5.2) 

 

where |. | is the cardinality of a set. Constraint (5.1) ensures that the optimal location of the RIS belongs to 

the set of candidates RIS locations. Constraint (5.2) ensures that the receiver locations having received power 

exceeding the minimum allowable received power threshold are counted as under coverage. After solving the 

placement optimization problem, we find the optimal locations for the RISs to cover the service area. Then, 

each RIS is assigned to cover a specific territory on the map. The assignments can be done by using machine 

learning classifiers such as random forest (RF) [25], support vector machine (SVM) [26], naive bayes (NB) 

[27], decision tree (DT) [28], k-nearest neighbor (K-NN) [28], and deep neural network (DNN) [29]. This 

process clusters the environment into regions covered by the base station and the RISs. The features extracted 

from the grid points data are the location of the grid points (X, Y, Z) and the received power from the base 

station (𝑃𝑅𝐵𝑆) and received power from each RIS (𝑃𝑅𝑅𝐼𝑆,𝑖). 

In this paper, we compare the impacts of utilizing passive and active RISs on the EMF radiation 

exposure level for a dense urban environment. The comparison is carried out by placing the RISs at 

optimized locations to cover the UEs. For a fair comparison, we constrain the total transmit power of the two 

scenarios to 1W (30 dBm) by setting the BS transmit power to 1W for the passive multi-RIS-aided system 

and 1 (𝑅 + 1)⁄  W, for the active multi-RIS-aided system.  

 

 

4. RESULTS AND DISCUSSION 

Table 2 shows the simulation parameters considered for the 5G dense urban network. For the 

downlink, complex-valued path gains for each sub-channel between the BS and the UEs were obtained from 

a realistic ray tracing simulator (Wireless InSite) to calculate the beamforming (or precoding) weights. These 

precoding weights are calculated using the maximum ratio transmission (MRT) beamforming technique [16] 

to ensure that the UEs receive the maximum power. Then, the received power for the entire study area is 

simulated and used to evaluate the EMF exposure level. Throughout this paper, all simulations and results are 

for a small cell scenario in the dense urban city of Rosslyn, Virginia, shown in Figure 2. According to Salem 

et al. [18], for a dense urban setting, the anticipated size of population in this area consists of 123 people. The 

locations of these UEs were randomly distributed, with 93 UEs outdoors and 30 UEs indoors within 

buildings. It is important to note that, in this study, the assessment of EMF exposure was focused exclusively 

on the outdoor UEs. 

Six machine-learning-based classifiers were used for the clustering process, and their performances 

were evaluated based on accuracy to determine the top-performing classifier. These classifiers were trained 

using a dataset containing 4 features extracted from the data, with 70% of the data allocated for training, 15% 

for testing, and the remaining 15% for validation. The ML and DL toolbox (classifier learner) in MATLAB 

2021b was utilized for this purpose. The comparison of the different classifiers revealed that the K-NN model 

achieved the highest accuracy at 98.2%, as indicated in Table 3. 

Figure 3 illustrates the coverage analysis, optimized RISs placement and clustering. The area 

covered by the BS (without utilizing RISs) is shown in Figure 3(a), comprising 52.4% of the total area. 

Conversely, 47.6% of the service area was left uncovered. Figure 3(b) illustrates the clusters assigned to each 

RIS node, with eight RISs utilized to enhance coverage. The proposed RIS clustering technique facilitates the 

organization of the transmission flow for the RIS-assisted link (BS-RIS-UE). Consequently, the base station 

can intelligently direct its beams towards the appropriate RIS to ensure coverage of the UEs within the 

outage areas. The proposed clustering technique streamlines the deployment and activation of the RISs for 

urban UE coverage. In Figure 3(c), the tangible outcome is apparent: only three (RIS 1, RIS 7, and RIS 8) out 

of eight available RISs are required to be activated to seamlessly serve 93 randomly distributed UEs. This 

strategic allocation underscores the practical efficiency of our approach, permitting deactivation of some of 

the deployed RISs without compromising comprehensive coverage. Based on Figure 3(c), we observed that 

one UE was not covered because it was located within the building. In Figure 3(d), the optimal location of 

each RIS is presented with the percentage of the enhanced coverage. 
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Figure 4 demonstrates the comparison between multi-active RISs and multi-passive RISs based on 

the EMF exposure level within the entire service area. Figure 4(a) shows the plot of the average and peak 

values of the total power density (PD) versus distance from the BS for both scenarios considered. 

Additionally, Figure 4(a) displays the maximum limit set by International Commission on Non-Ionizing 

Radiation Protection (ICNIRP). The PD was observed to be mainly dependent on three factors: the distance 

from the base station, the concentration of the UEs in a specific area, and the type of RISs used. 

 

 

Table 2. Simulation parameters 
Parameters Description 

5G System & Scenario 

BS antenna 8×8 array per data stream 

Frequency 28 GHz 
BS height 10 m 

BS Tx power with pRIS 30 dBm  

BS Tx power with aRIS 23.9794 dBm  
UE antenna Single halfwave dipole 

UE height 2 m 

RIS elements 10×10 
ARISs power 23.9794 dBm 

Ray-Tracing Parameters 

Propagation model Full 3D (X3D) 

Ray tracing technique SBR 
Ray spacing 0.15 

Number of paths 25 

Number of reflections 6 

Coverage Analysis 

Minimum allowable received power threshold (𝑃𝑅𝑚𝑖𝑛) -84 dBm 

Percentage of 𝑺𝑪𝑨 52.3979% 

Percentage of 𝑺𝑶𝑨 47.6021% 

EM Properties of Materials 

Material ɛr σ[S/m] 

Vegetation-Branch 20 0.39 

Vegetation-Leaf 26 0.39 

Buildings (Concrete) 5.31 0.8967 

 

 

 
 

Figure 2. Locations of the base station and RISs in a dense urban environment 

 

 

Table 3. Comparison of different classifiers 
Classifier  Accuracy (%) 

Decision tree 96.5 

SVM 97.3 

KNN (K=7) 98.2 (Selected) 
Naive Bayes 86.9 

Random forest 97.4 

Deep neural network 96.1 
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(a) (b) 

 

  
(c) (d) 

 

Figure 3. Coverage, placement and clustering analysis (a) base station location, covered area, and outage 

area, (b) RIS clusters, (c) UE’s coverage, and (d) RISs optimal locations and percentage of enhanced 

coverage 

 

 

In general, the PD decreased with increasing distance. However, there were instances where the 

total PD was higher at certain spots far from the base station compared to those closer to it. This phenomenon 

can be attributed to the higher density of UEs operating near each other in those areas. We observed that the 

maximum EMF level without using RISs was similar to the EMF level when using passive RISs. The main 

reason for this similarity is that the passive elements of the RIS did not receive amplified power. 

Consequently, the signal with the same incident power was reflected (assuming ideal passive reflection). 

A similar observation was also reported in [12]. However, the utilization of active RISs led to elevated EMF 

levels. According to Figure 4(a), the maximum PD observed due to the use of passive RISs is 24.92 dBm/m2 

(62% of ICNIRP’s limit), whereas the maximum PD observed due to the use of active RISs is 33.65 dBm/m2 

(84% of ICNIRP’s limit), which is about 7.5 times higher than when using passive RISs. Unlike [12], our 

analysis demonstrates that the impact of multi-active RISs on EMF exposure is significant, being 7.5 times 

higher compared to passive RISs. Figure 4(b) depicts the empirical cumulative distribution function (ECDF) 

of the PD levels in the studied area, which included 93 actives outdoor UEs. According to Figure 4(b), 

considering multi-active RISs, there is a 10% probability that the PD may exceed 30 dBm/m2, equivalent to 

75% of the ICNIRP’s limit. Figures 4(c) and 4(d) depict the spatial distribution of total PD attributed to 

passive and active RISs in a dense urban environment. It is evident that the EMF level in the study area 

increased significantly when each UE located in outage areas was actively served by the active RISs. This 

scenario demonstrates that almost all areas that previously had low levels of EMF exposure (when passive 

RISs were activated) were now experiencing high EMF exposure. 
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(a) (b) 

 

  
(c) (d) 

 

Figure 4. EMF evaluation analysis (a) downlink PD, (b) ECDF of PD, (c) spatial distribution of PD  

(multi-passive RIS), and (d) spatial distribution of PD (multi-active RIS) 

 

 

5. CONCLUSION 

This research investigates the EMF exposure intensity, measured by the PD metric, of a multi-RISs-

assisted 5G mm-wave network utilizing MIMO beamforming in downlink transmissions. The findings 

indicate that the PD metric remained below the thresholds established by ICNIRP. However, the use of multi-

active RISs resulted in a significant increase in exposure levels. It is noteworthy that in environments with 

higher UE density, the exposure to EMF could potentially increase even further. For future work, we plan to 

optimize the energy efficiency (EE) of active-RIS-assisted 5G mm-wave networks while considering both 

EMF exposure and power constraints. One potential avenue involves developing a joint optimization 

algorithm that addresses both EMF exposure and power constraints. Overall, devising EMF-aware algorithms 

for multi-active RIS-assisted 5G networks can offer valuable insights into the design and optimization of 

such networks, balancing energy efficiency with safe EMF exposure levels. 
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