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 Efficient offloading and scientific task scheduling are crucial for managing 

computational tasks in research environments. This involves determining the 

optimal location for executing a workflow task and allocating the task to 

computing resources to optimize performance. The challenge is to minimize 

completion time, energy consumption, and cost. This study proposes three 

methods: latency-centric offloading (LCO) for delay-sensitive applications; 

energy-based offloading (EBO) for energy-saving; and efficient offloading 
(EO) for balanced task distribution across tiers. Scheduling in this paper  

uses a genetic algorithm (GA) with a weighted sum objective function 

considering makespan, cost, and energy for internet of things-cloud-fog 

(IoT-fog-cloud). Comparative studies involving montage, Cybershake, and 
epigenomics workflows indicate that LCO excels in terms of makespan and 

cost but ranks the lowest in energy. EBO excels in energy efficiency, 

aligning closely with the base method. EO competes effectively with the 

base method in terms of makespan and cost but consumes more energy. This 
research enables the selection of the most suitable method based on the type 

of application and its prioritization of makespan, energy, or cost. 
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1. INTRODUCTION 

A scientific workflow outlines a process to achieve a scientific goal, defined by tasks and their 

interdependencies [1]. Dependencies occur at various stages, directing tasks to be executed sequentially to 

achieve the scientific goal [2]. Scientific workflows commonly use directed acyclic graphs (DAGs) to model 

these dependencies, with tasks as nodes and dependencies as edges [3]. The evolution of computationally and 

data-intensive methods in the natural sciences has driven the creation of scientific workflows designed to 

automate repetitive computational tasks [4]. Initially, scientific workflows were primarily deployed on 

distributed systems [5], [6] and on high-performance computing (HPC) [7]. During this period, the focus 

centered around treating systems and applications as opaque entities, emphasizing distributed resource 

management and workload execution [6]. Recently, there has been a shift toward using cloud computing 

infrastructure to conduct scientific workflows [8]–[10]. Unlike distributed systems, cloud computing operates 

on a client-server architecture, centrally utilizing resources with a pay-as-you-go model [11].  

Cloud solutions may not consistently meet quality of service (QoS) and quality of experience (QoE) 

for certain latency-sensitive internet of things (IoT) applications due to distance and connectivity issues. This 

led to fog computing, extending cloud resources closer to IoT devices. Fog devices process and offload 

functions from cloud servers, ensuring enhanced performance [12]. Advancements in networking technology, 
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including 5G and beyond, have generated a growing demand for extensive computing and seamless service 

access due to the proliferation of mobile devices and Internet-connected users. This has led to the emergence 

of fog radio access networks (F-RANs) [13] in conjunction with cloud radio access networks (C-RANs) [14], 

collectively contributing to pervasive computing services. F-RANs position a fog computing layer at the 

network's edge, allowing local handling of some services and applications, eliminating the need for 

centralized cloud computing. This method improves how F-RANs handle different quality needs in 5G 

services by making distributed caching and centralized processing more efficient. Fog computing not only 

delivers cloud-like services to end users (EUs) but also has the potential to enhance the performance of fog-

based systems, improving system efficiency, reducing service delays [15], and reducing cost [16] through 

effective computational offloading algorithms [17].  

Combining the internet of things (IoT), fog computing, and cloud technologies creates IoT-fog-

cloud (IFC) systems. These systems provide seamless services and applications, leading to improved QoS 

across a range of devices, from edge devices to cloud resources. This ensures the efficient offloading of 

computations. Assigning workflow tasks to virtual machines in the cloud is a crucial step in scheduling 

workflow execution on cloud resources. However, the high costs of computation and communication often 

pose challenges [18], [19].  

To address challenges in scheduling jobs on cloud infrastructure, population-based methods like 

genetic algorithms (GA) and particle swarm optimization (PSO) have been proposed as solutions. Typically, 

these methods follow a predefined mapping process, falling under the category of static workflow scheduling 

mechanisms. The main optimization objectives include maximizing completion execution time, often 

referred to as "makespan”, and minimizing costs. Furthermore, these techniques often incorporate other QoS 

criteria, such as budget constraints and deadlines, as integral aspects of the optimization process. 

Recent studies focusing on scheduling scientific workflows show that the GA is the top choice for 

optimization based on population in this field [20]–[22]. The GA is widely used to solve task scheduling 

problems [23] due to its global optimization and search ability. This paper employs a three-tier network 

architecture. An initial iteration of this research was presented and published at [24]. Three offloading strategies 

are proposed in [25]. Subramoney and Nyirenda [26] introduced a method called multi-swarm particle swarm 

optimization (MS-PSO) to enhance the scheduling of scientific tasks in IoT-cloud-fog systems. 

The main contribution of this paper is described as proposing of latency-centric offloading (LCO), 

energy-based offloading (EBO), and efficient offloading (EO) as offloading strategies with consideration of 

real-time applications using GA in [26] for scheduling scientific workflows, along with their practical 

realization within the FogWorkflowSim framework [25]. A comparative analysis of offloading strategies, 

including LCO, EBO, EO, and the base method, has been carried out for scientific workflows. This 

evaluation encompasses performance metrics such as makespan, cost, and energy. In our findings, by 

employing one of the proposed methods, we achieved improved metrics for various applications. For 

instance, LCO is optimal for latency-sensitive applications, EBO excels in energy reduction scenarios, and 

EO is preferable for applications seeking a balance across all metrics. 

The subsequent sections of this paper are structured as follows: section 2 formulates the proposed 

methods as problem definition, suggested offloading strategies, and an explanation of the task scheduling 

concept. Section 3 presents the different workflow models, the simulated environment, and the performance 

assessment. Ultimately, section 4 offers concluding remarks for the paper and suggested future work. 

 

 

2. METHOD  

IoT-fog-cloud offloading optimizes task execution in a multi-layered architecture. It involves 

deciding whether to execute tasks locally, offload to a nearby fog node, or process in the cloud. Our study, 

considering real-time applications and diverse needs, aims to optimize factors like latency, energy efficiency, 

and system performance. We propose three offloading strategies and compare them with existing ones in a 

workflow simulator [25]. 

 

2.1.  Problem definition 

The configuration described in this study involves an IoT-fog-cloud environment arrangement. The 

primary focus lies in effectively orchestrating the controller's efforts to locate the optimal server for various 

tasks. This necessitates the establishment of criteria for assessing the effectiveness of task offloading. 

Subsequently, we proceed to develop a cost function for offloaded tasks, considering both the time delay and 

energy consumption. Firstly, we calculate the time to offload to the cloud, fog, and local execution time  

(non-offloading time at the end device) as 𝑇𝐶, 𝑇F, and 𝑇ED, respectively. Then calculate the energy required to 

offload to cloud, fog, and local execution as 𝐸𝐶 , 𝐸𝐹 , and 𝐸𝐸𝐷 , respectively. To begin, let's initiate our 

discussion with a delay analysis, as in [27]. 
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𝑇ED =
𝐷

𝑅
  (1) 

 

𝑇F = 𝑇ED +
𝑀

𝑆𝑓
  (2) 

 

TC = 𝑇ED +
𝑀

𝑆𝑐
   (3) 

 

where 𝐷 represents the size of the input bits and 𝑅 denotes the processing rate, 𝑆𝑓  refers to the fog server's 

computation capacity, which represents the ratio between the tuning parameter and the bandwidth between 

the mobile device and fog server, and Sc stands for the capacity of computation in the cloud server. Then we 

analyze the energy consumption. 

 

𝐸𝐸𝐷 = 𝑇𝐸𝐷  ∗  𝑝𝑚𝑐  (4) 

 

where 𝑝𝑚𝑐 refers to the maximum amount of power expended by the mobile device during its operation or 

task execution. 

 

𝐸𝐹 = 𝐸𝐹1 + 𝐸𝐹2     (5) 

 

Here, 𝐸𝐹1 denotes the idle energy consumption of the mobile device, and 𝐸𝐹2 represents the energy 

consumed by the mobile device for transmitting the input bits to the fog server. 

 

𝐸F1 =
𝑀𝑝𝑖

𝑆𝑓
    (6) 

  

𝐸F2 =
𝑀𝑝𝑡𝑟

𝑅
  (7) 

 

Here, 𝑝𝑖  represents the idle power of the mobile device, 𝑝𝑡𝑟 signifies the transmission power of the mobile 

device, and 𝑀 indicates the size of the instructions executed on the fog server. 

 

𝐸𝐶 = 𝐸𝐶1 + 𝐸𝐶2     (8) 

 

where 𝐸C1 is the idle energy consumption of the mobile device, and 𝐸C2 represents the energy consumed by 

the mobile device for transmitting the input bits to the cloud server. 

 

𝐸C1 =
𝑀𝑝𝑖

𝑆𝑐
  (9) 

 

𝐸C2 =
𝑀𝑝𝑡𝑟

𝑅
  (10) 

 

where 𝑀 indicates the size of the instructions executed on the cloud server.  The aim of our proposed work is 

to use these parameters to make an efficient decision about which tasks should be processed at the fog nodes, 

which should be sent to the cloud, and which should be executed locally at end devices, considering various 

factors such as computational capacity, network conditions, energy constraints, and user requirements. 

 

2.2.  The proposed methods 

Our proposed method is developed by building upon concepts from base strategies and 

incorporating ideas from [25], [27], where the offloading algorithm is formulated as an optimization 

approach to reduce total execution time, total cost, and energy consumption within specified time constraints. 

The decision on offloading is influenced by factors like application type, task characteristics, and resource 

capacities. Hence, our aim is to devise methods capable of addressing these diverse scenarios, particularly 

those suitable for real-time applications. 

 

2.2.1. Latency centric offloading 

Offloading decisions prioritize minimizing task completion time (latency). Tasks may be offloaded 

to fog nodes or the cloud to meet latency requirements, or they may be executed locally with no offload. This 

strategy finds application in various real-world scenarios where low latency is critical. Algorithm 1 illustrates 

the LCO strategy. The workflow 𝑤𝑓 is the input to the algorithm, 𝐽 jobs, related deadlines, and 𝑁 devices, 
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while the output is the offloading decision. We assume a numeric representation for the offloading decision, as 0 

denotes non-offloading (locally execution), 1 represents offloading to fog, and 2 stands for offloading to cloud. 
 

Algorithm 1. Latency-centric offloading LCO strategy 
1. Input: Workflow 𝑤𝑓 composed of 𝐽 jobs, related deadline, and 𝑁 devices; 
2. Output: Offloading decision;  

3. Initialize LAN Bandwidth, WAN Bandwidth, and Tuning parameter; 

4. for i ← 1, N do 

5.  Calculate TED; 

6.  Calculate TF; 

7.  Calculate TC; 

8.  if deadline < min (TC, TF, TED) then  

9.  Offload decision ⟵ 0 

10.  else if deadline > min (TC, TF, TED) && 

 min (TC, TF, TED) = TF then  

11.  Offload decision ⟵ 1  

12.  else if deadline > min (TC, TF, TED) &&  

 min (TC, TF, TED) = TC then  

13.  Offload decision ⟵ 2 

14.  else  

15.  Offload decision ⟵ 0 

 

2.2.2. Energy based offloading 

It is idea is close to the simple method. Offloading decisions may be made with the aim of 

conserving energy on IoT devices. For example, tasks that consume a lot of energy may be offloaded to more 

powerful fog nodes or the cloud. It is useful to identify scenarios where computational resources are 

constrained and where the optimization of energy consumption is critical. Algorithm 2 formulates the EBO 

strategy. The workflow 𝑤𝑓 is the input to the algorithm, 𝐽 jobs, related deadlines, and 𝑁 devices, while the 

output is the offloading decision. 
 

Algorithm 2. Energy-based offloading EBO strategy 
1. Input: Workflow 𝑤𝑓 composed of 𝐽 jobs, related deadline, and 𝑁 devices; 
2. Output: Offloading decision;  

3. Initialize LAN Bandwidth, WAN Bandwidth, and Tuning parameter; 

4. for i ← 1, N do 

5.  Calculate TED; 

6.  Calculate TF; 

7.  Calculate TC; 

8.  if deadline < min (TC, TF, TED) then  

9.  Offload decision ⟵ 0 

10.  else if min (EC, EF, EED)== EF then 

11.  Offload decision ⟵ 1 

12.  else if min (EC, EF, EED)== EC then 

13.  Offload decision ⟵ 2 
14.  else 

15.  Offload decision ⟵ 0  

 

2.2.3. Efficient offloading  

Leverage hybrid IoT-fog-cloud architectures to exploit cost differentials between different resource 

types. Delegate tasks to the resource that strikes the optimal balance between time and energy considerations. 

In the simple offloading strategy outlined in [25], the offloading decision process is initially influenced by 

the job's deadline constraint. It then weighs the trade-off between job execution times across the three tiers, 

followed by an assessment of energy consumption. The task is offloaded to the tier that both meets the 

deadline constraint and offers the shortest execution time while also minimizing energy consumption. 

Our findings indicate that the decision-making process prioritizes implementation time before 

considering energy consumption. This led to certain jobs being chosen based on time considerations, despite 

minimal discrepancies across different layers. In contrast, there were substantial disparities in energy 

consumption. Hence, in this approach, we sought to mitigate this limitation by striking a balance between 

time and energy considerations. We computed the normalized values for both time and energy consumption 

and then integrated these two ratios into a fitness function. This enabled us to arrive at a decision that 

considers both factors. 

 

𝑇norm =
𝑇𝑖 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥  − 𝑇𝑚𝑖𝑛
  

 

𝐸norm =
𝐸𝐼 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 (11) 
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where 𝑇norm and 𝐸norm are normalized execution time and energy consumption. 𝑇𝑖 and 𝐸𝐼 refer to the 

execution times and energy consumed by 𝑖𝑡ℎ job, respectively. The terms min and max represent the 

minimum and maximum of both execution time and energy consumption when ith job is executed in different 

three tiers. Calculate the fitness function depending on time and energy components as (12). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑛𝑜𝑟𝑚  + 𝐸𝑛𝑜𝑟𝑚  (12) 

 

The job is offloaded to the tier that meets the minimum fitness standards. Algorithm 3 formulates 

the EO strategy. The workflow 𝑤𝑓 is the input to the algorithm, 𝐽 jobs, related deadlines, and 𝑁 devices, 

while the output is the offloading decision. Comparing with one of the methods available in [26], which is 

selecting the simple method in [25] as an offloading with GA as a scheduling algorithm, we found that, 

according to the application's nature and using one of the methods proposed in this research, we achieved 

better ratios for all the different metrics. For example, LCO will be better when using applications that are 

more sensitive to latency, EBO will be better when using applications that concern energy reduction, and EO 

will be better when using applications that need to achieve a balance between all metrics. 

 

Algorithm 3. Efficient offloading EO strategy 
1. Input: Workflow 𝑤𝑓 composed of 𝐽 jobs, related deadline, and 𝑁 devices; 
2. Output: Offloading decision;  

3. Initialize LAN Bandwidth, WAN Bandwidth, and Tuning parameter; 

4. for i ← 1, N do 

5.  Calculates TED, EED, TF, EF TC, and EC; 

7.  if deadline < min (TC, TF, TED) then 

8.  Calculate Tmax=max (TC,TF,TED), Tmin=min (TC,TF,TED); 

9.  Calculate Emax=max (EC,EF,EED), Emin=min (EC,EF,EED); 

10.  Calculate Tnorm and Enorm for job in different tiers; 

11.  Calculate fitness for each tiers; 

12.  Job is offloaded to tier that fulfils the minimum fitness; 

13.  Else 

14.  The job is executed locally. 

 

2.3.  Task scheduling using GA and proposed objective function 

Task scheduling algorithms must adapt to these offloading decisions to ensure optimal resource 

allocation and task execution. So, this research uses GA, as in [26], for the task scheduling process. This 

study optimizes task offloading and resource selection with three key objectives: minimize makespan, reduce 

costs, and optimize energy consumption. The workflow makespan is denoted as the cumulative execution 

time required for successful completion; the total cost includes both communication and computation 

expenses, and energy consumption is established using idle and active components. The task scheduling 

process aims to employ the three stated objectives by using a weighted sum objective function, which is 

formulated as (13): 

 

𝐹(𝑝)=𝑤1. 𝑀𝑆 + 𝑤2. 𝑇𝐶 + 𝑤3 . 𝐸  (13) 

 

In the context of a GA, the allocation from a workflow to the available computing resources of 𝑛 

tasks are represented by 𝑝, termed a chromosome. Parameters 𝑀𝑆, 𝑇𝐶, and 𝐸 correspond to values of 

makespan, total cost, and energy consumption, respectively. The coefficient weight 𝑤 ∗, with equal weights 

(𝑤 ∗ = 0.2), is used to ensure an equal contribution from each objective in performance assessments. 

 

2.3.1. Assignment of workflow tasks to computational resources 

In this study, workflows are scheduled to run on the source (end device), a fog virtual machine 

(VM), or a cloud VM. End devices exclusively offload tasks to cloud and fog resources. Workflow 

scheduling involves a single representative end device in the encoding process. Natural numbers identify 

individuals for GA, representing task-resource schedule mappings (chromosomes). Each chromosome 𝑝, of 

length 𝑛, corresponds to the total number of tasks. Each position in the chromosome is a positive integer 

denoting the task number, with the assigned value indicating the VM ID for task execution. VM ID numbers 

are chosen from available VMs in the respective tier. For instance, in Figure 1, an example workflow with 10 

tasks maps to an IoT-cloud-fog setup with 3 cloud VMs and 2 fog VMs. In this example, 𝑝 = (3, 5, 2, 4, 1, 3, 

2, 5) represents the chromosome. 

 

2.3.2. The process of optimization 

In the GA approach, a sequence of operations, including selection, crossover, and mutation, 

generates a new set of potential solutions. These solutions undergo assessment via workflow simulation, 
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producing their respective fitness values. The chromosome with the best fitness, along with its associated 

value, is preserved, employing elitism to retain the best solutions for the next iteration. 

 

 

 
 

Figure 1. Example for Workflow scheduling model 

 

 

3. RESULTS AND DISCUSION 

This section commences with a detailed overview of various workflow models, emphasizing their 

significance in the study's context. It then meticulously outlines the simulation environment setup, leveraging 

the FogWorkflowSim Toolkit [25] for precision. Subsequently, it presents experimental results, providing 

valuable insights into the performance and dynamics of simulated workflow models, followed by a 

comprehensive discussion to deepen the reader's understanding. 

 

3.1.  Workflow models  

This study utilizes three well-established scientific workflow applications: Montage, Epigenomics, 

and CyberShake, as detailed in [28]. Montage generates customized sky mosaics for astronomy. CyberShake 

assesses earthquake hazards for the Southern California Earthquake Center. Epigenomics, a collaboration 

between the USC Epigenome Center and the Pegasus Team, automates processes in genome sequence 

handling. These workflows, with a history of practical use, are ideal for evaluating optimization algorithm 

performance. 

 

3.2.  Simulation environment 

The FogWorkflowSim simulator runs on the Eclipse Java IDE. Simulations are conducted on a  

64-bit Windows 10 system with an Intel Core i7-M 640 @ 2.80 GHz and 6 GB of RAM. Each algorithm uses 

a population size of 50. In the GA, the crossover rate is set at 0.8 and the mutation rate at 0.1. For each 

workflow, simulations are performed 10 times to derive average performance. The experimental setup 

involves ten end devices, six fog virtual machines (VMs), and three cloud VMs. Server characteristics for the 

three IoT-cloud-fog layers and specific parameter configurations are detailed in Table 1. 

 

 

Table 1. The IoT-fog-cloud environment parameter setting 
Parameters End device Fog VM Cloud VM 

Processing rate (MIPS) 1000 1300 1600 

Task execution cost ($) 0 0.48 0.96 

Communication cost ($) 0 0.01 0.02 

Working power (MW) 700 800 1600 

Idle power (MW) 30 40 1300 

Uplink bandwidth (Mbps) 20 10 1 

Downlink bandwidth (Mbps) 40 10 10 

 

 

3.3.  Simulation results 

The proposed algorithm’s performance is assessed in comparison to a simple method in [25]. Which 

is an offloading strategy implemented within the fog workflow simulator, using GA in [26] for the 

scheduling process. This comparison is made due to the effectiveness of this method in scenarios where 

specific segments of a task can be executed concurrently or when the available local resources are 

insufficient. 
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Figures 2 to 4 present the outcomes concerning makespan, cost, and energy consumption for the 

Montage. As anticipated, the metrics exhibit an increase as the number of tasks increases across scenarios 

involving 20, 60, and 100 tasks. Contrastingly, the LCO strategy outperforms in makespan reduction by 

35.17%, 27.74%, and 26.29% compared to the simple method for 20, 60, and 100 tasks. The EO strategy 

closely follows, with reductions of 18.42%, 26.32%, and 29.26% for the same task counts. As tasks increase 

to 100, EO achieves top performance in makespan, attributed to extra waiting time in the IoT tier for LCO. 

Conversely, EBO and simple exhibit similar performance levels, with EBO increasing makespan by 18.1% 

for 20 tasks and decreasing it by 0.04%, 1% for 60, and 100 tasks, respectively, compared to the simple 

method. 

The LCO strategy outperforms in cost reduction, decreasing total cost by 98.14%, 98.04%, and 

97.28% compared to the simple method for 20, 60, and 100 tasks. EO follows closely with decreases of 

32.71%, 51.11%, and 46.13%, while EBO shows results close to the simple method, decreasing cost by 

1.97% at 20 tasks but causing 0.72% and 0.34% increases for 60 and 100 tasks, respectively, compared to the 

simple strategy. In energy use, LCO's higher local execution results in a 19.99%, 40.7%, and 46.96% 

increase compared to the simple method for 20, 60, and 100 tasks. EO, with a balanced job distribution 

strategy, increases energy consumption by 5.28%, 23.77%, and 25.22% for 20, 60, and 100 tasks. EBO 

closely aligns with the simple method, decreasing energy consumption by 0.32%, 0.02%, and 0.43% for 20, 

60, and 100 tasks.  

Figures 5, 6, and 7 display makespan, cost, and energy consumption outcomes for the CyberShake 

workflow. Latency-centric offloading (LCO) and efficient offloading (EO) outperform in makespan and cost 

across all tasks. LCO reduces makespan by 60.77%, 48.11%, and 31.48% for 30, 50, and 100 tasks, followed 

by EO with decreases of 60.58%, 48.11%, and 31.49%. EBO and the simple method exhibit relatively 

constant makespan performance for all tasks.  

 

 

  
 

Figure 2. Montage makespan results 

 

Figure 3. Montage cost results 

  

 

  
 

Figure 4. Montage energy consumption results 

 

Figure 5. CyberShake makespan results 
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Figure 6. CyberShake cost results 

 

Figure 7. CyberShake energy consumption results 

 

 

Regarding the cost metric, LCO and EO show better performance compared to other strategies, with 

LCO decreasing cost by 97.75%, 96.60%, and 96.38%, and EO decreasing cost by 97.51%, 96.59%, and 

96.38% compared to the simple method for 30, 50, and 100 tasks, respectively. EBO and the simple method 

give relatively close results for the cost metric at 30 tasks, with EBO increasing cost by 2.77% compared to 

the simple method and by 7.17% for 100 tasks. In terms of energy consumption, EBO outperforms other 

proposed strategies. EBO and the simple method show relatively constant energy consumption for 30 tasks, 

with a 0.01% decrease for 50 tasks and a 0.04% increase for 100 tasks compared to the simple method. EO 

and LCO follow for 30 and 100 tasks, with EO increasing energy consumption by 12.40%, 20.91%, and LCO 

by 12.43%, 20.91% compared to the simple method. For 50 tasks, LCO increases energy consumption by 

5.1% compared to the simple method, and EO by 13.74%. 

Figures 8 to 10 illustrate makespan, cost, and energy consumption for the Epigenomics workflow. 

Metrics for 24 and 47 tasks are low but significantly rise with 100 tasks: makespan from under 10 seconds to 

over 50 seconds, cost from under $10,000 to over $50,000, and energy consumption from under 50,000 J to 

beyond 250,000 J. This increase is attributed to computationally demanding tasks, particularly aligning 

sequences with the reference genome [28], resulting in extended runtimes as the task count rises. 

In terms of makespan and cost, LCO maintains superior performance, reducing makespan by 

21.30%, 20.33%, and 23.86% and decreasing cost by 100%, 84.82%, and 86.20% compared to the simple 

method for 24, 47, and 100 tasks. A 100% cost decrease for 24 tasks implies all jobs are executed locally on 

end devices, indicating highly efficient task allocation for cost optimization. However, LCO exhibits poorer 

energy consumption performance compared to other strategies. The LCO algorithm assigns more tasks to end 

devices as the task count rises, resulting in a substantial cost reduction due to reduced expenses for data 

transmission and computation. This reliance on end devices leads to increased energy consumption: LCO 

increases energy consumption by 44.46%, 63.60%, and 113.66% compared to the simple method for 24, 47, 

and 100 tasks, respectively. EBO secures the second position, achieving a negligible 1.33% reduction 

compared to the simple method for 24 tasks, with similar, almost negligible results for 47 and 100 tasks. 

 

 

  
 

Figure 8. Epigenomics makespan results 

 

Figure 9. Epigenomics cost results 
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Figure 10. Epigenomics energy consumption results 

 

 

Ultimately, EO performs between LCO and EBO. For 24 tasks, EO reduces makespan by 5.55% 

compared to the simple method but increases it by 0.93% and 3.77% for 47 and 100 tasks, respectively. 

However, EO consistently increases cost compared to the simple method, with changes of 13.94%, 2.44%, 

and 4.9% for 24, 47, and 100 tasks. It also results in higher energy consumption, with increases of 28.18%, 

29.83%, and 5.60% compared to the simple method for 24, 47, and 100 tasks, respectively. 

 

 

4. CONCLUSION  

This study proposes three strategies: LCO, EBO, and EO as offloading strategies in IoT-fog-cloud 

environments, with a focus on real-time applications. LCO is best for time-sensitive tasks but can be more 

energy-intensive. EBO focuses on energy efficiency, which is beneficial for long-term and computationally 

demanding tasks. EO seeks a balanced trade-off between time and energy, suited for using resources more 

effectively. This work employs genetic algorithms for task scheduling because they excel at handling 

complex solution spaces and dynamic situations. Combining offloading techniques with task scheduling 

algorithms provides efficient task execution. Overall, these strategies contribute to the optimization and 

reliability of IoT-fog-cloud systems in different environments, offering specified solutions for different task 

requirements and environmental constraints. Regarding future work, different types of workflows will be 

incorporated, such as LIGO and SIPHT, and the number of tasks in each workflow will increase. 
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