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 The automation industries have been developing since the first 
demonstration in the period 1980 to 2000 it is mainly used on automated 

driving vehicle. Now a day’s automotive companies, technology companies, 

government bodies, research institutions and academia, investors and 

venture capitalists are interested in autonomous vehicles. In this work, object 
detection on road is proposed, which uses deep learning (DL) algorithms. 

You only look once (YOLO V3, V4, V5). In this system object detection on 

the road data set is taken as input and the objects are mainly on-road 

vehicles, traffic signals, cars, trucks and buses. These inputs are given to the 
models to predict and detect the objects. The Performance of the proposed 

system is compared with performance of deep learning algorithms 

convolution neural network (CNN). The proposed system accuracy greater 

than 76.5% to 93.3%, mean average precision (Map) and frame per second 
(FPS) are 0.895 and 43.95%. 
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1. INTRODUCTION 

Traditional computer vision techniques have made significant contributions to object detection. 

However, their limitations in handling complex scenarios with diverse objects and varying environmental 

conditions have led to the emergence of deep learning as a powerful solution [1]. Deep learning, especially 

convolutional neural networks (CNNs), has demonstrated remarkable capabilities in learning hierarchical 

representations, enabling the development of sophisticated object detection models. 

As one of the fundamental computer vision problems, object detection provides valuable 

information of images through videos or pictures. In these fields, the main detection of objects image 

classification, the autonomous driving meanwhile, integrated with neural networks and learning system. 

Object detection based on deep learning is divided into one-step detectors and two-step detectors [2]. Their 

accuracy and detection speed have been greatly improved but still cannot meet the requirements of real-time 

detection.  

Therefore, the problem at hand is to design and evaluate an advanced object detection system that 

leverages the capabilities of you only look once (YOLO V3, V4, V5) models in comparison to traditional 
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CNN algorithms for identifying and localizing objects on roads. Addressing this problem is crucial for 

advancing the field of autonomous vehicles, as the accurate and rapid detection of objects on roads directly 

impacts the safety and reliability of autonomous systems.  

The developed deep learning neural networks mainly impact on object detection techniques which 

can be considered on this system. Mainly deep learning consists of huge hidden layer data process like 

recognition, detection of images. It will give fast accurate result [3]. Autonomous vehicles (AVs) 

development has reached significant progress in the past decades. The main challenge in developing AVs 

technology is replicating a human driver into an autonomous intelligent system [4]. 

 

 

2. RELATED WORK  

Study of deep learning architecture performance tuning is proposed here. Mainly comparison of 

given evaluation metrics and real-time smart surveillance system is seen by using YOLO architecture. This 

architecture has been implemented on a smart space dataset [5], [6]. While usually being superior in detection 

accuracy, the two-step detectors are less efficient than the one-step ones due to the need for object region 

inference [7]. This research proposed a complete self-delivery of the product vehicle that really can drive on 

the highway and report the vehicles for the authority’s current geographical location in real-time through a 

Map CNN [8]. While waiting for the navigation value, Raspberry Pi transmits this same camera view finder. 

The problem has proposed this new method, a computational intelligence approach for automatic localization 

of road accidents as anomaly detection classification in to one category video [9]. 

 

 

3. METHOD 

3.1.  YOLO V3 

A YOLO V3 is a type of deep convolution neural network (D-CNN) which has been broadly used in 

the area of object detection or reorganization [10]. The D-CNN for object detection and CNN are classifier-

based system. It can process input images as structural arrays of data and identify patterns between them. The 

advantage of YOLO is that it is much faster than other networks and also maintains accuracy [11]. YOLO V3 

using DarkNet-19, DarkNet-53 is Backbone it was extract feature. YOLO was detecting small objects also 

with accuracy. Figure 1 shows the YOLO V3 operational architecture [12]. 
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Figure 1. YOLO V3 

 

 

3.2.  YOLO V4 

The YOLO V4 model uses neural networks to provide real-time object detection. This algorithm 

detects and recognizes various objects in a picture YOLO V4 is mainly developed under V3 [13]. YOLO 

detector can be trained and used on a convolution graphics processing unit (GPU) done as probabilities of the 

detected images. It has predicted each grid cell in the bounded boxes [14]. Only the bounded boxes for 
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responsible for detecting the objects and this intersection over union is considered a good prediction. 

Compared to YOLO V3 it was to make a super-fast and one-stage object detector with high quality in terms 

of class labels, with those probabilities and accuracy [15]. YOLO V4 we are used CSP DarkNet-53 for 

extracting features, it has neck and head part Neck collects feature maps in different stages, head performs 

YOLO V3 the hole task performs on over here and it was achieved an accuracy of 5.8% higher than YOLO 

V3 [16]. YOLO V4 is 43.5% average precision running at 65FPS (frame per second) on it have very good 

results. Figure 2 shows the YOLO V4 operational architecture. 
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Collect images in different paths

Train and test the image datasets
YOLO V4 Object detection

Calculate the object coordinates

Filter and predict the objects 
on Bounding boxes

To detect the objects on the road

 
 

Figure 2. YOLO V4 

 

 

3.3.  YOLO V5 

After the release of YOLO V4, within just two months of period, another version of YOLO has been 

released called YOLO V5. It is different from all other previous YOLO models. It is a family of single-stage 

deep learning based object detectors [17]. YOLO V4 has CSP Dark net, YOLO V5 has a CSP back bone and 

PA-NET Neck. The main improvements include Mosaic data augmentation and bounding box anchors and 

Back bone as the trained COCO model [18]. YOLO V5 is nearly smaller than YOLO V4.  

YOLO V5 is 27 MB and YOLO V4 has 244 MB; it can be used for real-time object detection based on the 

data streams. Compared to YOLO V3, V4, the YOLO V5 mean average precision of 92.34%, it claims 

efficient effectively to compare V3, V4. Figure 3 shows the YOLO V5 operational architecture [19]. 
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Figure 3. YOLO V5 
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4. ARCHITECTURE 

Architecture describes the dataset used to analyze, classification, predict the performance of the 

system and the models. After acquiring a unified complete dataset, it is used to apply YOLO V3, YOLO V4 

and YOLO V5 algorithms. The object coordinates are evaluated to predict the bounding boxes of the objects. 

Finally, it will detect the objects on the road and categorize them into objects into labels.  

 

4.1.  Dataset 

The COCO Dataset visualized dataset mainly it is used in machine learning and deep learning train 

as well as test sets contain 200,000 new images and 80 moving and static object categories [20]. Size is  

27 GB, classification of images, object strongly bounding box localization, semantic pixel-level 

fragmentation and large-scale object detection common objects in context (COCO). COCO dataset contains 

various images and its labels. All the labels are categorized into different classes.  

 

4.2.  Design overview 

Design elaborates how the data is processed and working of YOLO versions V3, V4 and V5. YOLO 

versions describe deep convolution neural networks to process input images which consist of identification of 

patterns by considering individual features to have best performance. YOLO V3 has some performance 

drawbacks overcome by version V4, version V4 performance drawbacks overcome by development of 

version V5. 

 

4.2.1. Pre-processing 

Preprocessing step is necessary for predicting the images [21]. In this preprocessing step different 

pre-trained that are annotated with three values (x, y, c). The x and y values mark the coordinates, and c 

indicates the class labels. 

 

4.2.2. Splitting of the data set 

Dividing the dataset into training and testing sets is crucial for developing robust deep learning 

models. In this step, approximately 200,000 images out of the total 330,000 images are labeled across 80 

object categories known as the "COCO classes" [22]. This partitioning allows the model to learn from a 

subset of data while evaluating its performance on unseen data, ensuring generalization. The training process 

utilizes algorithms to learn patterns and features from the labeled data, while the testing process evaluates the 

model's performance by assessing its predictions against ground truth labels. This iterative cycle of training 

and testing is fundamental in refining and improving deep learning models for various tasks. 

 

4.2.3. Models of road object detection 

In this step, deep learning algorithms are applied to the data to detect the moving objects and static 

objects, Real-time object detection. The algorithms used are the convolutional neural network, deep 

convolutional neural network, neural network, large-scale memory [23]. After applying the algorithms, the 

performance is evaluated using YOLO models (V3, V4, V5) at different accuracy. The current learning error 

rate represents 0.001000, V4 Intersection over Union (IoU) loss function greater than 0.5, V5 have 0.1 bounding 

box loss function [24]. 

 

4.2.4. Road object detection 

In this step, object detection what the images we are inserted, what we can trained objects are 

inserted through either local machine or web cam will detecting objects also it detected the objects are real-

time static and moving vehicles or objects with these class labels and probability of loss function [25]. In an 

autonomous vehicle, the best trained model will always help to identify and categorize the real time objects 

on the road. Misclassification of objects may cause confusion for the movement of autonomous vehicle. To 

avoid this, all deep learning models need to be trained with a maximum number of images with preprocessed 

and purified datasets.  

 

 

5. RESULTS 

5.1.  Validation loss graph for YOLO V3 

The loss values are identified at different iterations to measure the performance of the model. At 

first iteration, the experimental results show more loss value and by doing further iterations, the loss values 

are decreased, and the performance value of the model is increased. In the observation of experimental 

results, it is proven that the best training will result in the best performance of the model. In some cases, the 

autonomous vehicle is unable to identify the correct object for which it was trained. To overcome this 
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drawback, the only solution is training of the model with best quality and quantity of the dataset. It will 

automatically resolve the problem and it will perform in a better way for existence of the noise, unnecessary 

features cause to degrade the performance of the model. 

Figures 4 and 5 show high loss value at the first iteration later there were variations of loss value 

constantly at different at 0.001 learning rates (lrn) 0.01 and 0.001000. In the initial iteration, the model 

encountered a notably high loss value, indicating potential challenges in convergence. Subsequent iterations 

at a learning rate of 0.001 demonstrated fluctuations in the loss value, suggesting sensitivity to the chosen 

learning rate. Further experimentation with learning rates of 0.01 and 0.001000 revealed varying patterns in 

the loss values, emphasizing the critical role of hyper parameter tuning in optimizing model performance. 

Adjusting the learning rate appears to be crucial for stabilizing and enhancing the training process. 

 

 

  

 

Figure 4. Validation loss graph at 0.001000 lrn 

 

Figure 5. Validation loss graph at 0.00100 lrn 
 

 

5.2.  Validation loss graphs for YOLO V4 

YOLO V4 shows the best performance when compared with YOLO V3. In the drawbacks identified 

in YOLO V3 are overcome by YOLO V4. Generally, the validation loss comes due to the misidentification 

of objects by the autonomous vehicle and by the non-detection of the objects. By using YOLO V4, the 

experimental results show the test and train values are equal and it is proven that the model is working with 

good performance. The learning rate identified will prove that YOLO V4 performs in a better way.  

Figure 6 illustrates that when utilizing a learning rate (lrn) of 0.01, both the training and test sets 

display comparable loss values. This observation suggests that the model's performance remains consistent 

across different datasets, indicating that it is not overfitting to the training data. The alignment of loss values 

between the training and test sets at this learning rate signifies that the model generalizes well to unseen data, 

a crucial aspect in machine learning model evaluation. This balance in loss values across both sets implies 

that the model is effectively learning meaningful patterns from the training data without memorizing it, thus 

demonstrating its capability to perform reliably on new, unseen data.  

 

5.3.  Loss graphs for YOLO V5 

The loss values are compared by using YOLO V5 in both cases of test set and train set. Test set loss 

value increases due to insufficient training process and the model unable to identify the objects on the road 

properly. But in the case of test process, loss values are constant due to the adapting of the necessary 
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requirements by the model. Hence, the learning rate is measured, the YOLO V5 performance is less at test set 

and increases the performance at train set. Figure 7 shows that the loss values of test set were increasing at 

loss of train set was also constant after a 0.01 learning rate (lrn) for YOLO V3, YOLO V4 and YOLO V5. 

Table 1 shows comparison between YOLO V3, YOLO V4 and YOLO V5. 
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Figure 6. Validation loss graph at 0.05 lrn 
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Figure 7. Validation loss graph at 0.01 lrn for YOLO V3, YOLO V4 and YOLO V5 
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Table 1. Comparison between YOLO V3, V4, V5 
Description YOLO V3 YOLO V4 YOLO V5 

Neural network-type Fully convolution Fully convolution Fully convolution 

Back bone feature extractor DarkNet-53 CSP DarkNet-53 CSP DarkNet-53 

Loss function Binary cross entropy Binary cross entropy Binary cross entropy and log 

its loss function 

Neck Feature pyramid 

network (FPN) 

Spatial pyramid pooling (SPP) and 

Path aggregation network (PANet) 

PANet 

Head YOLO layer YOLO layer YOLO layer 

 

 

6. CONCLUSION 

In this research, we embarked on a comprehensive exploration of object detection in road scenes 

using advanced deep learning algorithms, specifically YOLO versions (V3, V4, V5), and compared their 

performance against the well-established CNN. The objective was to enhance the capabilities of autonomous 

vehicles by accurate detection. The results obtained from the proposed system demonstrated remarkable 

accuracy, ranging from 76.5% to 93.3%. The MAP of 0.895 reflects the model's proficiency in precise object 

localization and classification. 
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