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 Low-density parity check (LDPC) codes, are a family of error-correcting 

codes, their performances close to the Shannon limit make them very 

attractive solutions for digital communication systems. There are several 

algorithms for decoding LDPC codes that show great diversity in terms of 

performance related to error correction. Also, very recently, many research 

papers involved the genetic algorithm (GA) in coding theory, in particular, 

in the decoding linear block codes case, which has heavily contributed to 

reducing the bit error rate (BER). In this paper, an efficient method based on 

the GA is proposed and it is used to improve the power of correction in 

terms of BER and the frame error rate (FER) of LDPC codes. Subsequently, 

the proposed algorithm can independently decide the most suitable moment 

to stop the decoding process, moreover, it does not require channel 

information (CSI) making it adaptable for all types of channels with 

different noise or intensity. The simulations show that the proposed 

algorithm is more efficient in terms of BER compared to other LDPC code 

decoders. 
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1. INTRODUCTION 

Gallagher's initial publication in 1963 outlined an iterative decoding method for low-density parity 

check (LDPC) codes, demonstrating remarkable performance in terms of bit error rate (BER). This particular 

decoding technique, known as the sum-product algorithm (SPA), was introduced to estimate the probability 

associated with each message symbol [1]. Another highly effective example of soft decision decoding 

algorithms is the log-likelihood-ratio-based belief propagation (LLR BP) [2] which is, nevertheless, difficult to 

implement for sophisticated computations. As a reduction of the LLR BP method, [3] two sides of the min sum 

(MS) algorithm enable the implementation of soft decisions by replacing the tanh function with the minimal 

value at the expense of non-negligible performance loss. Several enhancements were proposed to close the 

disparity between both the BP algorithm and the MS approach [4]. Although the weighted BF (WBF) algorithm 

as well as the gradient descent BF (GDBF) have made significant progress over the soft decision decoding 

algorithm [5]–[9], but the gap between the two decoding methods is still there. To combine the advantages of 

the two procedures discussed above, the hybrid decision [10]–[13] has been proposed, which typically 

comprises two separate iterative serial decoding steps, if the first stage of the algorithm fails to discover the right 

decoded vector after a predetermined number of iterations, the algorithm will proceed to the second step until 

the number of iteration reaches its maximum value or the decoding is successful. Moreover, a decoding 

algorithm aiming for the best BER performance should work with knowledge of the channel parameters, 
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sometimes known as channel side information (CSI) [14]. Several methods have been developed recently to 

avoid the need for CSI, among these methods we find the algorithm [15], which is based on the Euclidean 

distance and which performs better than the SPA whether it is on a Gaussian or Rayleigh noise channel. As 

shown in [16]–[18] genetic algorithm (GA) can be used as a decoding method that does not require CSI. Similar 

algorithms have been found in the literature to perform well as decoders for various coding schemes [19]–[22]. 

To achieve this, a novel decoding algorithm is introduced, exploiting GA for LDPC codes without the 

need for CSI. Notably, this proposed algorithm exhibits the capability to autonomously determine the optimal 

moment for concluding the decoding process, a distinctive feature setting it apart from existing algorithms in the 

literature, where decoder termination is typically governed by predefined parameters. Simulation results 

demonstrate the enhanced efficiency of the proposed algorithm in terms of BER and FER when compared to 

other LDPC code decoders. The structure of the paper unfolds as follows: section 2 provides a concise overview 

of LDPC codes and GA, while section 3 delves into the presentation of the proposed algorithm, along with 

simulation outcomes and discussions in section 4, and finally concluding the paper in section 5. 

 

 

2. RELATED WORKS  

2.1.  LDPC codes 

LDPC codes are high-performance codes that are able to correct a significant number of errors 

during the iterations. Suppose we have an LDPC code C, and we receive a sequence (ri) 1 < 𝑖 < 𝑛 over a 

communication channel that is affected by additive white gaussian noise (AWGN). If the degree of the 

variable node 𝑑𝑣 and the degree of the check node 𝑑𝑐 are fixed, then the LDPC code is considered regular. 

Otherwise, if either of the degrees varies, the LDPC code is classified as an irregular code. Furthermore, the 

LDPC code is defined by a graph called a Tanner graph [12], it simply splits the 'M' control nodes and 'N' 

variable nodes into two sides. The LDPC code's parity check matrix H has a sparse structure, meaning it 

consists mostly of zeros with a small number of “1” s. This characteristic is evident from the code's name. 

The syndrome 𝑠 can be computed for any received vector “𝑟”. It is defined as (1): 

 

𝑠 = 𝐻𝑡𝑥 𝑟 ℎ𝑎𝑟𝑑 (1) 

 

The syndrome calculation allows us to check if the vector 𝑟 is a correct code word or not, 

consequently, if the syndrome equals zero, then the correct code word is “𝑟”, otherwise the received vector 𝑟 

contains errors. Principally, syndrome checking is a way to detect errors in received codewords [1]. The goal 

of the decoding method for a given block code is to discover the vector “𝑑” which can be thought of as an 

estimation of the transmitter vector “𝑟” and can meet the following conditions: 

 

𝐻𝑡 ∗ 𝑑 = 0 
 

𝑑 =  𝑟ℎ𝑎𝑟𝑑  (2) 

 

2.2.  Genetic algorithms 

The genetic algorithm (GA) represents a heuristic approach grounded in Charles Darwin's concept 

of natural evolution. It mirrors the process of natural selection, wherein the most well-adapted individuals are 

chosen for reproduction, giving rise to the subsequent generation. This algorithm proves valuable in 

addressing scenarios where the objective function lacks differentiability, displays discontinuity, and involves 

stochastic elements. Its probabilistic optimization method boasts inherent parallel processing capabilities and 

global searching functionalities [16], [23]. Commencing with an initial population shaped by the survival of 

the fittest principle, GA assigns each individual a fitness function indicative of its adaptability to the 

environment. Throughout the iterative process, individuals demonstrating robust adaptability persist, while 

those with weaker adaptability are systematically eliminated. Reproduction unfolds through natural selection, 

crossover, and mutation, leading to the creation of new individuals. The most compatible individuals are 

selected as parents for the ensuing generation via natural selection. During the crossover phase, segments of 

genetic material from two individuals are exchanged, generating novel individuals. Subsequently, chosen 

individuals undergo mutation, contributing to the emergence of a new generation. 

The primary goals of genetic operations encompass maintaining the best individuals within the 

population, generating fresh individuals with unique traits, and enhancing the overall adaptability of the 

population. Through numerous iterations, the adaptability of individuals undergoes continuous refinement, 

culminating in the eventual attainment of an optimal solution [24]. Figure 1 depicts the flowchart illustrating 

the sequential steps of the GA. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimized decoder for low-density parity check codes based on genetic algorithms (Hajar El Ouakili) 

2719 

 
 

Figure 1. Flowchart of genetic algorithm 

 

 

3. GENETIC ALGORITHM-BASED METHOD  

In this part of the paper, a GA-based approach is introduced, employing a decoding strategy where 

an individual is represented as a series of numerical values ranging from 1 to the code's length (n). 

Furthermore, the various components of this proposed method function as explained in the following 

subsections. These elements of the algorithm include the fitness function, responsible for evaluating the 

fitness value of an individual.  

 

3.1.  Preliminaries and research method  

The proposed method offers a decoding solution for the received vector without requiring any prior 

knowledge of channel information. Initially, a hard threshold is applied to the input vector, followed by the 

computation of the syndrome to assess the validity of the input vector as a code word. If the syndrome vector 

is non-zero, the GA decoding method is employed. This entire process is executed in parallel, highlighting 

efficiency and convergence towards the optimal decoding vector.  

Let 𝑐 be the LDPC code, and 𝑟𝑖1<𝑖<𝑛
the received vector over an AWGN Channel transmission, d is 

the hard decision of 𝑟𝑖1<𝑖<𝑛
 (3), and 𝑐𝑥 is the received vector 𝑟i transformed into [0,1] interval using 

hyperbolic tangent (4), 

 

𝑑 = 𝑟ℎ𝑎𝑟𝑑 = {
1   𝑖𝑓 𝑟𝑖 > 0

   0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3) 

 

𝑐𝑥 = 0.5 ∗ (1 + 𝑡𝑎𝑛ℎ 𝑟𝑖) (4) 

 

Firstly, we randomly generate 𝑁𝑝 (population size) vector ϵ [0,1] which will be the initial population 𝑣𝑖, and 

we define the vector 𝑧𝑖 as (5): 

 

𝑧𝑖 = {
0   𝑖𝑓   𝑐𝑥 < 𝑣𝑖  
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (5) 

 

The determination of optimal code-word (individuals) will rely on evaluating their fitness values through the 

fitness function, defined as (6): 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑆𝑖 + ∑ |𝑧𝑖 − 𝑐𝑥|𝑛
𝑗=1

𝑚
𝑖=1  (6) 

 

where |𝑧𝑖 − 𝑐𝑥| is the distance between the individual vector and the received sequence and 𝑆𝑖  is the 

syndrome vector defined by (7). 
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𝑆𝑖 = 𝑧𝑖 ∗  𝐻𝑇  (7) 

 

3.2.  The proposed method 

In this approach, we utilized a fitness function based on established standards in the [18]. What sets 

our method apart is the algorithm's ability to autonomously determine the optimal moment to conclude the 

decoding process by the ‘Limit counter’ (which is chosen arbitrarily) which aims to ensure that it has 

explored the entire solution space. This distinct feature contrasts with other algorithms found in the literature, 

where decoder termination is often controlled by predefined parameters such as the number of generations. A 

detailed flowchart will be provided as shown in Figure 2, offering a comprehensive depiction of how the 

algorithm functions, with a clear representation of its inputs and outputs in Table 1. 

 

 

 
 

Figure 2. The proposed algorithm based on GA 

 

 

Table 1. Input and output of the proposed algorithm 
Input  𝒓𝒊 ∶ the received codeword 

𝑵𝒑: initial population size 

𝑷𝒄: crossover probability rate 

𝑷𝒎: mutation probability rate 

𝑳𝒊𝒎𝒊𝒕_𝒄𝒐𝒖𝒏𝒕𝒆𝒓: arbitrarily chosen parameters 

Output 𝑑: correct code-word 
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Since our objective is to determine the individual (vector) with the least error, or ideally no error at 

all which is equivalent to the smallest fitness value, the fitness values must be classified into ascending order 

to choose the minimum value of the latter. This technique plays a crucial role in selecting and building 

individuals for the next generation through operators. By prioritizing the lowest fitness values, we increase 

the probability of selecting individuals leading to more efficient correction, thus improving the overall 

performance of the decoding process.  

Since our goal is to find the vector that yields the minimum fitness value or 𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑒 = 0, the 

algorithm compares the vector (b) from the initial generation to the new vector (new_b) of the subsequent 

generation. If 𝑓(𝑛𝑒𝑤_𝑏) > 𝑓(𝑏), we retain the vector (𝑏) and proceed to reproduce a new generation to 

search for a better result, specifically, the vector (𝑛𝑒𝑤_𝑏) with 𝑓(𝑛𝑒𝑤_𝑏) < 𝑓(𝑏), in this case, the vector (𝑏) 

takes on the value of (𝑛𝑒𝑤_𝑏), and the reproduction process continues until exploring the entire solution 

space, aiming to achieve either (𝑠 = 0) or 𝑓(𝑏) = 𝑓(𝑛𝑒𝑤_𝑏), in this instance, the decoder repeats 

reproduction by incrementing 𝑘 if there is no change, to ensure that no new and better solution is present in 

the space. The decoding process stops when k reaches a predefined limit (𝑘 = 𝐿𝑖𝑚𝑖𝑡_𝑐𝑜𝑢𝑛𝑡𝑒𝑟). However, if 

the decoder encounters 𝑓(𝑛𝑒𝑤_𝑏)  <  𝑓(𝑏), 𝑘 will be reset to 1, and the decoding process is repeated. 

− b: is the vector or the individual that has the minimum value of fitness in the initial population. 

− new_b: is the vector or the individual that has the minimum value of fitness in the new population after 

selection, crossover, and mutation (it will be compared with b). 

 

 

4. SIMULATION AND PERFORMANCE ANALYSIS 

In this study, the BER and the FER are used as metrics to evaluate the performance or the correction 

power of the proposed decoding algorithm for a given noise level. Additionally, to the metric evaluations of 

the performance, the proposed algorithm must be compared with other ones that give good results in terms of 

BER and FER. The belief propagation (BP) and the normalized min sum (NMS) are chosen for the 

comparative study. Table 2 summarizes the used parameters in the simulations of the proposed algorithm 

coded in MATLAB. Two LDPC codes discussed below consist of code A: Gallager code (32,16) and code B: 

short the consultative committee for space data systems (CCSDS) code (32, 16) [25]. 

 

 

Table 2. Different parameters used in the simulations 
Designation Parameters value 

Population size (Np) 500 

Crossover rate (Pc) 70% 

Mutation rate (Pm) 1% 
Limit counter 5 

Channel AWGN 

Modulation BPSK 
LDPC regular code A&B Gallager code N=32 

CCSDS code N=32 

Type of selection tournament 
Type of crossover 2 pts 

Frame 10000 

Max Iteration for NMS, BP 6 

 

 

Figure 3 presents the simulation results across various crossover rates, ranging from 50% to 90%. 

The performance of the proposed algorithm exhibits a decrease when the crossover rate 𝑃𝑐is set to 80%. 

However, upon closer examination of the graph, it becomes evident that alternative values of 𝑃𝑐  deliver 

favorable outcomes across different SNR settings. Notably, starting from an SNR of 4.5 dB, the proposed 

algorithm with 𝑃𝑐=70%, outperforms the other configurations. This observation prompts the selection of 

 𝑃𝑐=70% as the optimal choice for this contribution.  

In Figure 4, we observe the simulation results that compare the performance of the algorithm across 

different population values, ranging from 100 to 500. The simulation reveals that the proposed algorithm 

exhibits improved decoding capabilities with larger population sizes. Consequently, the decision is made to 

select a population size of 𝑁𝑝=500 for this contribution. The rationale behind this choice lies in the 

understanding that a larger population size contributes to a higher diversity of individuals within the GA. 

This heightened diversity is instrumental in achieving a robust decoding performance. The larger pool of 

potential solutions afforded by a population size of 500 ensures that the GA explores a wide range of 

possibilities, thereby improving the overall efficacy of the proposed algorithm in correcting errors. 

Figures 5 and 6 provide a comprehensive evaluation of the performance of the proposed algorithm 

applied to LDPC regular code A (16,32), with a focus on BER and FER compared to conventional algorithms 
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such as BP and NMS both belonging to the soft decoding family. The results show a notable superiority of 

the suggested algorithm. Specifically, when considering BER values of 10−2 and 10−3, the proposed 

algorithm surpasses the others by a margin of 0.4 and 0.2 dB, respectively. These performance improvements 

suggest that the proposed algorithm is highly effective in error correction, outperforming established soft 

decoding algorithms in typical communication scenarios. 

 

 

  
  

Figure 3. Comparison between different values of 

crossover rate Pc for LDPC code A (16,32) 

Figure 4. Comparison between different values of 

the population for LDPC code A (16,32) 

 

 

  
  

Figure 5. BER performance comparison of the 

proposed algorithm with BP and NMS for LDPC 

code A (16,32) 

Figure 6. FER performance comparison of the 

proposed algorithm with BP and NMS for LDPC 

code A (16,32) 

 

 

Figures 7 and 8 presents also the performance evaluation of the proposed algorithm for LDPC  

code B (16,32) in terms of BER and FER. The proposed method demonstrates consistently good results even 

when applied to a different LDPC code, specifically the one defined by the consultative committee for space 

data systems (CCSDS), distinct from the initial Gallagher code. With lower BER values, such as 10−3 and 

10−4, the proposed algorithm consistently outperforms the traditional algorithms, BP and NMS, by a 

significant margin of 1 and 0.5 dB, respectively. This suggests that the proposed algorithm excels in error 

correction, showcasing its robustness and effectiveness across diverse LDPC codes. 
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Figure 7. BER performance comparison of the 

proposed algorithm with BP and NMS for LDPC 

code B (16,32) 

Figure 8. FER performance comparison of the 

proposed algorithm with BP and NMS for LDPC 

code B (16,32) 

 

 

5. CONCLUSION 

This paper proposes a new decoding approach based on the GA technique to enhance Low-Density 

Parity Check algorithm performance. GA is a handy approach since it can perform heuristic searches utilizing 

evolution-based convergence while traversing huge spaces at the same time. Additionally, the proposed 

decoder does not require any information on the channel which makes it adaptable for all types of channels 

with different types of noise or intensity, unlike other algorithms such as BP, NMS, and others. Moreover, 

the ability of the algorithm to autonomously determine the optimal moment to conclude the decoding process 

sets it apart from other algorithms found in the literature where the decoder stop is often controlled by 

predefined parameters. The simulations show that the proposed algorithm gives good results in terms of BER 

and FER compared to BP and NMS algorithms for different types of LDPC codes. 
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