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 Pairwise testing is a method for identifying defects through combinatorial 

analysis. It involves testing all possible combinations of input parameters in 

pairs within a system, ensuring that each pair is tested at least once. The 

field of test case generation is highly active in the realm of combinatorial 

interaction testing. Research in this area is particularly encouraged, as it falls 

under the category of non-deterministic polynomial-time hardness. A big 

challenge in this field is the combinatorial explosion problem. It is about 

finding the best test suite that covers all possible combinations of interaction 

strength. In this paper, we present the task of discovering a pairwise test set 

as a search problem and introduce an innovative testing tool referred to as 

pairwise test case generation in harmony search algorithm with seeding and 

constraint mechanism (PHOSC). Experimental results show that PHOSC 

performs better compared to some existing pairwise strategies in terms of 

test suite size. Additionally, PHOSC provides a comprehensive framework 

and serves as a research platform for the generation of pairwise test sets 

employing the harmony search algorithm. It adopts an approach that focuses 

on one parameter at a time (OPAT) and incorporates seeding and constraint 

mechanisms at the same time, thereby enhancing the efficiency and 

effectiveness of the testing process. 
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1. INTRODUCTION 

Software engineering methods enhance reliability across numerous applications [1]. Software 

development companies constantly strive to attract customers in a competitive environment, aiming to 

enhance the quality of their products through rigorous testing [2], [3]. There are various testing methods, 

including category partitioning, equivalence partitioning, and domain testing which are based on the idea of 

dividing the input space into subsets. The idea behind partition testing is to identify and test a representative 

set of inputs that are likely to exhibit similar behavior. This is based on the assumption that if a particular 

input behaves in a certain way, other inputs within the same partition will likely behave similarly. Another 

https://creativecommons.org/licenses/by-sa/4.0/
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approach is random testing, where test cases are chosen randomly from an input distribution, like a uniform 

distribution, without using information from the specification or previous test cases. 

Presently, many researchers are focused on defining an optimal strategy based on an alternative 

method known as combinatorial testing [4]–[6]. Combinatorial testing aims to uncover faults that result from 

interactions between parameter values [7]. This approach has the potential to reduce scheduled costs and time 

while enhancing the effectiveness of software testing across various configuration systems. One of the most 

prominent strategies in this regard is t-way testing, with pairwise testing being a noteworthy example [8], [9]. 

Combinatorial testing has seen the adoption of numerous valuable techniques that include uniformly, 

variably, or input-output interaction [10].  

The pairwise technique in software testing is known for its effectiveness in providing test results 

[11]. However, there are two main approaches within this technique: one-test-at-a-time (OTAT) and one-

parameter-at-a-time (OPAT) [12]. Interestingly, currently, none of these approaches are being used to support 

seeding or constraints within a metaheuristic method, which could improve software quality and create better 

test suites. Seeding support helps set boundaries for tests, ensuring they meet specific requirements, 

potentially leading to desired combinations in sampled test data. On the other hand, constraint support 

removes undesirable combinations, optimizing the test suite size by eliminating invalid combinations that do 

not fit the domain semantics. The harmony search as a metaheuristic draws inspiration from the idea that the 

primary objective of music is to seek and create a state of perfect harmony [13], [14]. This concept is 

borrowed from the practices of musicians who, when composing harmony, rely on their vast memory of 

musical pitches. Musicians continuously explore various possible combinations of these stored musical 

pitches. Numerous research studies have emphasized that when the harmony search algorithm is compared to 

other techniques, it demonstrates remarkable efficiency in tackling complex optimization problems [15]. 

Consequently, as the number of software inputs increases, the configurations for pairwise testing 

grow significantly [16], [17]. This poses challenges when there are limitations like time, cost, and resources. 

Testing all generated cases becomes impractical within extensive input domains, making it difficult to 

manage the risk of faults resulting from variable interactions. An effective approach involves dividing each 

domain into segments, particularly in the OPAT method. This method selects representative values from each 

segment to generate a smaller set of test cases. The assumption is that using representative values balances 

the risk of missing interactions while keeping the testing process within a reasonable budget.  

In the context of search-based software engineering, which deals with optimizing processes in 

software engineering, many recent studies have turned to metaheuristics mechanisms to address the challenge 

of generating pairwise testing, commonly referred to as the combinatorial explosion problem [18]–[20]. 

According to [21], all pairwise strategies fall into three categories: algebraic-based, computational-based, or 

metaheuristic-based. The algebraic-based strategies employ mathematical functions in generating test suites, 

while the computational-based strategies eliminate the constraints of algebraic methods, resulting in higher 

costs due to considering all possible combinations of space. On the other hand, metaheuristic-based strategies 

use nature-inspired algorithms as the foundation for pairwise strategies. 

The TConfig pairwise strategy employs a recursive construction method, utilizing orthogonal arrays 

to construct test suites [22]. In-parameter-order (IPO) [23] represents the inaugural pairwise strategy 

incorporating the one-parameter-at-a-time approach, designed specifically for systems with more than one 

parameter. At its core, it operates by constructing a pairwise test suite for the initial two parameters and 

systematically expanding it to cover the first three parameters, continuing this process until it encompasses 

the last parameter. Pairwise independent combinatorial testing (PICT) [24] produces all designated 

interaction tuples and randomly chooses their associated interaction combinations to build test cases within 

the comprehensive test suite. Besides facilitating variable strength, it also accommodates constraints. 

In 2007, a more comprehensive iteration of the IPO strategy emerged, known as in-parameter-order-

general (IPOG), which integrated both horizontal and vertical algorithms. The primary enhancement involved 

accommodating combinatorial t-way expansion in the combinations of parameter values to ensure an optimal 

test size and efficient execution time. Automatic efficient test generator (AETG) [25] stands out as one of the 

early strategies to implement the one-test-at-a-time method. It creates multiple test case options, choosing 

one strategically to cover the most uncovered tuples. Importantly, several versions of AETG have been 

created, such as the pairwise mAETG_SAT [26] strategy. Unlike AETG, modified automatic efficient test 

generator with satisfiability technique (mAETG_SAT) specifically incorporates support for constraints. 

SA_SAT, a variation of simulated annealing (SA), employs a binary search algorithm to identify the 

most suitable test case in each iteration, adding it to the final test suite [26]. Moreover, SA is a variation of 

the Metropolis algorithm, where temperatures transition from higher to lower states. SA involves two key 

stochastic methods: one for generating solutions and another for accepting them. The iterative process of 

applying the SA algorithm to a discrete optimization problem includes comparing the values of the current 

and new solutions. Over time, SA has demonstrated efficiency in solving combinatorial optimization 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu) 

3139 

problems like t-way testing [26]. It encompasses support for pairwise and variable strength interactions, 

addressing constraints as well.  

Jenny [27] utilizes a greedy algorithm to create the interaction test suite. The process begins by 

forming a test suite that addresses one-way interactions. Subsequently, the suite is expanded to encompass 

two-way interactions and is iteratively extended until all t-way interactions are accounted for. Alsewari et al. 

introduced two strategies, pairwise harmony search algorithm-based strategy (PHSS) [28] and harmony 

search strategy (HSS) [29], both designed to facilitate pairwise testing. While PHSS is primarily focused on 

pairwise testing, HSS goes beyond supporting variable strength interactions and constraints with higher 

interaction strength. Notably, both strategies utilize the harmony search algorithm and employ a one-test-at-

a-time approach in constructing optimal test cases.  

Late acceptance hill climbing based strategy (LAHC) [30] supports pairwise and higher interaction 

strengths, extending up to 𝑡 <= 4. Categorized as a metaheuristic-based strategy, LAHC utilizes the late 

acceptance hill-climbing algorithm concept to generate a test suite while considering constraints. pairwise 

migrating birds optimization strategy (PMBOS) [31] is a strategy focused on pairwise testing, employing the 

migrating birds optimization concept for the generation of test cases. Pairwise choice function based hyper-

heuristic (PCFHH) is a pairwise strategy that employs three criteria for selecting from four low-level 

heuristics, referred to as the choice function, throughout the search process [32]. The introduction of the 

pairwise artificial bee colony algorithm (PABC) strategy is documented in [33]. PABC is integrated into the 

artificial bee colony algorithm to ensure consistent interaction strength, particularly when 𝑡 is set to 2. 

The introduction of the bat-inspired testing strategy (BST) strategy aimed to support both pairwise 

testing and constraints [34]. It utilizes a one-test-at-a-time approach, creating test cases within the bat 

algorithm mechanism. In study [8], a novel approach is outlined for producing distinct test cases known as 

genetic and particle swarm optimization (GASPO). GASPO strategy leverages the genetic algorithm and 

particle swarm optimization, specifically tailored for succeeding pairwise testing. The pairwise gravitational 

search algorithm strategy (PGSAS) is designed to emphasize pairs of elements (2-way). Significantly, 

PGSAS stands out as the most recent strategy specifically tailored for pairwise testing [35]. 

While the literature acknowledges the existence and utility of pairwise strategies, the simultaneous 

application of seeding and constraint support, along with metaheuristic methods and a one-parameter-at-a-

time approach for test case generation, has received limited attention. Consequently, we present the task of 

discovering a pairwise test set as a search problem and introduce an innovative testing tool called Pairwise 

test case generation in harmony search with OPAT, seeding, and constraint supports (PHOSC). The PHOSC 

provides a comprehensive framework and serves as a research platform for the generation of pairwise test 

sets employing the harmony search algorithm. It adopts an approach that focuses on the OPAT approach and 

incorporates seeding and constraint mechanisms, thereby enhancing the efficiency and effectiveness of the 

testing process. 

The paper's structure is organized as follows: following the introduction, section 2 outlines the 

pairwise approach for test case generation. Section 3 describes the proposed PHOSC strategy. Section 4 is 

dedicated to evaluation, presenting results, and facilitating discussion. Lastly, section 5 concludes the paper, 

summarizing its findings and contributions in the field of test case generation and pairwise testing strategies. 

 

 

2. PAIRWISE TEST CASE GENERATION 

A test case comprises a collection of conditions with diverse combinations of input values, executed 

within a specific scenario to verify the functionality of a completed software configuration system [36], [37]. 

Finding the best possible final test suite to cover every possible combination of a given interaction strength is 

a challenge in this field, and the combinatorial explosion problem is one such problem. Consequently, test 

case generation stands out as the most dynamically advancing research area within combinatorial t-way 

testing, with the added complexity of being classified as NP-hard. In response to this challenge, researchers 

are increasingly focusing on the development of various pairwise strategies to tackle this issue, aiming to 

derive an optimal test suite solution [38]. The formulation for generating test cases in combinatorial 

interaction testing can be articulated as: F=K1×K2×K3×K4×K5 ... ×Kn. where F represents the total number of 

test cases generated, K1×K2×K3×K4×K5 ... ×Kn represents the number of possible values for each input 

parameter. In this equation, you multiply the number of possible values for each parameter to calculate the 

total number of test cases required to cover all possible combinations of these parameters. This approach 

helps ensure exhaustive testing while with the combinatorial testing method, we normally minimize the total 

number of test cases required, which is especially valuable in situations with many parameters and possible 

values [8], [39]. 

Pairwise testing, alternatively referred to as all-pairs testing, is a method employed to test a software 

configuration system using combinatorial techniques [40]. This approach involves selecting combinations in 

a step-by-step manner to ensure that all possible pairs of parameter values are incorporated into the final test 
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set. For certain types of systems, pairwise testing is an effective way to find faults caused by interactions 

between two or more input parameters. This is especially useful for systems with a large number of possible 

configurations [41]. A substantial body of evidence suggests that most software failures result from 

unintended pairwise interactions between system parameters. As indicated in [34], one primary focus in 

pairwise testing is to ensure that each pairwise interaction is covered by at least one test case in the final set. 

As a result, combinatorial testing utilizes a compact test suite to encompass all potential parameter values and 

their combinations, thereby detecting potential faults in a configuration system. Consequently, t-way 

techniques systematically generate a concise test suite designed to maximize coverage of interaction tuples 

based on the specified t-way coverage criteria [34]. 

For further clarification, we will elaborate on a simplified configuration system of the United Bank 

for Africa (UBA) Mobile-App login screen, as depicted in Figure 1, to illustrate the pairwise testing scenario. 

Additionally, Table 1 will demonstrate the parameter values of the configuration. The configuration 

comprises four parameters with two values each as their symbolic value representation is depicted in Table 2. 

The exhaustive number of test cases required for these four parameters is calculated as 24, resulting in 16 test 

cases as shown in Table 3. If each test case takes three minutes to complete, exhaustive testing would take 

nearly 48 minutes. Moreover, if each test case costs USD30, the cost of completing exhaustive testing would 

amount to USD480. Considering this, it is noteworthy that this is a relatively simple configuration system, 

how long would it take or spend to complete the exhaustive testing of a complex configuration or the entire 

UBA Mobile-App? For extensive industries dealing with intricate configurations involving thousands of 

parameters and values, addressing this issue would result in substantial expenditures, effort, manpower, 

resources, and time dedicated to testing their configurations. 

 

 

 
 

Figure 1. UBA Mobile-App login screen 

 

 

Table 1. Parameter’s values for UBA Mobile-App login screen 
Parameters Phone number Password Forgotten password? Sign in 

Values Enter Enter Click Click 

Not enter Not enter Not click Not click 

 

 

Table 2. Symbolic values for UBA Mobile-App login screen 
Parameters N P F S 

Values N1 P1 F1 S1 

N2 P2 F2 S2 
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Table 3. Exhaustive testing of the UBA Mobile-App login screen 
Parameters Test case 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

N N1 N1 N1 N1 N1 N1 N1 N1 N2 N2 N2 N2 N2 N2 N2 N2 

P P1 P1 P1 P1 P2 P2 P2 P2 P1 P1 P1 P1 P2 P2 P2 P2 

F F1 F1 F2 F2 F1 F1 F2 F2 F1 F1 F2 F2 F1 F1 F2 F2 
S S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

 

 

Applying pairwise testing to this configuration can significantly reduce the total number of test 

cases, leading to cost and time savings to the total number of 8 test cases (50% reduction from exhaustive 

testing) as depicted in Table 4. The bold cells in Table 4 show the parameters with don't care values. In  

t-way testing, “don't care values” are specific parameter values that do not significantly impact the test 

outcome. Any valid value can be assigned to these parameters without affecting the test case's effectiveness. 

This concept allows efficient testing by focusing on critical interactions among relevant parameters while 

allowing flexibility for non-essential values. Based on the pairwise test applied to the UBA Mobile-App login 

configuration, it minimizes the number of test cases from exhaustive 16 to 8 (50%), which can lead to 

reduced time consumption, cost, and resources. As a result, our proposed PHOSC strategy will generate a 

pairwise test case that can reduce time consumption, cost, and resource utilization. 

 

 

Table 4. Pairwise testing of UBA Mobile-App login screen 
Parameter combinations (2-way) Parameter 

N P F S  N P F S 

N and P N1 P1 F1 S2  N1 P1 F1 S2 
N1 P2 F1 S1 N1 P2 F1 S1 
N2 P1 F1 S2 N2 P1 F1 S2 
N2 P2 F2 S2 N2 P2 F2 S2 

N and F N1 P1 F1 S2 N1 P2 F2 S2 
N1 P2 F2 S2 N2 P1 F1 S1 
N2 P1 F1 S2 N1 P1 F2 S2 
N2 P2 F2 S2 N2 P2 F2 S1 

N and S N1 P2 F1 S1 Test case=8 
N1 P1 F1 S2 

N2 P1 F1 S1 

N2 P1 F1 S2 
P and F N1 P1 F1 S2 

N1 P1 F2 S2 

N1 P2 F1 S1 

N2 P2 F2 S2 

P and S N2 P1 F1 S1 

N1 P1 F1 S2 
N1 P2 F1 S1 

N2 P2 F2 S2 
F and S N1 P2 F1 S1 

N1 P1 F1 S2 

N2 P2 F2 S1 
N2 P2 F2 S2 

 

 

3. PHOSC TEST CASE GENERATION ENGINE 

PHOSC follows a framework closely resembling the first strategy, IPO, which implements the one-

parameter-at-a-time approach. However, PHOSC introduces a distinct concept for test case generation. 

Unlike the original IPO, PHOSC simultaneously incorporates both horizontal and vertical growth algorithms. 

In addition, it does so in a manner that supports both seeding and constraint mechanisms within the harmony 

search algorithm to enhance the efficiency and effectiveness of the testing process. The PHOSC framework is 

illustrated in Figure 2.  

The OPAT approach is used when exhaustive testing is impractical due to time, cost, and resource 

constraints. To address this, input domains are divided into segments, and representative values are chosen to 

generate a reduced set of test cases [42]. The goal is to balance the risk of interaction among components 

while staying within budget constraints. In the context of supporting seeding and constraints within sampled 

test data, seeding support enables users to define specific boundaries that a test must adhere to. Consequently, 

this feature significantly enhances the software's quality. However, some combinations might not be valid 

based on domain rules and must be removed from the test set (constraint support). This will make the test 

suite size optimal [43].  
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Figure 2. PHOSC framework 

 

 

The harmony search algorithm comprises four stages: initializing harmony memory, creating a new 

solution through improvisation, updating the harmony memory, and verifying the stopping condition [13]. The 

concept behind the harmony search algorithm draws on the techniques used by musicians to create harmonious 

compositions. Musicians often have a vast repository of music pitches in their memory, and they try out various 

combinations of these pitches to arrive at perfect harmony. The harmony search algorithm was developed based 

on the observation that the ultimate objective of any music is to search for and achieve a state of perfect 

harmony, and it utilizes a similar approach to find optimal solutions to complex problems. A significant number 

of research studies have highlighted that when compared with traditional techniques, the harmony search 

algorithm has demonstrated its efficiency in dealing with complex optimization problems [44]. 

Moreover, a correlation exists between musical terminology and optimization [44]. Each musician 

or instrument aligns with a decision variable, and the tones produced by musical instruments correspond to 

decision variable values. The creation of a new harmony, formed by incorporating tones from each 

instrument, corresponds to the solution of an optimization problem. The aesthetic quality of harmony 

matches the solution's objective function value. The gradual improvement of a pleasing musical harmony 

corresponds to the refinement of a solution vector. As a result, PHOSC is embedded in the HSA method to 

produce an optimal test suite. The PHOSC pseudocode is presented in Figure 3, which depicts the integration 

of seeding, constraint, OPAT approach, and HSA mechanisms. 

Referring to Figure 3, the PHOSC pseudocode initiates from lines 2 to 12, initializing crucial 

attributes for both PHOSC and the harmony search algorithm. Key attributes, such as the seeding list, 

constraint list, next pair, and final test set, are taken into account in PHOSC. The attributes of the seeding list 

and constraint list underscore the significance of seeding support, facilitating the incorporation of valuable 

combinations, and constraint support, aimed at eliminating undesirable ones. These functionalities contribute 

to the overall enhancement of software quality, and the size of the test suite will reach an optimal level. The 

next pair attribute is defined to accommodate pair combinations of each parameter value at each time unit 

until all parameter values are exhausted. Finally, the test set attribute stores all generated test cases, 

contributing to the comprehensive coverage and effectiveness of PHOSC's testing process. Meanwhile, for 

the harmony search algorithm, attributes including harmony memory size, number of iterations, 

improvisation count, harmony memory considering rate, and pitch adjustment rate are considered. The 

harmony memory and harmony memory size attribute work together, involving the setup of harmony 

memory and its size. Harmony memory comprises the initial pair combination of the first two parameters, 

serving as our solution vectors that can be added to the harmony memory. For improvisation, a new test pair 

is generated randomly based on two parameters: harmony memory considering rate and pitch adjustment 

rate. This process is designed to obtain an optimal solution, updating the harmony memory with the best 

solution. However, the attribute number of iterations determines the stopping condition for PHOSC. 
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Figure 3. PHOSC strategy’s pseudocode 

 

 

Subsequently, PHOSC reads the system under testing from a test file (line 13). To facilitate the 

selection of the next pair (line 17), the first two parameters are selected with the actual parameter values 

being converted to integer values at line 14. Given that the sampled test data may include specific 

combinations favorable or practical for the system under testing, adherence to seeding support becomes 

necessary. Conversely, as the sampled test data may also include specific combinations that are unwanted or 

not feasible for the system under testing, it is crucial to adhere to constraint support. As a result, lines 15 and 

16 then create seeding and constraints data, respectively. From lines 18 to 25, our PHSOC will employ both 

the one-parameter-at-a-time horizontal growth algorithm and harmony search algorithm mechanism in 

expanding and optimizing the pairs of the generated test pair from the next pair attribute for the remaining 

parameter. The harmony memory (line 19) will accommodate all the generated optimized test pairs from the 

next pair attribute before adding them to the final test set.  

The improvisation parameter plays a crucial role in a harmony search by specifying the maximum 

number of iterations that the algorithm undergoes in its pursuit of an optimal solution. It determines the 

extent to which the algorithm explores the solution space and refines its search over multiple iterations. The 

improvisation can either be done locally or globally. If it is discovered that not all interactions are covered 

(lines 21 to 23), improvisation takes place in PHOSC. In our PHOSC, there's an 85% chance of local 

improvisation at line 14, involving a 70% adjustment of a value from the current parameter at line 15, given 

that the harmony memory considering rate is less than 0.85 and the pitch adjustment rate is less than 0.30. 

Notably, there is a 15% chance of global improvisation (line 24). Following improvisation, PHOSC updates 

the harmony memory with the best solution at line 25. Moreover, PHOSC will utilize the vertical growth 

algorithm of one parameter at a time to populate any missing pairs from the optimized test set generated in 

line 26. Lastly, PHOSC will verify and validate the constraints and seeding before printing the final test set 

from lines 27 to 31. 

 

 

4. EVALUATION AND DISCUSSION 

In this section, we present the evaluation and discussion of our experimental results in three 

subsections. The first is benchmarking evaluation, followed by the statistical analysis of the benchmarking 

evaluation results. Finally, we discuss our conducted experimental observations. Noticeably the PHOSC 

strategy is written in Java and runs on an HP laptop with Windows 10. The laptop has 8 GB of RAM and an 

Intel Core i5-5200U CPU @2.20 GHz. Moreover, test suite sizes are considered in our experiments, as a 

result, we used the best values for each strategy's test results in all comparisons. Cells marked with an 

asterisk in the tables show the best test size performance, while "NA" means the result for that configuration 

is unavailable. 

 
Algorithm: PHOSC Pseudocode 

Input: System under testing in 2-way strength 

Output: Final test set  

1. Start. 
2. PHOSC attributes settings:  

3. Define the Seed list 

4. Define the Constraint list 
5. Define the Next pair 

6. Define the Final test suit 

7. Harmony search algorithm attributes settings: 
8. Define Harmony memory 

9. Define Harmony memory size 

10. Define Harmony memory considering rate 
11. Define Pitch adjustment rate 

12. Define the Number of iterations 

13. Read the system under testing. 
14. Translate actual values into integer values. 

15. Create seedings and store them in a Seed list. 

16. Create constraints and store them in a Constraint list. 
17. Create a combination for the next pair. 

18. Employ a one-parameter-at-a-time horizontal growth algorithm. 

19. Initialize harmony memory size, adding each pair from the next pair through iteration to check the uncovered interaction. 
20.    If all interactions are covered, then add the selected pair from harmony memory for subsequent iteration. 

21.    Else improvise. 

22.         If harmony memory considering rate is less than 0.85, then do local improvisation. 

23.                     If the pitch adjustment rate is less than 0.30, then adjust a value from the current parameter. 

24.         Else do global improvisation. 
25.    Update the harmony memory  
26. Employ one-parameter-at-a-time’s vertical growth algorithm to populate any missing pairs. 

27. Add the next pair to the final test set 

28. Check constraints from the final test set. 
29. Confirm seeding from the final test set. 

30. Print the final test set 

31. End 
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4.1.  Benchmarking evaluation 

Our main objective is to assess the efficiency of our PHOSC strategy by benchmarking it against 

established pairwise strategies. The experiments are conducted using recognized benchmarking 

configurations in three groups: PHOSC compared to existing pairwise strategies, PHOSC compared to 

existing pairwise strategies with constraint support, and PHOSC compared to existing pairwise strategies 

with both seeding and constraint supports. The notation for the seeding and constraint lists used in our 

experiments is represented as (parameter1 value, parameter2 value, parameter3 value, ..., parametern value). 

In this representation, a value from each parameter is presented to form a complete test case, which could be 

either seeded or constrained. In situations where a parameter value is not specified, a default value 'x' will be 

provided, serving as a “don't care value”. 

Firstly, in the context of the experiments conducted using recognized benchmarking configurations 

published in study [35], we adopted the same configurations and their respective results to compare our 

PHOSC against existing pairwise strategies. The benchmarking result is presented in Table 5. Secondly, in 

the context of the experiments conducted using recognized benchmarking configurations published in study 

[34], we adopted the same configurations and their respective results to compare our PHOSC against existing 

pairwise strategies with constraint support. The benchmarking result is presented in Table 6. Lastly, in the 

context of the experiments conducted using recognized benchmarking configurations published in study [34], 

we appended a seeding list to the adopted configurations independently to evaluate PHOSC due to the 

absence of pairwise strategies supporting both seeding and constraint. The benchmarking result is presented 

in Table 7. 

 

 

Table 5. Experiment of PHOSC against existing pairwise strategies 
S/N Configuration OTAT OPAT 

T
C

o
n

fi
g
 

Je
n
n

y
 

P
IC

T
 

P
P

S
T

G
 

P
H

S
S

 

P
ai

rC
S

 

P
ai

rF
S

 

P
A

B
C

 

P
K

S
 

D
F

A
 

P
G

S
A

S
 

IP
O

G
 

P
H

O
S

C
 

1 27 7 8 7 6 NA 6 NA NA NA NA 6 7 4* 

2 37 15 16 16 15 NA 15 NA 15 NA NA 15 15 12* 

3 47 28 28 27 26 NA 25 NA NA NA NA 26 29 22* 
4 33 10 10 10 9* 9* 9* 9* 9* 9* 9* 9* 11 9* 

5 34 10 13 13 9* 9* 9* 9* 9* 9* 9* 9* 12 9* 

6 35 14 14 13 12 NA 11 NA NA NA NA 11 15 10* 
7 210 9 10 NA 8 NA 8 NA NA NA NA 8 NA 6* 

8 310 17 19 18 NA 17 NA NA 17 16 17 17 20 15* 

9 313 20 22 20 17* 18 18 18 18 20 17* 20 20 18 
10 410 31 30 31 NA 29 NA 28* 28* 30 30 31 31 32 

11 510 48 45 47 NA 45 NA 42* 43 46 45 48 50 52 

 

 

Table 6. Experiment of PHOSC against existing pairwise strategies in the presence of constraint support 
S/N Configuration Constraint List 

S
A

_
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1 33 [(x,1,0), (2,2,x), (x,2,0), (2,x,2), (1,2,2), (0,x,1)] 10 10 10 10 10 10 10 6* 

2 43 [(2,x,3), (2,1,x), (0,1,x), (3,3,0)] 17 17 19 17 17 16 16 13* 
3 53 [(4,x,2), (4,2,x), (4,x,4), (1,3,x), (1,1,x), (4,3,1)] 26 26 27 30 25 26 25 24* 

4 63 [(3,x,1), (2,0,x), (x,3,4), (x,3,1), (3,5,x), (5,4,4), (x,1,2)] 36 37 39 38 36 36 36 34* 

5 73 [(1,4,x), (4,x,0), (x,0,5), (6,4,x), (6,3,x), (5,5,3)] 52 52 56 54 53 51 51 48* 

 

 

Table 7. Experiment of PHOSC pairwise in the presence of seeding and constraint support 
S/N Configuration Seeding List Constraint List PHOSC 

1 33 [(1,0,2), (1,2,2)] [(x,1,0), (2,2,x), (x,2,0), (2,x,2), (1,2,2), (0,x,1)] 7 

2 43 [(0,0,0)] [(2,x,3), (2,1,x), (0,1,x), (3,3,0)] 13 
3 53 [(4,4,4), (1,1,2), (0,2,4)] [(4,x,2), (4,2,x), (4,x,4), (1,3,x), (1,1,x), (4,3,1)] 25 

4 63 [(3,3,2)] [(3,x,1), (2,0,x), (x,3,4), (x,3,1), (3,5,x), (5,4,4), (x,1,2)] 35 

5 73 [(0,0,0), (6,6,6)] [(1,4,x), (4,x,0), (x,0,5), (6,4,x), (6,3,x), (5,5,3)] 48 
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4.2.  Statistical analysis 

For the statistical analysis, at a confidence level of 95%, we conducted two statistical analyses on the 

gathered results to ascertain any significant difference between the PHOSC strategy and other established 

pairwise t-way strategies. These analyses involve the Wilcoxon signed-rank test and interval plots illustrating 

the distribution of mean sizes. The Wilcoxon signed-rank test provides a decision outcome. If the asymptotic 

significance value is at or below 0.05, it leads to rejecting the null hypothesis (H0), signifying a meaningful 

distinction between the strategies. Conversely, if the asymptotic significance value surpasses 0.05, it results in 

retaining the null hypothesis (H0), indicating no significant difference between the strategies. The decision 

regarding the null hypothesis is based on the comparison of the results between the two strategies. Additionally, 

the Wilcoxon signed-rank test provides a Rank outcome that can either be positive, negative, or ties between the 

two compared strategies. The experiment of non-parametric Wilcoxon signed rank test statistical analysis for 

the results in Table 5 and Table 6 is presented in Table 8. Moreover, the Interval Plot for experiments in Table 5 

and Table 6 results with 95% CL of the mean is presented in Figures 4 and 5 respectively. 

 

 

Table 8. Experiment of non-parametric Wilcoxon signed rank test statistical analysis. 
Wilcoxon 

Test 

Strategy Pair Ranks Asymptotic 

Significant (2-tailed) 

statistical test 

Decision 

Positive Negative Ties 

Results of 

Table 5 

PHOSC-TConfig 9 2 0 0.055 Null hypothesis (H0) retained 

PHOSC-Jenny 9 2 0 0.020 Null hypothesis (H0) rejected 

PHOSC-PGSAS 7 2 2 0.134 Null hypothesis (H0) retained 
Results of 

Table 6 

PHOSC-SA_SAT 5 0 0 0.038 Null hypothesis (H0) rejected 

PHOSC-mAETG_SAT 5 0 0 0.039 Null hypothesis (H0) rejected 

PHOSC-PICT 5 0 0 0.043 Null hypothesis (H0) rejected 
PHOSC-TestCover 5 0 0 0.038 Null hypothesis (H0) rejected 

PHOSC-LAHC 5 0 0 0.042 Null hypothesis (H0) rejected 

PHOSC-HSS 5 0 0 0.041 Null hypothesis (H0) rejected 
PHOSC-BTS 5 0 0 0.042 Null hypothesis (H0) rejected 

 

 

4.3.  Experimental observation and discussion 

In this section, we will provide a broad overview and discussion of the experimental results. The 

analysis encompasses both observational insights and statistical findings derived from Table 5, Table 6, 

Table 7, Table 8, Figure 4, and Figure 5. We will start with a general observation of the benchmarking 

experiments. Following that, we will delve into the statistical analysis, which includes the Wilcoxon signed-

rank test and the description of the result distributions in the Interval Plot. 

In reference to Table 5, it is worth mentioning that our PHOSC demonstrated superior performance 

in nearly all cases, except for specific configurations 313, 410, and 510. In the 313 scenarios, PPSTG and DFA 

outperformed all, while for 410, PairFS and PABC showed better results. In the case of 510, only PairFS 

surpassed all other strategies. However, most strategies produced the same results for configurations 33 and 

34. Referring to Table 6, it is evident that our PHOSC exhibited exceptional performance in all instances 

when the five configurations were executed. Concerning Table 7, the experiment autonomously assessed how 

well our PHOSC could accommodate seeding and constraint. Regrettably, no pairwise strategies currently 

exist that support both seeding and constraint.  

As per the findings presented in Table 8, the null hypothesis is retained only in two instances when 

combined with PGSAS and TConfig concerning the results from Table 5. This implies that there is no 

substantial variation in the size of the produced test suite. On the contrary, when paired with other strategies, 

the null hypothesis is rejected, indicating a substantial variation. Additionally, in the majority of cases 

involving Wilcoxon ranking, the positive ranks of our PHOSC outweigh the negative ranks. These results 

collectively indicate that PHOSC statistically has a better test suite size compared to other pairwise strategies. 

Based on the results in Figure 4, our PHOSC exhibits the lowest mean value at 17.1818, followed by PGSAS 

at 18.1818, then TConfig at 19, with Jenny being the least favorable at 19.5455. It is important to note that 

the results for PICT, PPSTG, PHSS, PairCS, PairFS, PABC, PKS, DFA, and IPOG are disregarded due to 

incomplete samples. Just like in Figure 4, Figure 5 shows that our PHOSC has the lowest mean value of 25. 

BTS follows closely with 27.6, then HSS at 27.8. Both LAHC and SAT_SAT score 28.2, while 

mAETG_SAT comes in at 28.4, TestCover at 29.8, and PICT with the least favorable result at 30.2. 

Current pairwise strategies are effective, but it is essential to discuss the PHOSC strategy, which 

uniquely combines support for seeding, constraints, the OPAT approach, and a metaheuristic method. For 

example, while TTG supports seeding and constraints, it lacks pairwise and metaheuristic approaches. On the 

other hand, strategies like LAHC, HSS, and BST are metaheuristic-based but only support constraints. In 

contrast, PHOSC integrates OPAT, seeding, constraints, and a metaheuristic method simultaneously, aiming 
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to enhance software quality and reduce the test suite size. Experiments comparing PHOSC with existing 

pairwise strategies consistently showed PHOSC outperforming others in most cases. However, some 

strategies like DFA, PABC, PairFS, and PPSTG performed better in three configurations: 313, 410, and 510 as 

depicted in Table 5.  

In summary, software testers need to decide the number of test cases based on context, expertise, 

and judgment, especially considering OPAT, seeding, constraint, and metaheuristic support. The OPAT 

approach divides input domains, choosing representative values for a reduced set of test cases. Seeding and 

constraint support allow flexibility in including essential and excluding unnecessary test cases, respectively. 

With metaheuristic-based support, an optimized final test list is achieved. 

 

 

 

 

Figure 4. The interval Plot for experiments in Table 5 results in 95% CL of the mean 
 

 

 
 

Figure 5. The interval Plot for experiments in Table 6 results in 95% CL of the mean 

 

 

5. CONCLUSION 

In this research, we have discussed and assessed a novel pairwise strategy known as the PHOSC 

strategy. PHOSC is designed to facilitate both seeding and constraint support within the harmony search 

algorithm, utilizing a one-parameter-at-a-time approach for test case generation. Our benchmarking results 

have been promising across almost all benchmarking configurations. Despite achieving research goals related 

to OPAT, seeding, constraints, and metaheuristic-based support, there are still opportunities for 

improvement. Our ongoing work involves further enhancing PHOSC to support a t-way with a higher level 

of interaction strength. 
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