
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 3, June 2024, pp. 3137~3149

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i3.pp3137-3149 3137

Journal homepage: http://ijece.iaescore.com

Pairwise test case generation with harmony search,

one-parameter-at-at-time, seeding, and constraint mechanism

integration

Aminu Aminu Muazu1,2, Ahmad Sobri Hashim1, Umar Danjuma Maiwada1,2, Umar Audi Isma'ila1,

Muhammad Muntasir Yakubu1,3, Muhammad Abubakar Ibrahim4
1Computer and Information Sciences Department, Faculty of Science and Information, Technology Universiti Teknologi PETRONAS,

Perak, Malaysia
2Computer Sciences Department, Faculty of Natural and Applied Science, Umaru Musa Yar’adua University, Katsina, Nigeria

3Department of Information Technology, Faculty of Engineering and Technology, Federal University Dutsin-ma, Katsina, Nigeria
4Department of Computer Science, School of Primary Education Sciences, Federal Collage of Education, Katsina, Nigeria

Article Info ABSTRACT

Article history:

Received Oct 27, 2023

Revised Feb 16, 2024

Accepted Mar 5, 2024

 Pairwise testing is a method for identifying defects through combinatorial

analysis. It involves testing all possible combinations of input parameters in

pairs within a system, ensuring that each pair is tested at least once. The

field of test case generation is highly active in the realm of combinatorial

interaction testing. Research in this area is particularly encouraged, as it falls

under the category of non-deterministic polynomial-time hardness. A big

challenge in this field is the combinatorial explosion problem. It is about

finding the best test suite that covers all possible combinations of interaction

strength. In this paper, we present the task of discovering a pairwise test set

as a search problem and introduce an innovative testing tool referred to as

pairwise test case generation in harmony search algorithm with seeding and

constraint mechanism (PHOSC). Experimental results show that PHOSC

performs better compared to some existing pairwise strategies in terms of

test suite size. Additionally, PHOSC provides a comprehensive framework

and serves as a research platform for the generation of pairwise test sets

employing the harmony search algorithm. It adopts an approach that focuses

on one parameter at a time (OPAT) and incorporates seeding and constraint

mechanisms at the same time, thereby enhancing the efficiency and

effectiveness of the testing process.

Keywords:

Combinatorial interaction

testing

Harmony search algorithm

One-parameter-at-a-time

approach

Pairwise testing

Software testing

Test case generation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Aminu Aminu Muazu

Computer and Information Sciences Department, Faculty of Science and Information Technology

Universiti Teknologi PETRONAS

32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Email: aminu.aminu@umyu.edu.ng

1. INTRODUCTION

Software engineering methods enhance reliability across numerous applications [1]. Software

development companies constantly strive to attract customers in a competitive environment, aiming to

enhance the quality of their products through rigorous testing [2], [3]. There are various testing methods,

including category partitioning, equivalence partitioning, and domain testing which are based on the idea of

dividing the input space into subsets. The idea behind partition testing is to identify and test a representative

set of inputs that are likely to exhibit similar behavior. This is based on the assumption that if a particular

input behaves in a certain way, other inputs within the same partition will likely behave similarly. Another

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3138

approach is random testing, where test cases are chosen randomly from an input distribution, like a uniform

distribution, without using information from the specification or previous test cases.

Presently, many researchers are focused on defining an optimal strategy based on an alternative

method known as combinatorial testing [4]–[6]. Combinatorial testing aims to uncover faults that result from

interactions between parameter values [7]. This approach has the potential to reduce scheduled costs and time

while enhancing the effectiveness of software testing across various configuration systems. One of the most

prominent strategies in this regard is t-way testing, with pairwise testing being a noteworthy example [8], [9].

Combinatorial testing has seen the adoption of numerous valuable techniques that include uniformly,

variably, or input-output interaction [10].

The pairwise technique in software testing is known for its effectiveness in providing test results

[11]. However, there are two main approaches within this technique: one-test-at-a-time (OTAT) and one-

parameter-at-a-time (OPAT) [12]. Interestingly, currently, none of these approaches are being used to support

seeding or constraints within a metaheuristic method, which could improve software quality and create better

test suites. Seeding support helps set boundaries for tests, ensuring they meet specific requirements,

potentially leading to desired combinations in sampled test data. On the other hand, constraint support

removes undesirable combinations, optimizing the test suite size by eliminating invalid combinations that do

not fit the domain semantics. The harmony search as a metaheuristic draws inspiration from the idea that the

primary objective of music is to seek and create a state of perfect harmony [13], [14]. This concept is

borrowed from the practices of musicians who, when composing harmony, rely on their vast memory of

musical pitches. Musicians continuously explore various possible combinations of these stored musical

pitches. Numerous research studies have emphasized that when the harmony search algorithm is compared to

other techniques, it demonstrates remarkable efficiency in tackling complex optimization problems [15].

Consequently, as the number of software inputs increases, the configurations for pairwise testing

grow significantly [16], [17]. This poses challenges when there are limitations like time, cost, and resources.

Testing all generated cases becomes impractical within extensive input domains, making it difficult to

manage the risk of faults resulting from variable interactions. An effective approach involves dividing each

domain into segments, particularly in the OPAT method. This method selects representative values from each

segment to generate a smaller set of test cases. The assumption is that using representative values balances

the risk of missing interactions while keeping the testing process within a reasonable budget.

In the context of search-based software engineering, which deals with optimizing processes in

software engineering, many recent studies have turned to metaheuristics mechanisms to address the challenge

of generating pairwise testing, commonly referred to as the combinatorial explosion problem [18]–[20].

According to [21], all pairwise strategies fall into three categories: algebraic-based, computational-based, or

metaheuristic-based. The algebraic-based strategies employ mathematical functions in generating test suites,

while the computational-based strategies eliminate the constraints of algebraic methods, resulting in higher

costs due to considering all possible combinations of space. On the other hand, metaheuristic-based strategies

use nature-inspired algorithms as the foundation for pairwise strategies.

The TConfig pairwise strategy employs a recursive construction method, utilizing orthogonal arrays

to construct test suites [22]. In-parameter-order (IPO) [23] represents the inaugural pairwise strategy

incorporating the one-parameter-at-a-time approach, designed specifically for systems with more than one

parameter. At its core, it operates by constructing a pairwise test suite for the initial two parameters and

systematically expanding it to cover the first three parameters, continuing this process until it encompasses

the last parameter. Pairwise independent combinatorial testing (PICT) [24] produces all designated

interaction tuples and randomly chooses their associated interaction combinations to build test cases within

the comprehensive test suite. Besides facilitating variable strength, it also accommodates constraints.

In 2007, a more comprehensive iteration of the IPO strategy emerged, known as in-parameter-order-

general (IPOG), which integrated both horizontal and vertical algorithms. The primary enhancement involved

accommodating combinatorial t-way expansion in the combinations of parameter values to ensure an optimal

test size and efficient execution time. Automatic efficient test generator (AETG) [25] stands out as one of the

early strategies to implement the one-test-at-a-time method. It creates multiple test case options, choosing

one strategically to cover the most uncovered tuples. Importantly, several versions of AETG have been

created, such as the pairwise mAETG_SAT [26] strategy. Unlike AETG, modified automatic efficient test

generator with satisfiability technique (mAETG_SAT) specifically incorporates support for constraints.

SA_SAT, a variation of simulated annealing (SA), employs a binary search algorithm to identify the

most suitable test case in each iteration, adding it to the final test suite [26]. Moreover, SA is a variation of

the Metropolis algorithm, where temperatures transition from higher to lower states. SA involves two key

stochastic methods: one for generating solutions and another for accepting them. The iterative process of

applying the SA algorithm to a discrete optimization problem includes comparing the values of the current

and new solutions. Over time, SA has demonstrated efficiency in solving combinatorial optimization

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3139

problems like t-way testing [26]. It encompasses support for pairwise and variable strength interactions,

addressing constraints as well.

Jenny [27] utilizes a greedy algorithm to create the interaction test suite. The process begins by

forming a test suite that addresses one-way interactions. Subsequently, the suite is expanded to encompass

two-way interactions and is iteratively extended until all t-way interactions are accounted for. Alsewari et al.

introduced two strategies, pairwise harmony search algorithm-based strategy (PHSS) [28] and harmony

search strategy (HSS) [29], both designed to facilitate pairwise testing. While PHSS is primarily focused on

pairwise testing, HSS goes beyond supporting variable strength interactions and constraints with higher

interaction strength. Notably, both strategies utilize the harmony search algorithm and employ a one-test-at-

a-time approach in constructing optimal test cases.

Late acceptance hill climbing based strategy (LAHC) [30] supports pairwise and higher interaction

strengths, extending up to 𝑡 <= 4. Categorized as a metaheuristic-based strategy, LAHC utilizes the late

acceptance hill-climbing algorithm concept to generate a test suite while considering constraints. pairwise

migrating birds optimization strategy (PMBOS) [31] is a strategy focused on pairwise testing, employing the

migrating birds optimization concept for the generation of test cases. Pairwise choice function based hyper-

heuristic (PCFHH) is a pairwise strategy that employs three criteria for selecting from four low-level

heuristics, referred to as the choice function, throughout the search process [32]. The introduction of the

pairwise artificial bee colony algorithm (PABC) strategy is documented in [33]. PABC is integrated into the

artificial bee colony algorithm to ensure consistent interaction strength, particularly when 𝑡 is set to 2.

The introduction of the bat-inspired testing strategy (BST) strategy aimed to support both pairwise

testing and constraints [34]. It utilizes a one-test-at-a-time approach, creating test cases within the bat

algorithm mechanism. In study [8], a novel approach is outlined for producing distinct test cases known as

genetic and particle swarm optimization (GASPO). GASPO strategy leverages the genetic algorithm and

particle swarm optimization, specifically tailored for succeeding pairwise testing. The pairwise gravitational

search algorithm strategy (PGSAS) is designed to emphasize pairs of elements (2-way). Significantly,

PGSAS stands out as the most recent strategy specifically tailored for pairwise testing [35].

While the literature acknowledges the existence and utility of pairwise strategies, the simultaneous

application of seeding and constraint support, along with metaheuristic methods and a one-parameter-at-a-

time approach for test case generation, has received limited attention. Consequently, we present the task of

discovering a pairwise test set as a search problem and introduce an innovative testing tool called Pairwise

test case generation in harmony search with OPAT, seeding, and constraint supports (PHOSC). The PHOSC

provides a comprehensive framework and serves as a research platform for the generation of pairwise test

sets employing the harmony search algorithm. It adopts an approach that focuses on the OPAT approach and

incorporates seeding and constraint mechanisms, thereby enhancing the efficiency and effectiveness of the

testing process.

The paper's structure is organized as follows: following the introduction, section 2 outlines the

pairwise approach for test case generation. Section 3 describes the proposed PHOSC strategy. Section 4 is

dedicated to evaluation, presenting results, and facilitating discussion. Lastly, section 5 concludes the paper,

summarizing its findings and contributions in the field of test case generation and pairwise testing strategies.

2. PAIRWISE TEST CASE GENERATION

A test case comprises a collection of conditions with diverse combinations of input values, executed

within a specific scenario to verify the functionality of a completed software configuration system [36], [37].

Finding the best possible final test suite to cover every possible combination of a given interaction strength is

a challenge in this field, and the combinatorial explosion problem is one such problem. Consequently, test

case generation stands out as the most dynamically advancing research area within combinatorial t-way

testing, with the added complexity of being classified as NP-hard. In response to this challenge, researchers

are increasingly focusing on the development of various pairwise strategies to tackle this issue, aiming to

derive an optimal test suite solution [38]. The formulation for generating test cases in combinatorial

interaction testing can be articulated as: F=K1×K2×K3×K4×K5 ... ×Kn. where F represents the total number of

test cases generated, K1×K2×K3×K4×K5 ... ×Kn represents the number of possible values for each input

parameter. In this equation, you multiply the number of possible values for each parameter to calculate the

total number of test cases required to cover all possible combinations of these parameters. This approach

helps ensure exhaustive testing while with the combinatorial testing method, we normally minimize the total

number of test cases required, which is especially valuable in situations with many parameters and possible

values [8], [39].

Pairwise testing, alternatively referred to as all-pairs testing, is a method employed to test a software

configuration system using combinatorial techniques [40]. This approach involves selecting combinations in

a step-by-step manner to ensure that all possible pairs of parameter values are incorporated into the final test

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3140

set. For certain types of systems, pairwise testing is an effective way to find faults caused by interactions

between two or more input parameters. This is especially useful for systems with a large number of possible

configurations [41]. A substantial body of evidence suggests that most software failures result from

unintended pairwise interactions between system parameters. As indicated in [34], one primary focus in

pairwise testing is to ensure that each pairwise interaction is covered by at least one test case in the final set.

As a result, combinatorial testing utilizes a compact test suite to encompass all potential parameter values and

their combinations, thereby detecting potential faults in a configuration system. Consequently, t-way

techniques systematically generate a concise test suite designed to maximize coverage of interaction tuples

based on the specified t-way coverage criteria [34].

For further clarification, we will elaborate on a simplified configuration system of the United Bank

for Africa (UBA) Mobile-App login screen, as depicted in Figure 1, to illustrate the pairwise testing scenario.

Additionally, Table 1 will demonstrate the parameter values of the configuration. The configuration

comprises four parameters with two values each as their symbolic value representation is depicted in Table 2.

The exhaustive number of test cases required for these four parameters is calculated as 24, resulting in 16 test

cases as shown in Table 3. If each test case takes three minutes to complete, exhaustive testing would take

nearly 48 minutes. Moreover, if each test case costs USD30, the cost of completing exhaustive testing would

amount to USD480. Considering this, it is noteworthy that this is a relatively simple configuration system,

how long would it take or spend to complete the exhaustive testing of a complex configuration or the entire

UBA Mobile-App? For extensive industries dealing with intricate configurations involving thousands of

parameters and values, addressing this issue would result in substantial expenditures, effort, manpower,

resources, and time dedicated to testing their configurations.

Figure 1. UBA Mobile-App login screen

Table 1. Parameter’s values for UBA Mobile-App login screen
Parameters Phone number Password Forgotten password? Sign in

Values Enter Enter Click Click

Not enter Not enter Not click Not click

Table 2. Symbolic values for UBA Mobile-App login screen
Parameters N P F S

Values N1 P1 F1 S1

N2 P2 F2 S2

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3141

Table 3. Exhaustive testing of the UBA Mobile-App login screen
Parameters Test case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N N1 N1 N1 N1 N1 N1 N1 N1 N2 N2 N2 N2 N2 N2 N2 N2

P P1 P1 P1 P1 P2 P2 P2 P2 P1 P1 P1 P1 P2 P2 P2 P2

F F1 F1 F2 F2 F1 F1 F2 F2 F1 F1 F2 F2 F1 F1 F2 F2
S S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Applying pairwise testing to this configuration can significantly reduce the total number of test

cases, leading to cost and time savings to the total number of 8 test cases (50% reduction from exhaustive

testing) as depicted in Table 4. The bold cells in Table 4 show the parameters with don't care values. In

t-way testing, “don't care values” are specific parameter values that do not significantly impact the test

outcome. Any valid value can be assigned to these parameters without affecting the test case's effectiveness.

This concept allows efficient testing by focusing on critical interactions among relevant parameters while

allowing flexibility for non-essential values. Based on the pairwise test applied to the UBA Mobile-App login

configuration, it minimizes the number of test cases from exhaustive 16 to 8 (50%), which can lead to

reduced time consumption, cost, and resources. As a result, our proposed PHOSC strategy will generate a

pairwise test case that can reduce time consumption, cost, and resource utilization.

Table 4. Pairwise testing of UBA Mobile-App login screen
Parameter combinations (2-way) Parameter

N P F S N P F S

N and P N1 P1 F1 S2 N1 P1 F1 S2
N1 P2 F1 S1 N1 P2 F1 S1
N2 P1 F1 S2 N2 P1 F1 S2
N2 P2 F2 S2 N2 P2 F2 S2

N and F N1 P1 F1 S2 N1 P2 F2 S2
N1 P2 F2 S2 N2 P1 F1 S1
N2 P1 F1 S2 N1 P1 F2 S2
N2 P2 F2 S2 N2 P2 F2 S1

N and S N1 P2 F1 S1 Test case=8
N1 P1 F1 S2

N2 P1 F1 S1

N2 P1 F1 S2
P and F N1 P1 F1 S2

N1 P1 F2 S2

N1 P2 F1 S1

N2 P2 F2 S2

P and S N2 P1 F1 S1

N1 P1 F1 S2
N1 P2 F1 S1

N2 P2 F2 S2
F and S N1 P2 F1 S1

N1 P1 F1 S2

N2 P2 F2 S1
N2 P2 F2 S2

3. PHOSC TEST CASE GENERATION ENGINE

PHOSC follows a framework closely resembling the first strategy, IPO, which implements the one-

parameter-at-a-time approach. However, PHOSC introduces a distinct concept for test case generation.

Unlike the original IPO, PHOSC simultaneously incorporates both horizontal and vertical growth algorithms.

In addition, it does so in a manner that supports both seeding and constraint mechanisms within the harmony

search algorithm to enhance the efficiency and effectiveness of the testing process. The PHOSC framework is

illustrated in Figure 2.

The OPAT approach is used when exhaustive testing is impractical due to time, cost, and resource

constraints. To address this, input domains are divided into segments, and representative values are chosen to

generate a reduced set of test cases [42]. The goal is to balance the risk of interaction among components

while staying within budget constraints. In the context of supporting seeding and constraints within sampled

test data, seeding support enables users to define specific boundaries that a test must adhere to. Consequently,

this feature significantly enhances the software's quality. However, some combinations might not be valid

based on domain rules and must be removed from the test set (constraint support). This will make the test

suite size optimal [43].

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3142

Figure 2. PHOSC framework

The harmony search algorithm comprises four stages: initializing harmony memory, creating a new

solution through improvisation, updating the harmony memory, and verifying the stopping condition [13]. The

concept behind the harmony search algorithm draws on the techniques used by musicians to create harmonious

compositions. Musicians often have a vast repository of music pitches in their memory, and they try out various

combinations of these pitches to arrive at perfect harmony. The harmony search algorithm was developed based

on the observation that the ultimate objective of any music is to search for and achieve a state of perfect

harmony, and it utilizes a similar approach to find optimal solutions to complex problems. A significant number

of research studies have highlighted that when compared with traditional techniques, the harmony search

algorithm has demonstrated its efficiency in dealing with complex optimization problems [44].

Moreover, a correlation exists between musical terminology and optimization [44]. Each musician

or instrument aligns with a decision variable, and the tones produced by musical instruments correspond to

decision variable values. The creation of a new harmony, formed by incorporating tones from each

instrument, corresponds to the solution of an optimization problem. The aesthetic quality of harmony

matches the solution's objective function value. The gradual improvement of a pleasing musical harmony

corresponds to the refinement of a solution vector. As a result, PHOSC is embedded in the HSA method to

produce an optimal test suite. The PHOSC pseudocode is presented in Figure 3, which depicts the integration

of seeding, constraint, OPAT approach, and HSA mechanisms.

Referring to Figure 3, the PHOSC pseudocode initiates from lines 2 to 12, initializing crucial

attributes for both PHOSC and the harmony search algorithm. Key attributes, such as the seeding list,

constraint list, next pair, and final test set, are taken into account in PHOSC. The attributes of the seeding list

and constraint list underscore the significance of seeding support, facilitating the incorporation of valuable

combinations, and constraint support, aimed at eliminating undesirable ones. These functionalities contribute

to the overall enhancement of software quality, and the size of the test suite will reach an optimal level. The

next pair attribute is defined to accommodate pair combinations of each parameter value at each time unit

until all parameter values are exhausted. Finally, the test set attribute stores all generated test cases,

contributing to the comprehensive coverage and effectiveness of PHOSC's testing process. Meanwhile, for

the harmony search algorithm, attributes including harmony memory size, number of iterations,

improvisation count, harmony memory considering rate, and pitch adjustment rate are considered. The

harmony memory and harmony memory size attribute work together, involving the setup of harmony

memory and its size. Harmony memory comprises the initial pair combination of the first two parameters,

serving as our solution vectors that can be added to the harmony memory. For improvisation, a new test pair

is generated randomly based on two parameters: harmony memory considering rate and pitch adjustment

rate. This process is designed to obtain an optimal solution, updating the harmony memory with the best

solution. However, the attribute number of iterations determines the stopping condition for PHOSC.

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3143

Figure 3. PHOSC strategy’s pseudocode

Subsequently, PHOSC reads the system under testing from a test file (line 13). To facilitate the

selection of the next pair (line 17), the first two parameters are selected with the actual parameter values

being converted to integer values at line 14. Given that the sampled test data may include specific

combinations favorable or practical for the system under testing, adherence to seeding support becomes

necessary. Conversely, as the sampled test data may also include specific combinations that are unwanted or

not feasible for the system under testing, it is crucial to adhere to constraint support. As a result, lines 15 and

16 then create seeding and constraints data, respectively. From lines 18 to 25, our PHSOC will employ both

the one-parameter-at-a-time horizontal growth algorithm and harmony search algorithm mechanism in

expanding and optimizing the pairs of the generated test pair from the next pair attribute for the remaining

parameter. The harmony memory (line 19) will accommodate all the generated optimized test pairs from the

next pair attribute before adding them to the final test set.

The improvisation parameter plays a crucial role in a harmony search by specifying the maximum

number of iterations that the algorithm undergoes in its pursuit of an optimal solution. It determines the

extent to which the algorithm explores the solution space and refines its search over multiple iterations. The

improvisation can either be done locally or globally. If it is discovered that not all interactions are covered

(lines 21 to 23), improvisation takes place in PHOSC. In our PHOSC, there's an 85% chance of local

improvisation at line 14, involving a 70% adjustment of a value from the current parameter at line 15, given

that the harmony memory considering rate is less than 0.85 and the pitch adjustment rate is less than 0.30.

Notably, there is a 15% chance of global improvisation (line 24). Following improvisation, PHOSC updates

the harmony memory with the best solution at line 25. Moreover, PHOSC will utilize the vertical growth

algorithm of one parameter at a time to populate any missing pairs from the optimized test set generated in

line 26. Lastly, PHOSC will verify and validate the constraints and seeding before printing the final test set

from lines 27 to 31.

4. EVALUATION AND DISCUSSION

In this section, we present the evaluation and discussion of our experimental results in three

subsections. The first is benchmarking evaluation, followed by the statistical analysis of the benchmarking

evaluation results. Finally, we discuss our conducted experimental observations. Noticeably the PHOSC

strategy is written in Java and runs on an HP laptop with Windows 10. The laptop has 8 GB of RAM and an

Intel Core i5-5200U CPU @2.20 GHz. Moreover, test suite sizes are considered in our experiments, as a

result, we used the best values for each strategy's test results in all comparisons. Cells marked with an

asterisk in the tables show the best test size performance, while "NA" means the result for that configuration

is unavailable.

Algorithm: PHOSC Pseudocode

Input: System under testing in 2-way strength

Output: Final test set

1. Start.
2. PHOSC attributes settings:

3. Define the Seed list

4. Define the Constraint list
5. Define the Next pair

6. Define the Final test suit

7. Harmony search algorithm attributes settings:
8. Define Harmony memory

9. Define Harmony memory size

10. Define Harmony memory considering rate
11. Define Pitch adjustment rate

12. Define the Number of iterations

13. Read the system under testing.
14. Translate actual values into integer values.

15. Create seedings and store them in a Seed list.

16. Create constraints and store them in a Constraint list.
17. Create a combination for the next pair.

18. Employ a one-parameter-at-a-time horizontal growth algorithm.

19. Initialize harmony memory size, adding each pair from the next pair through iteration to check the uncovered interaction.
20. If all interactions are covered, then add the selected pair from harmony memory for subsequent iteration.

21. Else improvise.

22. If harmony memory considering rate is less than 0.85, then do local improvisation.

23. If the pitch adjustment rate is less than 0.30, then adjust a value from the current parameter.

24. Else do global improvisation.
25. Update the harmony memory
26. Employ one-parameter-at-a-time’s vertical growth algorithm to populate any missing pairs.

27. Add the next pair to the final test set

28. Check constraints from the final test set.
29. Confirm seeding from the final test set.

30. Print the final test set

31. End

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3144

4.1. Benchmarking evaluation

Our main objective is to assess the efficiency of our PHOSC strategy by benchmarking it against

established pairwise strategies. The experiments are conducted using recognized benchmarking

configurations in three groups: PHOSC compared to existing pairwise strategies, PHOSC compared to

existing pairwise strategies with constraint support, and PHOSC compared to existing pairwise strategies

with both seeding and constraint supports. The notation for the seeding and constraint lists used in our

experiments is represented as (parameter1 value, parameter2 value, parameter3 value, ..., parametern value).

In this representation, a value from each parameter is presented to form a complete test case, which could be

either seeded or constrained. In situations where a parameter value is not specified, a default value 'x' will be

provided, serving as a “don't care value”.

Firstly, in the context of the experiments conducted using recognized benchmarking configurations

published in study [35], we adopted the same configurations and their respective results to compare our

PHOSC against existing pairwise strategies. The benchmarking result is presented in Table 5. Secondly, in

the context of the experiments conducted using recognized benchmarking configurations published in study

[34], we adopted the same configurations and their respective results to compare our PHOSC against existing

pairwise strategies with constraint support. The benchmarking result is presented in Table 6. Lastly, in the

context of the experiments conducted using recognized benchmarking configurations published in study [34],

we appended a seeding list to the adopted configurations independently to evaluate PHOSC due to the

absence of pairwise strategies supporting both seeding and constraint. The benchmarking result is presented

in Table 7.

Table 5. Experiment of PHOSC against existing pairwise strategies
S/N Configuration OTAT OPAT

T
C

o
n

fi
g

Je
n
n

y

P
IC

T

P
P

S
T

G

P
H

S
S

P
ai

rC
S

P
ai

rF
S

P
A

B
C

P
K

S

D
F

A

P
G

S
A

S

IP
O

G

P
H

O
S

C

1 27 7 8 7 6 NA 6 NA NA NA NA 6 7 4*

2 37 15 16 16 15 NA 15 NA 15 NA NA 15 15 12*

3 47 28 28 27 26 NA 25 NA NA NA NA 26 29 22*
4 33 10 10 10 9* 9* 9* 9* 9* 9* 9* 9* 11 9*

5 34 10 13 13 9* 9* 9* 9* 9* 9* 9* 9* 12 9*

6 35 14 14 13 12 NA 11 NA NA NA NA 11 15 10*
7 210 9 10 NA 8 NA 8 NA NA NA NA 8 NA 6*

8 310 17 19 18 NA 17 NA NA 17 16 17 17 20 15*

9 313 20 22 20 17* 18 18 18 18 20 17* 20 20 18
10 410 31 30 31 NA 29 NA 28* 28* 30 30 31 31 32

11 510 48 45 47 NA 45 NA 42* 43 46 45 48 50 52

Table 6. Experiment of PHOSC against existing pairwise strategies in the presence of constraint support
S/N Configuration Constraint List

S
A

_
S

A
T

m
A

E
T

G
_

S
A

T

P
IC

T

T
es

tC
o
v

er

L
A

H
C

H
S

S

B
T

S

P
H

O
S

C

1 33 [(x,1,0), (2,2,x), (x,2,0), (2,x,2), (1,2,2), (0,x,1)] 10 10 10 10 10 10 10 6*

2 43 [(2,x,3), (2,1,x), (0,1,x), (3,3,0)] 17 17 19 17 17 16 16 13*
3 53 [(4,x,2), (4,2,x), (4,x,4), (1,3,x), (1,1,x), (4,3,1)] 26 26 27 30 25 26 25 24*

4 63 [(3,x,1), (2,0,x), (x,3,4), (x,3,1), (3,5,x), (5,4,4), (x,1,2)] 36 37 39 38 36 36 36 34*

5 73 [(1,4,x), (4,x,0), (x,0,5), (6,4,x), (6,3,x), (5,5,3)] 52 52 56 54 53 51 51 48*

Table 7. Experiment of PHOSC pairwise in the presence of seeding and constraint support
S/N Configuration Seeding List Constraint List PHOSC

1 33 [(1,0,2), (1,2,2)] [(x,1,0), (2,2,x), (x,2,0), (2,x,2), (1,2,2), (0,x,1)] 7

2 43 [(0,0,0)] [(2,x,3), (2,1,x), (0,1,x), (3,3,0)] 13
3 53 [(4,4,4), (1,1,2), (0,2,4)] [(4,x,2), (4,2,x), (4,x,4), (1,3,x), (1,1,x), (4,3,1)] 25

4 63 [(3,3,2)] [(3,x,1), (2,0,x), (x,3,4), (x,3,1), (3,5,x), (5,4,4), (x,1,2)] 35

5 73 [(0,0,0), (6,6,6)] [(1,4,x), (4,x,0), (x,0,5), (6,4,x), (6,3,x), (5,5,3)] 48

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3145

4.2. Statistical analysis

For the statistical analysis, at a confidence level of 95%, we conducted two statistical analyses on the

gathered results to ascertain any significant difference between the PHOSC strategy and other established

pairwise t-way strategies. These analyses involve the Wilcoxon signed-rank test and interval plots illustrating

the distribution of mean sizes. The Wilcoxon signed-rank test provides a decision outcome. If the asymptotic

significance value is at or below 0.05, it leads to rejecting the null hypothesis (H0), signifying a meaningful

distinction between the strategies. Conversely, if the asymptotic significance value surpasses 0.05, it results in

retaining the null hypothesis (H0), indicating no significant difference between the strategies. The decision

regarding the null hypothesis is based on the comparison of the results between the two strategies. Additionally,

the Wilcoxon signed-rank test provides a Rank outcome that can either be positive, negative, or ties between the

two compared strategies. The experiment of non-parametric Wilcoxon signed rank test statistical analysis for

the results in Table 5 and Table 6 is presented in Table 8. Moreover, the Interval Plot for experiments in Table 5

and Table 6 results with 95% CL of the mean is presented in Figures 4 and 5 respectively.

Table 8. Experiment of non-parametric Wilcoxon signed rank test statistical analysis.
Wilcoxon

Test

Strategy Pair Ranks Asymptotic

Significant (2-tailed)

statistical test

Decision

Positive Negative Ties

Results of

Table 5

PHOSC-TConfig 9 2 0 0.055 Null hypothesis (H0) retained

PHOSC-Jenny 9 2 0 0.020 Null hypothesis (H0) rejected

PHOSC-PGSAS 7 2 2 0.134 Null hypothesis (H0) retained
Results of

Table 6

PHOSC-SA_SAT 5 0 0 0.038 Null hypothesis (H0) rejected

PHOSC-mAETG_SAT 5 0 0 0.039 Null hypothesis (H0) rejected

PHOSC-PICT 5 0 0 0.043 Null hypothesis (H0) rejected
PHOSC-TestCover 5 0 0 0.038 Null hypothesis (H0) rejected

PHOSC-LAHC 5 0 0 0.042 Null hypothesis (H0) rejected

PHOSC-HSS 5 0 0 0.041 Null hypothesis (H0) rejected
PHOSC-BTS 5 0 0 0.042 Null hypothesis (H0) rejected

4.3. Experimental observation and discussion

In this section, we will provide a broad overview and discussion of the experimental results. The

analysis encompasses both observational insights and statistical findings derived from Table 5, Table 6,

Table 7, Table 8, Figure 4, and Figure 5. We will start with a general observation of the benchmarking

experiments. Following that, we will delve into the statistical analysis, which includes the Wilcoxon signed-

rank test and the description of the result distributions in the Interval Plot.

In reference to Table 5, it is worth mentioning that our PHOSC demonstrated superior performance

in nearly all cases, except for specific configurations 313, 410, and 510. In the 313 scenarios, PPSTG and DFA

outperformed all, while for 410, PairFS and PABC showed better results. In the case of 510, only PairFS

surpassed all other strategies. However, most strategies produced the same results for configurations 33 and

34. Referring to Table 6, it is evident that our PHOSC exhibited exceptional performance in all instances

when the five configurations were executed. Concerning Table 7, the experiment autonomously assessed how

well our PHOSC could accommodate seeding and constraint. Regrettably, no pairwise strategies currently

exist that support both seeding and constraint.

As per the findings presented in Table 8, the null hypothesis is retained only in two instances when

combined with PGSAS and TConfig concerning the results from Table 5. This implies that there is no

substantial variation in the size of the produced test suite. On the contrary, when paired with other strategies,

the null hypothesis is rejected, indicating a substantial variation. Additionally, in the majority of cases

involving Wilcoxon ranking, the positive ranks of our PHOSC outweigh the negative ranks. These results

collectively indicate that PHOSC statistically has a better test suite size compared to other pairwise strategies.

Based on the results in Figure 4, our PHOSC exhibits the lowest mean value at 17.1818, followed by PGSAS

at 18.1818, then TConfig at 19, with Jenny being the least favorable at 19.5455. It is important to note that

the results for PICT, PPSTG, PHSS, PairCS, PairFS, PABC, PKS, DFA, and IPOG are disregarded due to

incomplete samples. Just like in Figure 4, Figure 5 shows that our PHOSC has the lowest mean value of 25.

BTS follows closely with 27.6, then HSS at 27.8. Both LAHC and SAT_SAT score 28.2, while

mAETG_SAT comes in at 28.4, TestCover at 29.8, and PICT with the least favorable result at 30.2.

Current pairwise strategies are effective, but it is essential to discuss the PHOSC strategy, which

uniquely combines support for seeding, constraints, the OPAT approach, and a metaheuristic method. For

example, while TTG supports seeding and constraints, it lacks pairwise and metaheuristic approaches. On the

other hand, strategies like LAHC, HSS, and BST are metaheuristic-based but only support constraints. In

contrast, PHOSC integrates OPAT, seeding, constraints, and a metaheuristic method simultaneously, aiming

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3146

to enhance software quality and reduce the test suite size. Experiments comparing PHOSC with existing

pairwise strategies consistently showed PHOSC outperforming others in most cases. However, some

strategies like DFA, PABC, PairFS, and PPSTG performed better in three configurations: 313, 410, and 510 as

depicted in Table 5.

In summary, software testers need to decide the number of test cases based on context, expertise,

and judgment, especially considering OPAT, seeding, constraint, and metaheuristic support. The OPAT

approach divides input domains, choosing representative values for a reduced set of test cases. Seeding and

constraint support allow flexibility in including essential and excluding unnecessary test cases, respectively.

With metaheuristic-based support, an optimized final test list is achieved.

Figure 4. The interval Plot for experiments in Table 5 results in 95% CL of the mean

Figure 5. The interval Plot for experiments in Table 6 results in 95% CL of the mean

5. CONCLUSION

In this research, we have discussed and assessed a novel pairwise strategy known as the PHOSC

strategy. PHOSC is designed to facilitate both seeding and constraint support within the harmony search

algorithm, utilizing a one-parameter-at-a-time approach for test case generation. Our benchmarking results

have been promising across almost all benchmarking configurations. Despite achieving research goals related

to OPAT, seeding, constraints, and metaheuristic-based support, there are still opportunities for

improvement. Our ongoing work involves further enhancing PHOSC to support a t-way with a higher level

of interaction strength.

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3147

ACKNOWLEDGEMENTS

The authors express gratitude for the support of this research provided by the Ministry of Higher

Education (MoHE) Malaysia under the Fundamental Research Grant Scheme FRGS/1/2023/ICT01/UTP/02/2.

REFERENCES
[1] M. S. Croock, Z. A. Hassan, and S. D. Khuder, “Adaptive key generation algorithm based on software engineering methodology,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 589–595, Feb. 2021,

doi: 10.11591/ijece.v11i1.pp589-595.

[2] H. Asfa and T. J. Gandomani, “Software quality model based on development team characteristics,” International Journal of
Electrical and Computer Engineering (IJECE), vol. 13, no. 1, pp. 859–871, Feb. 2023, doi: 10.11591/ijece.v13i1.pp859-871.

[3] M. M. Rosli and N. S. M. Yusop, “Evaluating the effectiveness of data quality framework in software engineering,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 6, pp. 6410–6422, Dec. 2022, doi:
10.11591/ijece.v12i6.pp6410-6422.

[4] A. A. Muazu, A. S. Hashim, A. Sarlan, and M. Abdullahi, “SCIPOG: seeding and constraint support in IPOG strategy for

combinatorial t-way testing to generate optimum test cases,” Journal of King Saud University - Computer and Information

Sciences, vol. 35, no. 1, pp. 185–201, Jan. 2023, doi: 10.1016/j.jksuci.2022.11.010.

[5] A. B. Nasser, K. Z. Zamli, N. W. B. M. Nasir, W. A. H. M. Ghanem, and F. Din, “T-way test suite generation based on hybrid

flower pollination algorithm and hill climbing,” in ACM International Conference Proceeding Series, Feb. 2021, pp. 244–250,
doi: 10.1145/3457784.3457822.

[6] J. Chen, J. Chen, S. Cai, H. Chen, C. Zhang, and C. Huang, “A test case generation method of combinatorial testing based on T-

way testing with adaptive random testing,” in Proceedings - 2021 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSREW 2021, Oct. 2021, pp. 83–90, doi: 10.1109/ISSREW53611.2021.00048.

[7] A. A. Muazu, A. S. Hashim, and U. Maiwada, “Enhanced version of seeding and constraint support in IPOG strategy for variable

strength interaction T-way testing enhanced version of seeding and constraint support in IPOG strategy for variable strength
interaction T-way testing,” Malaysian Journal of Computer Science, vol. 36, 2023.

[8] M. Lakshmi Prasad, A. Raja Sekhar Reddy, and J. K. R. Sastry, “GAPSO: optimal test set generator for pairwise testing,”

International Journal of Engineering and Advanced Technology, vol. 8, no. 6, pp. 2346–2350, Aug. 2019, doi:
10.35940/ijeat.F8645.088619.

[9] A. A. Hassan, S. Abdullah, K. Z. Zamli, and R. Razali, “Whale optimization algorithm strategies for higher interaction strength T-

way testing,” Computers, Materials and Continua, vol. 73, no. 1, pp. 2057–2077, 2022, doi: 10.32604/cmc.2022.026310.
[10] Y. A. Alsariera, Y. Sanjalawe, A. H. Al Omari, M. A. Albawaleez, Y. K. Sanjalawe, and K. Z. Zamli, “Hybridized BA and PSO t-

way algorithm for test case generation cloud computing security view project detection DDoS attack approaches against SDN

view project hybridized BA and PSO T-way algorithm for test case generation,” International Journal of Computer Science and
Network Security, vol. 21, no. 10, 2021, doi: 10.22937/IJCSNS.2021.21.10.48.

[11] F. Din and K. Z. Zamli, “Pairwise test suite generation using adaptive teaching learning-based optimization algorithm with remedial

operator,” in Advances in Intelligent Systems and Computing, vol. 843, Springer International Publishing, 2019, pp. 187–195.
[12] A. K. Alazzawi et al., “Recent T-way test generation strategies based on optimization algorithms: an orchestrated survey,” in

Lecture Notes in Electrical Engineering, vol. 758, Springer Nature Singapore, 2022, pp. 1055–1060.

[13] Z. W. Geem, J. H. Kim, and G. V Loganathan, “A new heuristic optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60–68, Feb. 2001, doi: 10.1177/003754970107600201.

[14] A. Al-Shaikh, B. A. Mahafzah, and M. Alshraideh, “Hybrid harmony search algorithm for social network contact tracing of

COVID-19,” Soft Computing, vol. 27, no. 6, pp. 3343–3365, Jun. 2023, doi: 10.1007/s00500-021-05948-2.
[15] A. A. Muazu, A. S. Hashim, and A. Sarlan, “Review of nature inspired metaheuristic algorithm selection for combinatorial T-way

testing,” IEEE Access, vol. 10, pp. 27404–27431, 2022, doi: 10.1109/ACCESS.2022.3157400.

[16] L. Abualigah, A. Diabat, and Z. W. Geem, “A comprehensive survey of the harmony search algorithm in clustering applications,”
Applied Sciences, vol. 10, no. 11, May 2020, doi: 10.3390/app10113827.

[17] J. Kang, S. Kwon, D. Ryu, and J. Baik, “HASPO: harmony search-based parameter optimization for just-in-time software defect
prediction in maritime software,” Applied Sciences, vol. 11, no. 5, pp. 1–25, Feb. 2021, doi: 10.3390/app11052002.

[18] J. B. Odili, A. B. Nasser, A. Noraziah, M. H. A. Wahab, and M. Ahmed, “African buffalo optimization algorithm based T-way

test suite generation strategy for electronic-payment transactions,” in Lecture Notes in Networks and Systems, vol. 299, Springer
International Publishing, 2022, pp. 160–174.

[19] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Innovations in T-way test creation based on a hybrid hill climbing-greedy

algorithm,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 2, pp. 794–805, Jun. 2023, doi:
10.11591/ijai.v12.i2.pp794-805.

[20] E. Pira, V. Rafe, and S. Esfandyari, “A three-phase approach to improve the functionality of T-way strategy,” Soft Computing,

vol. 28, no. 1, pp. 415–435, Apr. 2024, doi: 10.1007/s00500-023-08199-5.
[21] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Combinatorial testing approaches: a systematic review,” Iraqi Journal of

Computer, Communication, Control and System Engineering, pp. 60–79, Dec. 2022, doi: 10.33103/uot.ijccce.22.4.6.

[22] A. W. Williams, “Software component interaction testing: coverage measurement and generation of configurations,” University of
Ottawa, 2002.

[23] K. C. Tai and Y. Lei, “A test generation strategy for pairwise testing,” IEEE Transactions on Software Engineering, vol. 28, no. 1,

pp. 109–111, 2002, doi: 10.1109/32.979992.
[24] J. Czerwonka, “Pairwise testing in the real world: practical extensions to test-case scenarios,” in Proceedings of 24th Pacific

Northwest Software Quality Conference, 2008, pp. 419–430.

[25] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG system: an approach to testing based on combinatorial
design,” IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444, Jul. 1997, doi: 10.1109/32.605761.

[26] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of highly-configurable systems in the presence of constraints,” in 2007

ACM International Symposium on Software Testing and Analysis, Jul. 2007, pp. 129–139, doi: 10.1145/1273463.1273482.
[27] B. Jenkins, “jenny,” Jenny Test Tool, 2005. http://www.burtleburtle.net/bob/math/jenny.html (accessed Sep. 01, 2023).

[28] A. R. A. Alsewari, “A harmony search based pairwise sampling strategy for combinatorial testing,” International Journal of the

Physical Sciences, vol. 7, no. 7, Feb. 2012, doi: 10.5897/ijps11.1633.
[29] A. R. A. Alsewari and K. Z. Zamli, “Design and implementation of a harmony-search-based variable-strength t-way testing

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3137-3149

3148

strategy with constraints support,” Information and Software Technology, vol. 54, no. 6, pp. 553–568, Jun. 2012, doi:

10.1016/j.infsof.2012.01.002.
[30] A. R. Alsewari, K. Z. Zamli, and B. Al-Kazemi, “Generating t-way test suite in the presence of constraints,” Journal of

Engineering and Technology, vol. 6, no. 2, pp. 2180–3811, 2015.

[31] H. L. Zakaria and K. Z. Zamli, “Migrating birds optimization based strategies for pairwise testing,” in 2015 9th Malaysian
Software Engineering Conference, Dec. 2016, pp. 19–24, doi: 10.1109/MySEC.2015.7475189.

[32] F. Din, A. R. A. Alsewari, and K. Z. Zamli, “A parameter free choice function based hyper-heuristic strategy for pairwise test

generation,” in Proceedings - 2017 IEEE International Conference on Software Quality, Reliability and Security Companion,
QRS-C 2017, Jul. 2017, pp. 85–91, doi: 10.1109/QRS-C.2017.22.

[33] A. K. Alazzawi, A. A. Ba Homaid, A. A. Alomoush, and A. R. A. Alsewari, “Artificial bee colony algorithm for pairwise test

generation,” Journal of Telecommunication, Electronic and Computer Engineering, vol. 9, no. 1–2, pp. 103–108, 2017.
[34] Y. A. Alsariera, H. A. S. Ahmed, H. S. Alamri, M. A. Majid, and K. Z. Zamli, “A bat-inspired testing strategy for generating

constraints pairwise test suite,” Advanced Science Letters, vol. 24, no. 10, pp. 7245–7250, Oct. 2018, doi: 10.1166/asl.2018.12922.

[35] K. M. Htay, R. R. Othman, A. Amir, H. L. Zakaria, and N. Ramli, “A pairwise T-way test suite generation strategy using
gravitational search algorithm,” in 2021 International Conference on Artificial Intelligence and Computer Science Technology,

Jun. 2021, pp. 7–12, doi: 10.1109/ICAICST53116.2021.9497823.

[36] B. Swathi and H. Tiwari, “Integrated pairwise testing based genetic algorithm for test optimization,” International Journal of
Advanced Computer Science and Applications, vol. 12, no. 4, pp. 144–150, 2021, doi: 10.14569/IJACSA.2021.0120419.

[37] S. I. Khaleel and R. Anan, “A review paper: optimal test cases for regression testing using artificial intelligent techniques,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 2, pp. 1803–1816, Apr. 2023, doi:
10.11591/ijece.v13i2.pp1803-1816.

[38] A. A. Muazu, A. S. Hashim, A. Sarlan, and U. D. Maiwada, “Proposed method of seeding and constraint in one-parameter-at-a-

time approach for T-way testing,” in 2022 International Conference on Digital Transformation and Intelligence, Dec. 2022, pp.
39–45, doi: 10.1109/ICDI57181.2022.10007210.

[39] A. S. Hashim, A. Aminu Muazu, M. A. M. Yusof, and N. I. Arshad, “Development of robot to improve learning of programming
skills among students,” Iraqi Journal for Computer Science and Mathematics, vol. 4, no. 3, pp. 1–11, Jun. 2023, doi:

10.52866/ijcsm.2023.02.03.001.

[40] A. A. Muazu and U. D. Maiwada, “PWiseHA: application of harmony search algorithm for test suites generation using pairwise
techniques,” International Journal of Computer and Information Technology, vol. 9, no. 4, Jul. 2020, doi: 10.24203/ijcit.v9i4.23.

[41] A. A. Muazu, A. S. Hashim, and A. Sarlan, “Application and adjustment of ‘don’t care’ values in t-way testing techniques for

generating an optimal test suite,” Journal of Advances in Information Technology, vol. 13, no. 4, pp. 347–357, 2022, doi:
10.12720/jait.13.4.347-357.

[42] D. Gupta and A. Rana, “Fibonacci driven novel test generation strategy for constrained testing,” in 2013 3rd IEEE International

Advance Computing Conference (IACC), Feb. 2013, pp. 1475–1478, doi: 10.1109/IAdCC.2013.6514444.
[43] J. M. Sharif, K. Z. Zamli, A. A. Bakar, S. Abdullah, I. S. Isa, and I. R. M. Noordin, “A non-deterministic T-way strategy with

seeding and constraints support,” in 2012 IEEE Symposium on Humanities, Science and Engineering Research, Jun. 2012, pp.

1153–1158, doi: 10.1109/SHUSER.2012.6268795.
[44] A. A. Al-Omoush, A. A. Alsewari, H. S. Alamri, and K. Z. Zamli, “Comprehensive review of the development of the harmony

search algorithm and its applications,” IEEE Access, vol. 7, pp. 14233–14245, 2019, doi: 10.1109/ACCESS.2019.2893662.

BIOGRAPHIES OF AUTHORS

Aminu Aminu Muazu obtained his B.Sc. in computer science from Umaru Musa

Yar’adua University, Nigeria, in 2011, followed by an M.Sc. in software engineering from

Universiti Malaysia Pahang in 2017. Currently, he is pursuing a Ph.D. in information

technology (software engineering) at Universiti Teknologi PETRONAS, Malaysia. His

primary research interests lie in software engineering, combinatorial t-way software testing,

and optimization algorithm. Aminu has published research papers which are indexed by ISI

and SCOPUS. Additionally, he serves as an academic staff member, holding the position of

Lecturer I at Umaru Musa Yar’adua University. He can be contacted at email:

aminu.aminu@umyu.edu.ng.

Ahmad Sobri Hashim is a senior lecturer at Universiti Teknologi PETRONAS,

specializing in information technology. He holds a Ph.D., M.Sc., and B.Tech. from the same

university. Ahmad is passionate about teaching programming, particularly in structured

programming and web programming. His research interests encompass IT applications,

e-systems, human-computer interaction, educational technologies, learning disabilities, and

information systems. With a teaching career since 2014, Ahmad has published numerous

research papers since 2009, many of which are indexed by ISI and SCOPUS. Notably, he has

received recognition, winning gold medals in prestigious competitions like Malaysia

Technology Expo (MTE 2017), International Competition and Exhibition on Computing

Innovation (ICE-CInno 2016), Pertandingan Rekacipta dan Inovasi Institusi Pengajian Tinggi

Swasta (PERISTIS 2016), and International Invention, Design, and Articulation (i-IDeA

2016). He can be contacted at email: sobri.hashim@utp.edu.my.

https://orcid.org/0000-0001-6789-0579
https://scholar.google.com/citations?hl=en&user=x1TgWT4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57487753400
https://orcid.org/0000-0002-8128-0854
https://scholar.google.com/citations?user=ILSXFO4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=37041287000

Int J Elec & Comp Eng ISSN: 2088-8708

Pairwise test case generation with harmony search, one-parameter-at-at-time… (Aminu Aminu Muazu)

3149

Umar Danjuma Maiwada holds a B.Sc. in computer science from Bayero

University Kano and an MSc in computer science from Jodhpur National University, India.

Currently working as a Lecturer I at Umaru Musa Yaradua University, Katsina, he is dedicated

to education, striving for excellence and precision to contribute effectively. He is pursuing a

Ph.D. in the IT Department at Universiti Teknologi PETRONAS. He can be contacted at

email: umar.danjuma@umyu.edu.ng.

Umar Audi Isma’ila is pursuing an MSc in information technology at Universiti

Teknologi PETRONAS, Malaysia. He earned his BSc in computer science from Umaru Musa

Yar’adua University in 2020. Umar's research focuses on software engineering and blockchain

technology. He has published several research papers since 2021, with some papers indexed

by Scopus. He can be contacted at email: umar_22005104@utp.edu.my.

Muhammad Muntasir Yakubu currently works at Federal University Dutsinma

in the Department of Information Technology as a Lecturer II, received bachelor of science in

computer from Umaru Musa Yar’adua University, Katsina, Nigeria in 2011. He is currently

pursuing his PhD. in information technology with the Computer and Information Science

Department, Universiti Teknologi PETRONAS (UTP) Malaysia. His research interests are in

blockchain technology, software engineering, and data mining. He can be contacted at email:

ymmuhammad@fudutsinma.edu.ng.

Muhammad Abubakar Ibrahim currently works at Federal College of Education

Katsina in the Department of Computer Science as a Lecturer II, received bachelor of science in

computer from Umaru Musa Yar’adua University, Katsina, Nigeria in 2011. He is currently

pursuing his MSc. in computer science with Nigerian Defence Academy Kaduna, Nigeria with

the Faculty of Science. He can be contacted at email: muhammadabubakar65@gmail.com.

mailto:umar_22005104@utp.edu.my
mailto:ymmuhammad@fudutsinma.edu.ng
mailto:muhammadabubakar65@gmail.com
https://orcid.org/0000-0001-7679-3674
https://scholar.google.com/citations?user=m16Kx0AAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57694209900
https://orcid.org/0009-0009-6553-7670
https://scholar.google.com/citations?user=gKCfeUQAAAAJ&hl=en
https://orcid.org/0009-0002-6564-4934
https://scholar.google.com/citations?user=ZfwVLGEAAAAJ&hl=en&oi=ao
https://orcid.org/0009-0004-2148-2501

