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 Coronary heart disease (CHD) is a leading global cause of death. Early 

detection is the right step to reduce mortality rates and treatment costs. Early 

detection can be developed using machine learning by utilizing patient 
medical record datasets. Unfortunately, this dataset has excessive features 

which can reduce machine learning performance. For this reason, it is 

necessary to reduce the number of redundant features and irrelevant data to 

improve machine learning performance. Therefore, this research proposes a 
tiered of feature selection model with genetic algorithm (GA) and particle 

swarm optimization (PSO) to improve the performance of the diagnosis 

model. The feature selection model is evaluated using parameters derived 

from the confusion matrix and using the CatBoost machine learning 
algorithm. Model testing uses z-Alizadeh Sani, Cleveland, Statlog, and 

Hungarian datasets. The best results for this model were obtained on the  

z-Alizadeh Sani dataset with 6 selected features from 54 features and the 

resulting performance for accuracy parameters was 99.32%, specificity 
98.57%, sensitivity 100.00%, area under the curve (AUC) 99.28%, and  

F1-Score 99.37%. The proposed feature selection model is able to provide 

machine learning performance in the very good category. The diagnostic 

model proposed is of excellent standard. 
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1. INTRODUCTION 

Coronary heart disease (CHD) arises from impaired function of the heart and blood vessels. It is a 

primary cause of mortality worldwide [1]. The World Health Organization (WHO) reported that CHD caused 

the deaths of up to 17.9 million individuals in 2019. Research by Alizadehsani et al. [2] indicates that 25% of 

individuals with CHD die unexpectedly and without any preceding symptoms. Early detection of coronary 

heart disease (CHD) is essential to decrease mortality rates associated with the disease [3]. Currently, CHD 

diagnosis is developed using machine learning models. However, the process necessitates extensive medical 

record data. The abundance of medical record data often results in numerous features that do not directly 

facilitate diagnosis [4] and can ultimately negatively influence machine learning performance. To address 

these issues, data mining techniques may be employed, specifically through the feature selection method. 

Feature selection can identify features that enhance the effectiveness of machine learning-based diagnostic 

models [5].  

https://creativecommons.org/licenses/by-sa/4.0/
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Numerous studies have been conducted on developing machine learning-based models for diagnosing 

coronary heart disease that uses feature selection. Kolukisa and Bakir [5] compared various feature selection 

models, including chi square, information gain, ReliefF, and support vector machine (SVM). The best 

performance was produced when using the z-Alizadeh Sani dataset with SVM feature selection producing 25 

features, with an accuracy of 91.78%. Shahid and Singh [6] compared various feature selection techniques 

using the z-Alizadeh Sani dataset. The top-performing models were a feature selection model utilizing SVM 

weight and a classification model combining particle swarm optimization (PSO) with the emotional neural 

network (EmNN) algorithm. The resulting model achieved an accuracy of 88.34%, precision of 92.37%, 

sensitivity of 91.85%, specificity of 78.98%, and F1-Score of 92.12%. The research conducted by 

Kanagarathinam et al. [7] utilized Pearson’s correlation feature selection technique on a dataset composed of 

Hungarian, Swiss, Cleveland, and Long Beach datasets. The test yielded an accuracy performance parameter 

of 94.34% with 10 features chosen out of a total of 13. 

Several other studies have utilized computational intelligence algorithms like genetic algorithms 

(GA) and PSO for feature selection. Wiharto et al. [8] conducted research on feature selection using a 

combination of genetic algorithms with SVM and fast correlation based filter (FCBF) for a classification 

model with random forest. They evaluated their approach on z-Alizadeh Sani, Cleveland, and Statlog 

datasets. The study's findings revealed an accuracy rate of 94.6% and an area under the curve (AUC) rate of 

97.5% based on 8 out of 54 selected features using the z-Alizadeh Sani dataset. Similarly, the Cleveland 

dataset showcased an 83% value after choosing 6 out of 13 featured elements. Notably, El-Shafiey et al. [4] 

examined further by employing a genetic algorithm, wherein modifications were made to the selection 

operator. Individuals who fail to make the selection process via the genetic algorithm will undergo processing 

by PSO. Individuals selected during the PSO stage will constitute the new population in the genetic 

algorithm. Both the genetic algorithm and PSO processes aim to optimize accuracy values via the use of 

random forest (RF). The proposed method was applied to the Cleveland and Statlog datasets, resulting in the 

best performance being achieved in the Cleveland dataset. Specifically, utilizing a subset of 7 out of 13 

features, an accuracy score of 95.6% and an AUC value of 94% were obtained. This study demonstrates that 

employing genetic algorithms and PSO methods leads to improved performance compared to previous 

research that only employs a single computational intelligence algorithm. 

 In the CHD diagnostic system, selecting the appropriate classification model is a vital aspect in 

developing an effective and efficient system, in addition to the feature selection method. An accurate and 

reliable classification model significantly enhances the accuracy of CHD diagnosis. In the study conducted 

by Kanagarathinam [7], the performance of various algorithms, including naïve Bayes, XGBoost, k-nearest 

neighbors (kNN), SVM, multi-layer perceptron (MLP), and CatBoost, was evaluated to predict CHD on a 

combination of datasets from Hungarian, Switzerland, Cleveland, and Long Beach. The results showed that 

the CatBoost algorithm achieved the highest accuracy rate of 94.34%. 

 Medical data often suffers from imbalanced data, resulting in biased classification models that 

favour the majority class and produce false classification results. Additionally, medical data frequently has a 

large number of features, which must be carefully considered. To overcome these challenges, sampling 

methods such as oversampling and undersampling can be used, and there are several available techniques for 

performing sampling. Majhi and Kashyap's study [9] employed a variety of data sampling techniques, 

including borderline synthetic minority over-sampling technique (BD-SMOTE), support vector machine-

SMOTE, adaptive synthetic sampling (ADASYN), edited nearest neighbour-SMOTE (ENN-SMOTE), and 

Tomek-link SMOTE, in the analysis of hospital ICU patient data. The efficacy of these techniques was tested 

across 12 classification models, revealing that the ENN-SMOTE sampling method in combination with the 

CatBoost classification algorithm produced the most favourable results in one of the datasets used.  

Referring to previous research, the use of feature selection in the CHD diagnosis system, when 

tested using the z-Alizadeh feature dataset, resulted in 8 features, with an accuracy of 94.5%. These features 

are produced from the tier of methods, namely the genetic algorithm and FCBF. Unfortunately, this method 

when using the Cleveland dataset was only able to produce an accuracy of 83%, but the number of features 

produced was relatively small, namely 6 features. The feature selection model using the hybrid GA and PSO 

method is able to provide accuracy reaching 95.6% but requires as many as 7 features. Referring to this, the 

tiered approach used in hybrid GA and FCBF is very effective in reducing the number of features, compared 

to hybrid GA and PSO. This is because of the hybrid GA and PSO method, the feature population that is not 

selected in the GA selection process will be processed by PSO, while in the hybrid GA and FCBF, the 

features resulting from GA will be selected again by FCBF. This approach produces an optimal number of 

features, so this research proposes the use of GA and PSO on Tiered of feature selection (GAPSO-TFS) 

model in a machine learning-based CHD diagnosis system. The diagnostic system also employs the CatBoost 

classification algorithm and implements the ENN-SMOTE sampling method to balance the data. To evaluate 

the system, k-fold cross validation is conducted, and performance is measured using a confusion matrix. The 
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study measured Accuracy, Sensitivity, Specificity, AUC, and F1-Score performance parameters. The testing 

datasets selected were from the University of California (UCI), Irvine, machine learning repository [10]–[13], 

specifically z-Alizadeh Sani, Statlog, Cleveland, and Hungarian datasets.  

 

 

2. METHOD 

 This study presents a machine learning-based model for diagnosing coronary heart disease. The 

model incorporates tiered feature selection through GA and PSO methods, known as GAPSO-TFS. The 

research method comprises six stages: data collection, data preprocessing, feature selection, data sampling, 

classification, and result evaluation. A detailed representation of the entire method is included in Figure 1. 

 

 

 
 

Figure 1. Proposed model 

 

 

2.1.  Material 

The study will utilize the z-Alizadeh Sani, Statlog, Cleveland, and Hungarian datasets obtained from 

UCI machine learning [10]–[13]. The z-Alizadeh Sani dataset provides extensive features, containing heart 

disease data from 303 patients with 54 attributes. The Statlog dataset includes heart disease data from  

261 patients with 13 attributes. The Cleveland and Hungarian datasets belong to a group of heart disease 

datasets. This dataset comprises of 76 attributes. However, usually only 13 attributes with complete attribute 

values are utilized in research. The Cleveland dataset encompasses heart disease data from 297 patients, 

while the Hungarian dataset encompasses heart disease data from 294 patients. Table 1 depicts a comparison 

of the amount of data for positive and negative CHD bees. 

 

 

Table 1. Heart disease dataset 
Dataset Number of Attributes Number of data Positive and negative ratio 

z-Alizadeh Sani 54 303 1: 2.5 

Statlog 13 261 1: 0.78 

Cleveland 13 303 1: 0.85 

Hungarian 13 294 1: 0.56 
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2.2.  Pre-processing 

The preprocessing stage cleans the data for feature selection. It involves checking for empty 

attribute values, encoding category data, and performing data normalization. For empty-valued attributes, if 

the attribute data is continuous, it is replaced with the average value, but if it is discrete, it is replaced with 

the mode value. Data normalization is necessary because the dataset used comprises various and extensive 

value ranges. The data variations are converted to a value range of 0-1 to enhance performance and speed in 

the classification process. The Min Max normalization method is employed for data normalization in this 

study. 

 

2.3.  Feature selection 

The feature selection stage is a natural extension of the pre-processing stage in machine learning. Its 

purpose is to select the optimal features to achieve optimal classification performance. In this research, we 

employed the wrapper method of feature selection. This method employs genetic algorithms and PSO to 

identify the optimal subset of features. The selection process is done in stages to ensure a balanced selection 

of features that adequately represent the data. First, feature selection is conducted using a genetic algorithm. 

The outcomes of the genetic algorithm feature selection establish the foundational population for the initial 

population of the feature selection process utilizing the PSO algorithm. The GAPSO-TFS method for feature 

selection can be visualized in Figure 1.  

 

2.3.1. The first tier: genetic algorithm 

The genetic algorithm is a search algorithm that adapts the natural selection process of living things 

and genetics [14]. Its objective is to find the global optimum value of a problem while maintaining the best 

solution in each generation. As a result, each generation gradually moves towards a better solution [15]. In 

genetic algorithm problem-solving, a chromosome represents each solution. Each chromosome contains 

genes that represent selected features as either 1 or 0, depicted in Figure 2. The chromosomes undergo 

evaluation utilizing the SVM classification algorithm, and the accuracy outcomes calculate the fitness 

function. Equation (1) illustrates the minimum expected fitness value. The genetic algorithm's feature 

selection process is marked in Figure 1, in the first tier. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒(𝑃, 𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ) =  𝛼 × (1 − 𝑃) + (1 − 𝛼) ×
𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  (1) 

 

The parameter 𝛼 , accuracy value of the classification model (P), number of selected features 

(𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑), and total number of features from the dataset (𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) will be taken into account. The value of 

𝛼 utilized for this research is 0.99. The selection process in this research will utilize the roulette wheel 

method to choose the best chromosome for producing a new chromosome. Next, the crossover stage 

combines two selected chromosomes to produce offspring. For this study, a single point technique was used 

for the crossover stage. The final stage involves mutation, which randomly changes gene values to increase 

individual diversity [14]. This process utilizes the insertion mutation technique. The complete feature 

selection process with GA is shown in Figure 1. 

 

2.3.2. The second tier: particle swarm optimization 

Particle swarm optimization (PSO) represents a mode of swarm intelligence (SI) optimization 

algorithm inspired by the social behavior of animals, like birds, fish, ants, bees, and termites [16]. According 

to PSO, each solution is depicted as a particle in a swarm constituting a potential solution to the 

D-dimensional space problem. Referring to this concept, in this research, a particle is a collection of features 

whose value is 0 or 1, if it is 1, it means that the feature is selected, and if 0, the feature is not selected. The 

particle modeling is shown in Figure 3, while the feature selection process is shown in Figure 1 in the second 

tier. This process begins by initializing the particle with a randomly initialized velocity and initial position. 

The position in the search space is represented in a vector [17], as shown in (2). 

 

 

  
 

Figure 2. Feature-chromosome model 

 

Figure 3. Feature-particle model 
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𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … … … … , 𝑥𝑖𝐷)  (2) 

 

Each particle also retains the previous best position represented in the vector, as illustrated in (3). 

 

𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … … … … , 𝑝𝑖𝐷)  (3) 

 

The particles within the swarm move throughout the search space to locate the optimal solution. Thus, each 

particle possesses a velocity portrayed by a vector, illustrated in (4). 

 

𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, … … … … , 𝑣𝑖𝐷)  (4) 

 

To choose individual particles, the classification model uses SVM, and the fitness function reduces the (1). 

PSO searches for the best solution by updating each particle's velocity and position, based on (2) and (3), 

which are written as (5) and (6) [17]. 

 

𝑣𝑖𝑑 = 𝑤 ∗ 𝑣𝑖𝑑 +  𝑐1 ∗ 𝑟1 ∗ (𝑃𝑖𝑑 −  𝑥𝑖𝑑) +  𝑐2 ∗ 𝑟2 ∗ (𝑃𝑔𝑑 −  𝑥𝑖𝑑)  (5) 

 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 +  𝑣𝑖𝑑 (6) 

 

where 𝑣𝑖𝑑 represents particle velocity, 𝑥𝑖𝑑 represents the current particle position, 𝑤 represents moment of 

inertia, 𝑐1represents cognitive coefficient that accounts for individual behavior, while 𝑐2 represents social 

coefficient that accounts for group behavior. The value for both parameters 𝑐1 and 𝑐2 is 2. Parameter 𝑃𝑖𝑑 

represents personal best (pbest), 𝑃𝑔𝑑 represents global best (gbest), while 𝑟1and 𝑟2 represent random numbers 

ranging from 0 to 1. 

 

2.4.  Data sampling 

Data sampling is utilized to rectify data imbalance by increasing or decreasing the amount of data. 

The CHD dataset exhibits a notable difference between patients with normal labels and patients with heart 

disease labels. Thus, this study will implement data sampling techniques where the minority class is 

oversampled and the majority class is undersampled using the SMOTE method, to overcome this issue. 

The SMOTE technique is a conventional approach to oversampling in the minority class, leveraging 

the k-nearest neighbor (K-NN) algorithm [18]. By using linear interpolation to balance the dataset, the 

algorithm increases the number of samples in the minority class. The method involves picking 𝑆𝑗 𝑚𝑖𝑛 samples 

from the 𝑘 nearest neighbors for every minority class 𝑆𝑖 𝑚𝑖𝑛 , resulting in synthesizing a new minority class 

sample using (7). 

 

𝑆𝑛𝑒𝑤 =  𝑆𝑖 𝑚𝑖𝑛  + 𝑟𝑎𝑛𝑑(0, 1)(𝑆𝑗 𝑚𝑖𝑛 + 𝑆i min), 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1,2, . . . , 𝑘  (7) 

 

The SMOTE algorithm presents limitations in addressing problems of sample overlap and data noise 

[19]. To mitigate these limitations, Batista et al. [20] introduced the SMOTE-ENN algorithm, a combination 

of SMOTE and the edited nearest neighbors (ENN) algorithm. ENN is employed as an undersampling 

method to enhance the classification performance of minority samples by decreasing the majority samples. 

This method is modeled on the SMOTE algorithm, which is susceptible to noisy data [18]. To enhance the 

quality of the resulting data, data from the majority class, which is deemed noisy, is reduced. The algorithm 

examines each majority class datum in relation to its nearest majority and minority class. If the majority class 

is closer to its minority class neighbor, the data is flagged as noise and eliminated from the dataset. This ENN 

algorithm combination aims to remove noise data generated by the SMOTE algorithm to produce higher 

quality data [19].  

 

2.5.  Classification model 

The feature selection process results will be entered into the classification process to generate a 

positive or negative decision regarding CHD. The k-fold cross-validation technique will be employed at this 

stage, dividing the data into almost equal parts through random division. The data division results will be 

used as training and testing data to build the diagnosis system model, with the data classified into two labels: 

normal and heart disease patients. In this study, we will use the CatBoost method as our classification 

approach. CatBoost is one of the algorithms under the gradient boosting decision tree (GBDT) [21]. This 

technique introduces two innovations related to ordering, namely ordered target statistics and ordered 

boosting. 
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One issue with utilizing the gradient boosting algorithm is that the learned model's distribution can 

shift due to the repeated boosting process. To avoid target leakage, this ordered boosting technique can 

facilitate the learning process. Additionally, a common challenge is managing attributes that have categorical 

data types. This algorithm enables conversion of categories to numerical values without the initial data 

processing stage, using the ordered target statistics method [22]. The decision tree construction stage is 

critical to CatBoost. The algorithm utilizes a two-step decision tree building process involving selection of a 

tree structure based on the GBDT algorithm and assignment of leaf values. At each iteration, the construction 

of every tree is achieved by evaluating the loss reduction of the prior tree. The fundamental predictor 

employed in the CatBoost algorithm is a balanced oblivious decision tree (ODT) or symmetry tree, which is 

immune to overfitting and capable of accelerating the testing process [22]. 

 

2.5.  Result evaluation 

The CatBoost method is used to evaluate the performance of classification results in the result 

evaluation stage. The evaluation process involves calculating the confusion matrix value utilizing the 

confusion matrix table. The confusion matrix provides four values that indicate the model's classification 

results. True positive (TP) represents the number of positive data points detected accurately by the model. 

True negative (TN) refers to the number of accurately identified negative data by the model. False negative 

(FN) is the number of positive data incorrectly identified as negative. False positive (FP) is the number of 

negative data incorrectly identified as positive. A comprehensive description is provided in Figure 4 [23]. 

Based on the confusion matrix, accuracy, specificity, sensitivity, and AUC performance parameters can be 

calculated using (8)-(12). 

 

 

 
 

Figure 4. Confusion matrix 

 

 

Accuracy = ACC =
(TP+TN)

(TP+TN+FP+FN)
× 100%  (8) 

 

Specificity = SEN =  
TN

(TN+FP)
× 100%  (9) 

 

Sensitivity = SPE =  
TP

(TP+FN)
× 100%  (10) 

 

AUC =
1 

2
(

TP

(TP+FN)
+  

TN

(TN+FP)
) × 100%  (11) 

 

F1 − Score =  
2 × TP

(2 × TP+FP+FN)
× 100%  (12) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Data pre-processing results 

The pre-processing stages consisted of encoding category data, evaluating empty/null values, and 

detecting data anomalies [24]. Subsequently, empty/null values were examined, and it was determined that 

the z-Alizadeh Sani and Statlog datasets contained none. The Cleveland dataset, however, had six empty 

values, which were removed from the dataset. For the Hungarian dataset, some variables have missing 

values. In order to deal with this issue, the missing values are replaced with the average value for the 

trestbps, chol, thalach, fbs, exang, and restecg variables because they have continuous values. In order to 

deal with this issue, the missing values are replaced with the average value for the trestbps, chol, thalach, fbs, 

exang, and restecg variables because they have continuous values. This replacement of missing values with 

averages is done to optimize the modeling process. The fbs, exang, and restecg variables also have missing 
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values. However, since the data for the attribute is discrete, any missing values are replaced with the mode 

value for each attribute. Additionally, the attributes for slope, ca, and thal have over 50% of their data with 

missing values, resulting in a significant amount of inaccurate data for these three attributes. Therefore, we 

removed the aforementioned three attributes from the Hungarian dataset. Our subsequent procedure 

encompasses normalizing all datasets using the min-max normalization method. Its outcome converts the 

data into decimal numbers within the 0-1 range. 

 

3.2.  Feature selection results 

The pre-processed data undergoes feature selection using three scenarios. The first scenario entails 

the use of a GA. The second scenario involves feature selection using the PSO algorithm. The third scenario 

was conducted with the GA and PSO tiered feature selection (GAPSO-TFS) method. The GA parameters for 

this test utilized a crossover probability (Pc) of 0.8 and a mutation probability (Pm) of 0.01. For every tested 

technique, the process utilized 100 particles. The GA method used 100 generations, and the PSO method utilized 

100 iterations. The GA cascading method employed 20 generations, whereas the PSO used 20 iterations. 

 Table 2 displays the findings of feature selection testing for the four datasets utilizing the specified 

parameters. Through analysis of the obtained test results, we were able to reduce the number of features 

significantly during feature selection. Among the three scenarios, the GAPSO-TFS tiered feature selection 

method achieved the most feature reduction. Furthermore, the GAPSO-TFS method required fewer 

generations than the GA and PSO methods. This demonstrates that the GAPSO-TFS method's feature 

selection technique is more efficient than other techniques, as it requires fewer generations and results in a 

smaller number of selected features. 
 
 

Table 2. Feature selection testing results 
Dataset Method #Feature Name of selected features 

z-Alizadeh Sani GA 14 'HTN', 'FH', 'CRF', 'DLP', 'PR', 'Diastolic Murmur', 'Typical Chest Pain', 'Q 

Wave', 'CR', 'BUN', 'HB', 'Lymph', 'EF-TTE', 'Region RWMA' 

PSO 18 'DM', 'Current Smoker', 'CRF', 'Edema', 'Weak Peripheral Pulse', 'Systolic 

Murmur', 'Diastolic Murmur', 'Typical Chest Pain', 'LVH', 'FBS', 'CR', 'BUN', 

'HB', 'K', 'Na', 'Neut', 'EF-TTE' 

GAPSO-TFS 6 'BMI', 'Current Smoker', 'FH', 'Obesity', 'CVA', 'PR' 

Cleveland GA 7 'age', 'cp', 'chol', 'thalach', 'exang', 'oldpeak', 'slope' 

PSO 7 'sex', 'fbs', 'restecg', 'thalach', 'exang', 'slope', 'ca' 

GAPSO-TFS 4 'age', 'sex', 'cp', 'trestbps' 

Statlog GA 5 'age', 'sex', 'restecg', 'thalach', 'slope' 

PSO 5 'sex', 'cp', 'fbs', 'slope', 'ca' 

GAPSO-TFS 4 'age', 'trestbps', 'chol', 'fbs' 

Hungarian GA 5 'age', 'sex', 'chol', 'restecg', 'exang' 

PSO 5 'age', 'sex', 'fbs', 'restecg', 'exang' 

GAPSO-TFS 3 'age', 'cp', 'trestbps' 

 

 

In the z-Alizadeh Sani dataset, the GAPSO-TFS method identifies the 6 most significant features, 

namely body mass index (BMI), current smoker (indicating the smoking status of the patient), Family 

History (FH) indicating whether the family has a history of heart disease, Obesity (indicating whether the 

patient suffers from obesity), cerebrovascular accident (CVA) indicating functional brain disorders, and pulse 

rate (PR) indicating the heart rate of the patient). The use of these features can aid in predicting heart disease 

risk. In the Cleveland database, four attributes have been chosen: Age for age, sex for gender, chest pain type 

(Cp) for the type of chest pain felt by the patient, and resting blood pressure (Trestbps) for blood pressure 

after resting. In the Statlog dataset, four attributes were selected, namely age denoting age, Trestbps denoting 

blood pressure after rest, Chol denoting the quantity of cholesterol in the blood, and fasting blood sugar (Fbs) 

denoting levels of blood sugar after fasting. Concerning the Hungarian dataset, three characteristics were 

chosen: age represents age, Cp denotes the kind of chest pain the patient experienced, and Trestbps indicates 

the blood pressure after resting. 
 

3.3.  Classification results 

 The final stage of testing assesses the classification outcomes post-feature selection. To balance the 

data for classification, we leveraged the SMOTE-ENN technique. We employed the CatBoost algorithm for 

classification. The accuracy, specificity, sensitivity, AUC, and F1-Score represent the parameters used to 

assess the classification performance, calculated using (8)-(12). During the division of training data and test 

data, we utilize the k-fold cross-validation method with k=10. The dataset is split into 10 sections, with each 

section taking a turn as the test data while the remaining nine sections serve as the training data. This process 

is then alternated to ensure that every data point is used for both test and training purposes. 
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3.3.1. Evaluation of z-Alizadeh Sani dataset results 

The classification model underwent testing on the z-Alizadeh Sani dataset using features selected 

from each feature selection method. Table 3 presents the test results, calculated by averaging the 10-fold 

cross validation method. Based on these outcomes, it is demonstrated that the GAPSO-TFS method optimally 

reduces 54 features to 6 selected features, performing better than either GA or PSO feature selection. The 

GAPSO-TFS model reduces features by 88.89%, which improves performance. The resulting AUC value 

falls into the excellent category, exceeding 90%. Figure 5 displays the receiver operating characteristic 

(ROC) curve of the AUC value. The three graphs illustrate the ROC curve of the z-Alizadeh Sani dataset test 

results, using the 10-fold cross-validation approach. Figure 5(a) shows that the GA-based feature selection 

model produces a curve that goes to the upper left corner, which means it shows better performance. The 

same thing for the feature selection model using PSO shown in Figure 5(b), where if we look at the AUC 

value based on Table 3, there is only a difference of 0.95%. This condition is much different when compared 

to the GAPSO-TFS model, where the ROC curve shown in Figure 5(c), the curve is closer to the upper left 

corner than the curve from GA and PSO, or further away from the diagonal line, which means the 

performance of the model is getting better. When compared to the GA or PSO models, the GAPSO-TFS 

model performs much better. 
 
 

Table 3. Evaluation of z-Alizadeh Sani dataset results 
Method #Feature ACC AUC SPE SEN F1-Score 

- 54 92.50 92.33 89.67 94.77 93.32 

GA 14 95.09 95.02 92.67 97.37 95.28 

PSO 17 96.04 95.97 93.86 98.08 96.26 

GAPSO-TFS 6 99.32 99.28 98.57 100.00 99.37 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 5. ROCcurve of z-Alizadeh Sani with (a) GA, (b) PSO, and (c) GAPSO-TFS methods 
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3.3.2. Evaluation of Cleveland dataset results 

Testing the classification model using the Cleveland dataset utilized the features selected in each of 

the feature selection methods tested. Table 4 depicts the test results, derived from the average of the 10-fold 

cross-validation. It is demonstrated in Table 4 that GAPSO-TFS method could decrease the attribute from 13 

features to 4 features, leading to enhance the performance, as the accuracy parameter can improve over 5%. 

Compared to the GA and PSO methods, the GAPSO-TFS has the ability to reduce the number of features by 

61.54%, specifically from 7 features down to 4 features. Displayed in Figure 6, the ROC curve illustrates the 

AUC value, which amounts to 95.09%. The AUC value falls under the outstanding category. Figure 6(a) 

shows the ROC curve of the feature selection performance of GA, where the curve is closer to the upper left 

corner compared to Figure 6(b) which uses the PSO method. This shows that the performance of GA is better 

than PSO. Figure 6(c) shows the performance for the GAPSO-TFS feature selection method. The GAPSO-

TFS method when compared to GA and PSO, the ROC curve is closer to the upper left corner, meaning that 

the performance of GAPSO-TFS is better than GA and PSO.  

 

 

Table 4. Evaluation of Cleveland dataset results 
Method  #Feature ACC AUC SPE SEN F1-Score 

- 13 90.00 90.01 85.00 95.18 90.85 

GA 7 94.76 94.86 94.54 95.18 94.67 

PSO 7 94.31 94.27 95.36 93.18 94.10 

GAPSO-TFS 4 95.05 95.09 91.86 98.33 95.25 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 6. Cleveland's ROC curve with (a) GA, (b) PSO, and (c) GAPSO-TFS methods 
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3.3.3. Evaluation of Statlog dataset results 

The test outcomes of the classification model on the Statlog dataset are displayed in Table 5, which 

is based on an average 10-fold cross-validation. According to the results, the GAPSO-TFS technique operates 

optimally by reducing the features from thirteen to four and exhibiting improved performance compared to 

GA and PSO feature selection, at 76.92% reduction rate. The ROC chart reveals an AUC value of 95.00% for 

the performance parameter AUC. Figure 7 demonstrates the test results for all feature selection methods on 

the complete ROC curve. Figure 7(a) is the ROC curve of the feature selection results with the GA method. 

The curve shows that the curve is further away from the diagonal line, so it is closer to the upper left corner. 

The same thing is also shown in Figure 7(b), which is the performance of PSO feature selection, and 

Figure 7(c) which is the performance of GAPSO-TFS feature selection. The advantage of the GAPSO-TFS 

model is the smaller number of features compared to the GA and PSO methods. 

 

 

Table 5. Evaluation of Statlog dataset results 
Method #Feature ACC AUC SPE SEN F1-Score 

- 13 92.47 92.44 88.89 95.00 92.65 

GA 5 93.66 93.54 93.33 93.75 93.20 

PSO 5 94.45 94.44 94.89 94.00 94.36 

GAPSO-TFS 4 94.95 95.00 95.00 95.00 94.90 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 7. ROC curve of Statlog with (a) GA, (b) PSO, and (c) GAPSO-TFS methods 

 

 

3.3.4. Evaluation of Hungarian dataset results 

The findings of the study, which utilized GA, PSO, and GAPSO-TFS feature selection on the 

Hungarian dataset, have been presented in Table 6. The test outcomes were computed from an average of  
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10-fold cross validation. The results illustrate that the GAPSO-TFS approach performs optimally by 

diminishing the features from 13 to 3, a reduction of almost 75%. The results illustrate that the GAPSO-TFS 

approach performs optimally by diminishing the features from 13 to 3, a reduction of almost 75%. The 

results illustrate that the GAPSO-TFS approach performs optimally by diminishing the features from 13 to 3, 

a reduction of almost 75%. Despite the substantial reduction in features, the accuracy parameter improves by 

nearly 3%. Compared to utilizing GA and PSO feature selection methods, the GAPSO-TFS method resulted 

in a reduction percentage of 76.92%. Figure 8 illustrates the ROC curve that shows the AUC value. The three 

graphs exhibit the ROC graph of the Hungarian dataset test outcomes, excluding 10-fold cross-validation. 

 

 

Table 6. Evaluation of Hungarian dataset results  
Method  #Feature ACC AUC SPE SEN F1-Score 

- 13 92.69 92.77 91.52 94.01 92.12 

GA 5 91.37 91.34 91.65 91.02 91.20 

PSO 5 93.70 93.68 94.29 93.08 93.37 

GAPSO-TFS 3 95.59 95.49 95.71 95.28 94.33 

 

 

Figure 8(a) shows a curve that moves away from the top left point, namely towards the bottom of 

the true positive rate axis, while for Figure 8(b), the same as Figure 8(a), it is closer to the top left corner 

point. This shows that the performance of feature selection using PSO and GAPSO-TFS is better than GA. If 

you compare Figure 8(b) with Figure 8(c), then Figure 8(c) is closer to the top left corner point, which means 

the performance produced by GAPSO-TFS is better than PSO. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 8. ROC curve of Hungarian with (a) GA, (b) PSO, dan (c) GAPSO-TFS methods 
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3.4.  Discussion 

The proposed model for selecting features has a superior ability to reduce features compared to the 

genetic algorithm or particle swarm optimization methods. Moreover, the high feature reduction ability 

results in an improved performance output. Table 7 displays the percentage of feature reduction. The average 

percentage of feature reduction across datasets utilizing the GAPSO-TFS method reached 76.07%. The z-

Alizadeh Sani dataset demonstrated the greatest reduction at 88.89%, whereas the clevelands dataset had the 

lowest reduction at 61.54%. 

 

 

Table 7. Percentage of feature reduction of GA-PSO model 

Method 
%Feature reduction  

z-Alizadeh Sani Clevelands Statlog Hungarian Mean 

GA 68.52 38.46 61.54 61.54 57.52 

PSO 66.67 46.15 69.23 69.23 62.82 

GAPSO-TFS 88.89 61.54 76.92 76.92 76.07 

 

 

Several earlier research have proposed feature selection methods utilizing diverse classification 

techniques. In comparison to earlier studies, the number of features generated from previous research is 

evaluated, and later classification is done employing the CatBoost algorithm. Table 8 displays the 

performance produced by numerous previous studies. According to Table 8, the utilization of the GAPSO-

TFS approach is superior in executing feature selection. The test results demonstrate that this method 

provides better performance. When compared to previous research [6] that utilized the z-Alizadeh Sani 

dataset, the proposed study displays inferior performance with a selection of only 0.08%. However, when 

considering the number of features required to achieve this performance level, the proposed study 

outperforms previous research as it only requires 6 features, while the previous study necessitated 22 

features. In study 4, the use of the Statlog dataset results in improved performance, with a difference in 

accuracy of 0.85%. However, it requires 9 features in total, whereas the proposed model only requires 4. The 

system model proposed exhibits superior performance in terms of accuracy and the number of features 

generated across all datasets, compared to the research conducted in [8] and [25]. 

 

 

Table 8. Comparison of results with prior studies 
Ref Method Dataset 

z-Alizadeh Sani Cleveland Statlog Hungarian 

Feature ACC Feature ACC Feature ACC Feature ACC 

[4] Hybrid GA PSO-RF - - 7 94.6 9 95.8 - - 

[6] Weight by SVM 22 99.4 7 90.0 8 92.6 - - 

[8] SVM-GA+FCBF 8 99.1 10 92.8 6 93.7 - - 

[25] χ2 statistical-DNN - - 11 94.5 - - - - 

 

 

4. CONCLUSION 

The heart disease diagnosis system, which utilizes the GAPSO-TFS method for feature selection and 

the CatBoost classification algorithm, demonstrates strong performance. The GAPSO-TFS algorithm is 

determined to be effective at reducing the number of features and improving evaluation performance based 

on testing with GA, PSO, and GAPSO-TFS. On the z-Alizadeh Sani dataset, the model achieved optimal 

results with only 6 features selected from the initial 54. The achieved results showed 99.32% accuracy, 

98.57% specificity, 100.00% sensitivity, 99.28% AUC, and 99.37% F1-Score. The machine learning-based 

coronary heart disease diagnosis system model, with the GAPSO-TFS feature selection method, is 

categorized as excellent considering the best evaluation performance achieved on the z-Alizadeh Sani 

dataset. The AUC parameter provided values above 90% for all datasets. 
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