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 Nowadays, there is a significant rise in electricity demand, posing challenges 

for power grid operators due to inaccurate forecasting, leading to excessive 

power losses and voltage instability. This paper addresses these issues by 

focusing on solving optimal reactive power dispatch (ORPD) while 

considering load demand uncertainty. The main objective of solving ORPD 

is to reduce power losses by adjusting generator voltage ratings, transformer 

tap ratio, and shunt capacitors' reactive power. Monte Carlo simulation 

(MCS) is employed to generate load scenarios using the normal probability 

density function, while a reduction-based technique is implemented to 

decrease the number of those scenarios. The improved gray wolf 

optimization (I-GWO) algorithm is introduced for the first time to address 

the stochastic ORPD problem. Experimentation is conducted on an IEEE-30 

bus system when results are contrasted with conventional gray wolf 

optimization (GWO) and five other algorithms as stated in the literature. The 

I-GWO algorithm's performance is assessed with and without considering 

load demand uncertainty. Through Friedman's statistical tests, a significant 

decrease of 20.96% in active power losses and 63.06% in the summation of 

expected power losses is observed. The I-GWO algorithm's results on the 

ORPD problem demonstrate its effectiveness and robustness. 
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1. INTRODUCTION 

Optimal reactive power dispatch (ORPD) is critical in efficiently managing electrical networks, 

ensuring optimal and stable operation under diverse loads and conditions. ORPD ensures power system 

stability by maintaining adequate voltage levels despite load fluctuations. The appropriate resolution of 

ORPD reduces power losses in the system, improves voltage profiles, and enhances system stability. Initially, 

simple methods with fixed capacitors and reactors were used; however, their flexibility was limited [1]. In the 

mid-20th century, optimization techniques emerged, exploring mathematical methods to enhance reactive 

power flow in electrical grids [2]. Early studies aimed at minimizing transmission losses or maximizing 

system efficiency under various operating conditions [3]. Recently, there has been a focus on using load 

forecasting techniques to predict demand changes and adjust reactive power based on load variations [4]. In 

pursuit of this objective, recent optimization algorithms have been adapted to solve stochastic ORPD [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The conventional ORPD problem was solved by fixing the load variation. It used modern meta-

heuristic optimization algorithms such as improved antlion optimization (IALO) [6], passerine swarm 

optimization algorithm [7], particle swarm optimization (PSO) [8], chaotic PSO (CPSO) [9], artificial bee 

colony and salp swarm algorithms (ABC-SSA) [10], chaotic turbulent flow of water-based optimization 

(CTFWO) [11], ant lion optimizer (ANT) [12], enhanced butterfly optimization algorithm (EBOA) [13], and 

sine cosine algorithm (SCA) [14]. Including charge uncertainty in the resolution process of the ORPD is 

crucial for ensuring optimal operational reliability in the face of unpredictable demand fluctuations, 

promoting the development of a resilient and flexible electrical network that meets the evolving needs of 

society [15]. Various meta-heuristic methods have been used in the field of ORPD to tackle challenges 

arising from load uncertainty. In [4], power loss and voltage deviation values for different load conditions 

were obtained using a modified JAYA. In [16], the Harris hawk-PSO (HHOPSO) is employed to minimize 

power losses and maintain a stable voltage level. In [17], an algorithm called fractional calculus with PSO 

gravitational search algorithm (FPSOGSA), which builds upon PSO, is presented. This algorithm integrates 

GSA and Shannon entropy to reduce power losses in both the IEEE 30-bus and 57-bus test systems. In [18], 

the efficiency of the marine predator algorithm (MPA) in determining the minimum power loss of the IEEE-

30 bus system was demonstrated. In [19], success was achieved by employing an enhanced grey wolf 

optimizer (EGWO) to solve the ORPD problem, both with and without consideration of load fluctuations. In 

[20], an improved lightning attachment procedure optimization (ILAPO) is introduced to decrease the active 

losses of the system, both in deterministic and probabilistic cases. It effectively reduces active power losses, 

enhances voltage stability, and improves voltage profile, considering load uncertainty. Additionally, in [21], 

the improved marine predator algorithm (IMPA) addressed the ORPD problem by taking the load demands' 

and renewable energy sources (RERs) uncertainties to minimize active power losses. Similarly, in [5], a 

novel adaptive manta-ray foraging optimization was introduced for solving stochastic ORPD takes wind and 

load demand power uncertainty into account.  

The review of existing literature on ORPD reveals significant research gaps. While some studies have 

addressed ORPD without considering load demand uncertainty, others have tackled this uncertainty using 

methods such as central centroid sorting with a minimal number of scenarios, typically less than 15. However, 

this approach fails to effectively reduce computational complexity or prioritize scenarios to achieve robust 

decision-making [22]. Additionally, certain studies have focused on specific test systems, such as the IEEE 57 

network, while neglecting others, such as the IEEE 30 network. In references [17], [18], [21], [22], the ORPD 

problem was addressed by incorporating load demand uncertainty using the scenario-based approach. 

Nevertheless, this method, though simple to apply, remains approximate and imprecise [23]. Therefore, it is 

imperative to use more accurate and efficient methods for incorporating load uncertainty into ORPD. 

In summary, by filling existing research gaps, it is possible to better manage load uncertainty and 

improve the accuracy of probabilistic operational planning in the ORPD problem. The use of techniques such 

as Monte Carlo simulation (MCS) and scenario-based reduction approaches (SBR) holds great promise for 

generating an appropriate number of scenarios. Adopting these methods can significantly enhance decision-

making, even when faced with operational uncertainties [5]. 

The recently developed grey wolf optimizer (GWO) algorithm has proven effective in addressing the 

ORPD problem in electrical networks. It optimally adjusts reactive power sources while considering 

operational limitations and wind-integrated power systems [24]. Despite surpassing other metaheuristic 

algorithms like particle swarm optimizer (PSO), backtracking search algorithm (BSA), and whale optimization 

algorithm (WOA), the GWO demonstrates poor convergence and encounters local optima in complex 

problems, posing a high risk of converging to these optima and thus reducing population diversity [25]. 

This paper presents an innovative adaptation of the I-GWO algorithm to address the ORPD problem in 

the presence of load demand uncertainty, focusing on reducing active power losses. The I-GWO algorithm is 

known for its adaptability, capable of adjusting to various problem types and optimization objectives, including 

continuous, binary, or multi-objective scenarios. The effectiveness of the I-GWO algorithm was evaluated using 

both four distinct engineering challenges and the suite of benchmarks for CEC 2018 [26]. Importantly, our 

research highlights a gap in the literature, as no prior studies have explored applying the I-GWO approach to 

tackling stochastic ORPD with 15 load uncertainty-generated scenarios based on the MCS and SBR techniques. 

The experimentation is conducted on the IEEE-30 bus system, and the results are compared with those obtained 

from the conventional GWO algorithm and other algorithms mentioned in the literature. Applying the I-GWO 

algorithm successfully meets all imposed constraints, demonstrating its robustness and efficiency in solving the 

ORPD problem while considering the random character of load demand. 

This paper is structured as follows: section 2 outlines the mathematical formulation of the ORPD 

problem and the method of representing load uncertainty. Section 3 introduces the proposed solution for 

ORPD while considering load uncertainty. The results obtained and the statistical analysis are presented in 

Section 4. The conclusion is provided in the final section. 
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2. PROBLEM FORMULATION 

The ORPD problem is generally an optimization problem. It aims to identify the optimal control 

variables for minimizing active power losses in a power system. This optimization objective remains the 

same for both deterministic and stochastic cases, where system constraints must be carefully considered.   

 

2.1.  The problem's mathematical formulation 

2.1.1. Case 1: power losses minimization 𝑶𝑭𝒖𝒏 in ORPD without considering load demand uncertainty 

Transmission line losses depend on particular power system parameters, such as the conductance of 

the transmission line 𝑔𝑖𝑗, 𝑉𝑖 and 𝑉𝑗 representing the magnitudes of the voltages at buses 𝑖 and 𝑗, and the 

associated angles 𝛿𝑖𝑗. The power losses is calculated using (1) [13]: 

 

𝑃Lss = ∑  
𝑛𝐿
𝑖=1 𝑔𝑖𝑗(𝑉𝑖

2 + 𝑉𝑗
2 − 2𝑉𝑖𝑉𝑗cos 𝛿𝑖𝑗) (1) 

 

2.1.2. Case 2: power losses minimization 𝑶𝑭𝒖𝒏 in ORPD with considering load demand uncertainty 

Considering the random character of load demand in ORPD, the optimization of power losses is 

performed twenty times for the fifteen scenarios outlined in this paper. The expected power loss is calculated 

based on the probability of load demand and power losses for each scenario. The summation of expected 

power losses for the fifteen scenarios is then calculated using (2) [21]: 

 

𝑆exp PL = ∑  
𝑁𝑠𝑐𝑖𝑔
𝑠𝑐𝑖𝑔=1

𝐸𝑃𝐿𝑠𝑐𝑖𝑔 = ∑  
𝑁𝑠𝑐𝑖𝑔
𝑠𝑐𝑖𝑔=1

𝜏𝑆,𝑠𝑐𝑖𝑔 × 𝑃Lss ,𝑠𝑐𝑖𝑔 (2) 

 

where 𝑆exp PL represents the summation of expected power losses, 𝐸𝑃𝐿𝑠𝑐𝑖𝑔 represents the expected power 

losses for the 𝑠𝑐𝑖𝑔th scenario, and the total number of generated scenarios is denoted by 𝑁𝑠𝑐𝑖𝑔. 

 
2.2.  Constraints  

Two types of constraints can be imposed in this problem: the equality constraints [12]: 
 

{
𝑃𝐺𝑖 − 𝑃𝐿𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗)

𝑁𝐵
𝑗=1

𝑄𝐺𝑖 − 𝑄𝐿𝑖 = |𝑉𝑖| ∑ |𝑉𝑗|(𝐺𝑖𝑗𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠𝛿𝑖𝑗)
𝑁𝐵
𝑗=1

 (3) 

 

where 𝑁𝐵 corresponds to the total number of buses in the power network. 𝐵𝑖𝑗  denotes the susceptance 

between bus i and bus j. 𝑃𝐺𝑖  and 𝑄𝐺𝑖  represent the active and reactive power generation, while 𝑃𝐿𝑖  and 𝑄𝐿𝑖  
refer to the active and reactive load demand. The inequality constraints [27]: 

 

{
 
 
 
 

 
 
 
 
𝑃𝐺𝑛
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑛 ≤ 𝑃𝐺𝑛

𝑚𝑎𝑥 n = 1,2, … , 𝑁𝐺

𝑄𝐺𝑛
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑛 ≤ 𝑄𝐺𝑛

𝑚𝑎𝑥n = 1,2, … , 𝑁𝐺

𝑉𝐺𝑛
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑛 ≤ 𝑉𝐺𝑛

𝑚𝑎𝑥 n = 1,2, … , 𝑁𝐺

𝑇𝑘
𝑚𝑖𝑛 ≤ 𝑇𝑘 ≤ 𝑇𝑘

𝑚𝑎𝑥 k = 1,2, … , 𝑁𝑇

𝑄𝐶𝑘
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑘 ≤ 𝑄𝐶𝑘

𝑚𝑎𝑥 k = 1,2, … , 𝑁𝐶

𝑆𝐿𝑘 ≤ 𝑆𝐿𝑘
𝑚𝑖𝑛k = 1,2, … , 𝑁𝑆

𝑉𝐿𝑘
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑘 ≤ 𝑉𝐿𝑘

𝑚𝑎𝑥 k = 1,2, … , 𝑁𝐿

 (4) 

 

The PV buses, transformers, compensators, branches, and PQ buses are denoted by NG, NT, NC, NS, and 

NL, respectively. The active and reactive power of generators, compensator reactive power, generators 

voltage, transformers tap position, transmission lines loading, and load bus voltage are presented by 𝑃𝐺𝑛, 

𝑄𝐺𝑛, 𝑄𝐶𝑘 , 𝑉𝐺𝑛 , 𝑇𝑘, 𝑆𝐿𝑘 and 𝑉𝐿𝑘 ,respectively. 

The function (5) has been designed to effectively manage these constraints and eliminate all 

disproportionate solutions using the weight sum approach [23]: 
 

𝑂𝐹𝑢𝑛 = 𝑂𝐹𝑢𝑛 +𝑤1(𝑃𝐺1 − 𝑃𝐺1
𝑙𝑖𝑚)

2
+𝑤2 ∑  

𝑁𝐺
𝑖=1 (𝑄𝐺𝑖 −𝑄𝐺𝑖

𝑙𝑖𝑚)
2
+ 𝑤3∑  

𝑁𝑞
𝑖=1 (𝑉𝐿𝑖 − 𝑉𝐿𝑖

𝑙𝑖𝑚)
2
+ 𝑤4∑  

𝑁𝐿
𝑖=1 (𝑆𝐿𝑖 − 𝑆𝐿𝑖

𝑙𝑖𝑚)
2
 (5) 

 

𝑂𝐹𝑢𝑛 represents the fitness function, 𝑃𝐺1 is the power generated at the slack bus, 𝑄𝐺𝑖  is the reactive power 

emitted by generating units, 𝑉𝐿𝑖 is the load bus voltage, and 𝑆𝐿𝑖 represents the apparent power flowing 

through the transmission line. Lim denotes the minimum and maximum limits of variables. Meanwhile, 

𝑤1, 𝑤2, 𝑤3, and 𝑤4 are the penalty weighting factors, each assigned a value of 100, 100, 1000, and 100, 

respectively [21]. 
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3. METHOD  

The solution method described in this paper introduces an innovative adaptation of the improved 

gray wolf optimizer (I-GWO) algorithm. This adaptation aims to efficiently solve the ORPD problem in 

power systems. In particular, it focuses on managing load demand uncertainty. 

 

3.1.  Uncertainty modeling 

The loading uncertainty was represented using a normal probability density function (PDF) of a 

random variable 𝑥𝐿𝑀, characterized by a mean (𝜇𝐿𝑀 ) and standard deviation (𝜎𝐿𝑀) [28]. The equation for 

the normal probability density function is presented as (6): 

 

𝑓(𝑥𝐿𝑀) =
1

√2𝜋𝜎𝐿𝑀
exp (−

(𝑥𝐿𝑀−𝜇𝐿𝑀)
2

2𝜎𝐿𝑀
2 )  (6) 

 

In this paper, Monte Carlo simulation (MCS) is utilized to generate 800 scenarios using a normal PDF with 

μLM = 70 and σL = 10 according to [14]. Figure 1 shows the probability distribution of load demand 

scenarios. 

A scenario-based reduction approach (SBR) is utilized to decrease the scenario number generated by 

the MCS method to an appropriate number, aiming at simplifying the calculation process. The SBR method 

involves three steps: scenario generation, scenario-based formulation, scenario-based reduction, and solving 

the reduced formulation [29]. 

 

 

 
 

Figure 1. The probability distribution of load demand scenarios 

 

 

3.2.  The improved gray wolf optimization algorithm  

The conventional GWO algorithm [30] is straightforward but faces population diversity issues 

linked to exploitation and exploration. Although its position update equation is effective for exploitation, its 

overall performance is limited according to [26]. To tackle this problem, an I-GWO was introduced in [26]. 

The initialization phase involves randomly distributing N wolves within a specified range [𝑙𝑛, 𝑢𝑞] in 
the search region. Their positions are shown as a real value vector, and their fitness is calculated using 

𝑓(𝑋𝑞(𝑡)). 

 

𝑋𝑞𝑛 = 𝑙𝑛 + rand𝑛[0,1] × (𝑢𝑛 − 𝑙𝑛), 𝑞 ∈ [1, 𝑁], 𝑛 ∈ [1, 𝐷]  (7) 

 

At each iteration (L), the position of the 𝑖𝑡ℎ wolf is represented as a vector of values denoted by 

{𝑥𝑞1, 𝑥𝑞2. . . . 𝑥𝑞𝐷} where D represents the dimensionality of the problem. 

The pop matrix stores the population of all wolves with N rows (representing the number of wolves) 

and D columns (representing the dimension). The I-GWO incorporates a hunting strategy based on 

dimensional learning (DLH), where multi-neighbor learning occurs in the neighborhood of 𝑥𝑞(𝑗). The 

calculation of the dth dimension 𝑋𝑞−𝐷𝐿𝐻,𝑑(𝑗 + 1) involves a neighbor 𝑋𝑛,𝑑 (𝑗) and a random wolf, 𝑋𝑟,𝑑 (𝑗) 

chosen from 𝑁𝑞(𝑗). The specific equation for these positions is given (8): 
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𝑋𝑞−𝐷𝐿𝐻,𝑑(𝑗 + 1) = 𝑋𝑞,𝑑(𝑗) + rand × (𝑋𝑞,𝑑(𝑗) − 𝑋𝑟,𝑑(𝑗))   (8) 

 

𝑁𝑞(𝑗) corresponds to the neighbors of 𝑥𝑞(𝑗) and is created using (9) based on the radius 𝑅𝑞(𝑗), calculated by 

(10), where 𝐷𝑞  represents the Euclidean distance between 𝑥𝑞(𝑗) and 𝑋𝑛(𝑗). 
 

𝑁𝑞(𝑗) = {𝑋𝑛(𝑗) ∣ 𝐷𝑞(𝑋𝑞(𝑗), 𝑋𝑞(𝑗)) ≤ 𝑅𝑞(𝑡), 𝑋𝑞(𝑗) ∈ 𝑃𝑜𝑝} (9) 

 

𝑅𝑞(𝑗) = ∥∥𝑋𝑞(𝑗) − 𝑋𝑞−𝐺𝑊𝑂(𝑗 + 1)∥∥  (10) 

 

The selection and updating phases involve comparing the fitness values of two candidates, 𝑋𝑞−𝐺𝑊𝑂 (𝑗 + 1) 

and 𝑋𝑞−𝐷𝐿𝐻(𝑗 + 1), using (11).  

 

𝑋𝑞(𝑗 + 1) = {
𝑋𝑞−𝐺𝑊𝑂(𝑗 + 1),  if 𝑓(𝑋𝑞−𝐺𝑊𝑂) < 𝑓(𝑋𝑞−𝐷𝐿𝐻)

𝑋𝑞−𝐷𝐿𝐻(𝑗 + 1)  otherwise 
  (11) 

 

The selected candidate updates 𝑥𝑞(𝑗) if its value is lower than 𝑥𝑞(𝑗); otherwise, 𝑥𝑞(𝑗) remains unchanged in 

the pop. The I-GWO algorithm repeats this process for all individuals, incrementing the iteration counter 

until the maximum iteration is reached. 

 

3.3.  The proposed solution for ORPD taking into account the random character of load demand 

In this paper, the I-GWO algorithm adjusts the reactive power outputs of controllable devices, such 

as transformer tap configurations, generator voltages, and compensator-supplied reactive power. This 

adjustment is made while adhering to operational constraints and accommodating variations in load demand. 

A visual representation of the proposed solution for the ORPD problem is presented in Figure 2. 

 

 

 
 

Figure 2. The proposed solution of the ORPD accounts for the load's uncertainty 

 

 

The following is a summary of the steps involved in addressing the ORPD problem: 

− Step 1: Establish the system's bus and line data. 

− Step 2: Define system constraints and configure algorithm settings. 

− Step 3: Adjust settings for the normal probability density function (PDF) of load demand. 

− Step 4: Generate scenarios using MCS and SBR techniques. 

− Step 5: Assess each particle's fitness by calculating expected power losses for each scenario based on load 

probability. Sum up losses from each scenario to calculate the total expected power losses. This step is 

repeated 20 times because the population contains 20 particles. 
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− Step 6: Choose the best solution from the current population. 

− Step 7: Repeat steps 5 and 6 for a maximum of 250 iterations and update the population by selecting 

solutions with improved fitness values. 

− Step 8: Execute I-GWO over 10 runs to enhance result reliability, minimize initial condition impact, and 

consider algorithm randomness. 

− Step 9: Analyze the final set of solutions to identify the optimal solution and return it. 

− The entire process of the I-GWO algorithm, which considers the random character of load demand across 

15 generated scenarios, is illustrated in the flowchart in Figure 3. 

 

 

 
 

Figure 3. Global solution flowchart 

 

 

4. RESULTS AND DISCUSSION 

To assess the effectiveness of the I-GWO algorithm in the ORPD problem, simulations were 

conducted for two cases of studies using the IEEE 30-bus system, both with and without consideration of 

load uncertainty. The iterations were carried out on a computer with an Intel Core i7 CPU running at  

1.80 GHz and 8 GB RAM, using MATLAB version R2019b. The IEEE 30-bus system includes thirty buses, 

forty-one branches, six thermal generators, nine shunt VAR compensators, and four transformer tap 

changers. To address load demand uncertainty, 15 scenarios were analyzed. 126.2 MVAr and 283.2 MW, 

respectively, are the reactive and active power load demands for the IEEE 30-bus system [31]. Additionally, 

the magnitude range for generator buses and transformer tap configurations fluctuates between 0.9 and 1.1 

per unit (p.u.), and the shunt VAR compensators range from 0 to 5 MVAR [32]. The I-GWO and GWO 
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algorithms have been optimized for the ORPD problem with a maximum iteration of 250 and 20 search 

agents. The “a” parameter was reduced linearly from 2 to 0, while the “C” parameter was assigned values 

from two ranges (0, 1) for efficient optimization. 

 

4.1.  Power losses minimization 𝑶𝑭𝒖𝒏 

4.1.1. Case 1: ORPD without consideration of load demand uncertainty  

The function's goal is to reduce active power losses without considering load uncertainty, using the 

I-GWO and GWO algorithms. Shunt capacitor reactive power, generator voltage magnitudes, and tap-

changing transformers were set as discrete variables. Figure 4 illustrates the convergence characteristics of 

both algorithms in minimizing power losses, showing a progressive reduction during 250 iterations. 

At first, the power loss values were 6.4 MW for I-GWO and 6.05 MW for GWO. They gradually 

decreased to 4.58 MW for I-GWO and 4.59 MW for GWO by iterations 249 and 250, respectively. Table 1 

highlights the effectiveness of I-GWO by demonstrating the lowest power loss, which equals 4.58 MW 

(highlighted in bold in Table 1). In comparison, the ABC, PSO, ALO, SCA, WOA, and GWO algorithms 

recorded power loss values of 5.79, 4.61, 4.70, 4.59, and 4.59 MW, respectively. As a result, reducing active 

power losses prevents over-utilization of power grid equipment, improves grid stability, and ensures safety 

and reliability. It also reduces production and distribution costs, as well as greenhouse gas emissions, thus 

improving the energy efficiency of the power grid [30]. 

 

 

Table 1. The results comparison of simulation obtained by different algorithms in case 1 
Control 

variables 

min max Initial 

[33] 

ABC 

[12] 

PSO 

[8] 

BOA 

[13] 

SCA 

[14] 

CTFWO 

[11] 

GWO I-GWO 

V1 (P.U) 0.95 1.1 1.0500 1.1000 1.1 1.1 1.1000 1.0713 1.1000 1.0576 
V2 (P.U) 0.95 1.1 1.0400 1.0971 1.1 1.0986 1.1000 1.0621 1.0956 0.9902 

V5 (P.U) 0.95 1.1 1.0100 1.0866 1.0867 1.0800 1.0869 1.0397 1.0753 0.9661 

V8 (P.U) 0.95 1.1 1.0100 1.0800 1.1 1.0848 1.0870 1.0399 1.0775 1.0719 
V11 (P.U) 0.95 1.1 1.0500 1.0850 1.1 1.0352 1.1000 1.0318 1.0915 1.0399 

V13 (P.U) 0.95 1.1 1.0500 1.1000 1.1 1.1 1.0800 1.0623 1.1000 1.0463 

T11 (P.U) 0.9 1.1 1.0780 1.0700 0.9587 0.9458 1.0500 1.0134 0.9866 0.9010 
T12 (P.U) 0.9 1.1 1.0690 0.9500 1.0543 1.0175 1.0500 0.9003 0.9705 1.0564 

T15 (P.U) 0.9 1.1 1.0320 1.0200 1.0024 0.9698 1.0500 0.9836 1.0120 0.9455 

T36 (P.U) 0.9 1.1 1.0680 1.1000 0.9755 0.9871 1.0500 0.9871 0.9737 0.0305 
Q10(MVAR) 0 5 0.0000 5.0000 4.2803 2.7469 4.6310 0.0051 0.1944 0.0930 

Q12(MVAR) 0 5 0.0000 0.0000 5 0 3.0890 0 0.2853 0.2980 

Q15(MVAR) 0 5 0.0000 2.0000 3.0288 5 5.0000 1.8709 0.2927 0.3190 
Q17(MVAR) 0 5 0.0000 5.0000 4.0365 5 4.6970 0.7921 0.3149 0.3090 

Q20(MVAR) 0 5 0.0000 4.0000 2.6697 2.2745 2.1290 4.9785 0.3081 0.2170 

Q21(MVAR) 0 5 0.0000 5.0000 3.8894 4.2378 3.1910 2.3600 0.0796 4.8200 
Q23(MVAR) 0 5 0.0000 4.0000 0.0 0 5.0000 0.0028 0.0364 0.1680 

Q24(MVAR) 0 5 0.0000 5.0000 3.5879 4.6361 4.3880 3.7161 0.3637 0.3000 

Q29(MVAR) 0 5 0.0000 4.0000 2.8415 4.4570 3.5750 0 0.0769 0.0580 
Ploss (MW) - - 5.7960 4.6110 4.6282 4.6460 4.7086 4.9448 4.5900 4.5809 

Reduction % - - - 20.45 20.15 19.85 18.76 14.69 20.81 20.96 

 

 

 
 

Figure 4. The convergence characteristics of I-GWO and GWO for case 1 
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4.1.2. Case 2: ORPD with consideration of load demand uncertainty  

In the second case, we assessed the objective function to minimize the sum of expected power losses 

(SexpPL) considering load uncertainty. To achieve this, we employed two optimization algorithms, each run 

20 times across 15 scenarios. Figure 5 displays the convergence curves of the objective function plotted over 

250 iterations. As seen in Figure 5, I-GWO obtains the optimal result with lower SexpPL compared to GWO. 

Table 2 presents the simulation results for this case, illustrating the results produced by the two algorithms. It 

presents 15 scenarios, each with its probability and expected power losses. In cases where load demand is 

minimal, power losses remain reduced to 1.53 MW, as shown by scenario 10. Scenario 13, conversely, stands 

out with a significant power loss of 6.3251 MW, attributed to high load demand. Notably, scenario 14 

records the highest expected power losses due to its high probability. In addition, In the study, the GWO 

algorithm effectively reduced the Sexp PL from 5.811 MW in the basic case [34] to 2.39 MW. Conversely, 

the I-GWO algorithm showed an even more impressive reduction of 2.18 MW, surpassing the Sexp PL found 

by the manta-ray foraging algorithm [5], the literature-reported gray wolf optimization [24], and the marine 

predator algorithm [18], which are equal to 4.5201, 4.1781, and 7.1223 MW respectively. The performance 

of the I-GWO algorithm represents a substantial 62.49% improvement over the base case. 

 

 

 
 

Figure 5. The convergence characteristics of I-GWO and GWO algorithms for case 2 

 

 

Table 2. Simulation results of ORPD with I-GWO and GWO in case 2 for minimization of 𝑂𝐹𝑢𝑛 
 I-GWO GWO 

Scenario Loading % Probability PLSS (MW) 𝐸𝑃𝐿𝑠𝑐𝑖𝑔(MW) PLSS (MW) 𝐸𝑃𝐿𝑠𝑐𝑖𝑔 (MW) 

1 74.2976 0.104 2.1560 0.2242 2.5808 0.2684 

2 84.7650 0.001 3.3876 0.0034 3.5718 0.0036 
3 72.5892 0.002 1.7077 0.0034 2.6235 0.0052 

4 66.9694 0.008 1.9924 0.0159 2.1743 0.0174 

5 75.2356 0.033 2.3291 0.0769 3.5588 0.1174 
6 67.9742 0.010 1.7854 0.0179 1.4504 0.0145 

7 71.5085 0.085 1.8782 0.1596 1.9020 0.1617 

8 80.1222 0.172 2.7661 0.4758 2.4348 0.4188 

9 71.6003 0.053 1.9954 0.1058 2.6714 0.1416 

10 59.6486 0.011 1.5389 0.0169 1.3068 0.0144 

11 75.18362 0.018 2.1765 0.0392 1.9841 0.0357 
12 74.2644 0.002 2.3790 0.0048 1.9831 0.0040 

13 101.9608 0.002 6.3251 0.0127 8.4296 0.0169 

14 75.9757 0.497 2.0684 1.0280 2.3590 1.1724 
15 65.8654 0.002 1.4414 0.0029 1.6264 0.0033 

The summation of expected power losses in (MW): 2.1872  2.3951 

 

 

In this study we used MATLAB to create a box plot, visually representing our statistical technique 

with two algorithms for analyzing experimental data. Figure 6 shows the I-GWO and GWO box plot 

algorithms for the power losses minimization function for case 1 in Figure 6(a) and case 2 in Figure 6(b). 

Observing Figure 6(a), the minimum value in the I-GWO boxplot is smaller than that in GWO, indicating 

that the data in the former box tends to be lower and scattered downwards compared with that in the GWO 

box. According to Figure 6(b), the median line for the I-GWO and GWO algorithms is 202.3894 and 

302.3703 respectively. Positioned higher, GWO's median line shows a more spread-out distribution of the 

data compared to I-GWO. In addition, the I-GWO box plot shows that the median is nearly identical to the 
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lower quartile, which indicates that most of the data points are concentrated towards the lower values, while 

the higher values are relatively less in number. Hence, the experimental analysis showed that the I-GWO 

algorithm performs better than the original GWO algorithm. It consistently produces lower power losses in 

both case 1 and case 2. 

The optimal control variables obtained with I-GWO for the 15 scenarios, including generator 

voltages, compensator reactive power injection, and transformer settings, are illustrated in Figures 7 to 9, 

respectively. Table 3 displays the results of the standardized Friedman test [35] for the statistical disparity 

between the data distributions obtained by simulating the two algorithms, I-GWO and GWO, on two separate 

objectives. In the first case, the I-GWO algorithm stands out with very low minimum, average, and maximum 

power losses, corresponding respectively to 4.5809, 4.6359, and 4.6359 MW. Meanwhile, the GWO 

algorithm achieves slightly higher values at 4.5913, 4.6491, and 4.7207 MW. This same observation is 

presented for the SexpPL optimization objective where I-GWO achieves the best solution of 2.1872 MW 

compared to GWO. Consequently, I-GWO outperforms the GWO algorithm in both study cases, 

demonstrating low minimum, average, and maximum power losses as shown in bolded in Table 3. 

 

 

  
(a) (b) 

 

Figure 6. Classification of power losses using box plots in (a) case 1 and (b) case 2 

 

 

 
 

Figure 7. The I-GWO optimal voltage magnitude at each generator bus 

 

 

 
 

Figure 8. The I-GWO optimal transformer tap parameters 
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Figure 9. The I-GWO optimal VAR compensator parameters 

 

 

Table 3. I-GWO and GWO statistical comparison in the two cases 
 Average Best Run N Worst Run N SD Time (s) 

Power losses Case 1 I-GWO 4.63 4.58 20 4.63 2 0.0332 146.21 

GWO 4.64 4.59 13 4.72 12 0.0334 36.7473 

Case 2 I-GWO 242.34 2.18 4 702.71 16 126.08 1.37×103 
GWO 272.39 2.39 9 502.27 12 198.44 0.53×103 

 

 

5. CONCLUSION  

This paper focuses on the problem of ORPD. The paper presents the first application of the I-GWO 

approach to minimize power losses while considering the uncertainty of the load demand modeled by the 

normal probability density function. Initially, a deterministic optimal solution for the ORPD is presented 

using the standard IEEE 30 bus test system, without taking load uncertainty into account. Then, the paper 

introduces the stochastic formulation of the ORPD, taking into account the uncertain load demand, by using 

Monte Carlo simulation and a scenario reduction technique. The I-GWO method is thoroughly tested in 

comparison with the conventional GWO method and recently published algorithms. The results demonstrate 

that the I-GWO method achieved the best reduction in power losses. It was observed that the I-GWO method 

reduced power losses by 20.96% and 63.06% in the first and second cases, respectively. The application of 

the I-GWO algorithm meets all imposed constraints, demonstrating its robustness and efficiency in solving 

the ORPD problem, even in the presence of load demand uncertainty. Future research should consider the 

incorporation of other objective functions related to improving voltage stability, for example. Additionally, 

the inclusion of other sources of uncertainty in the optimization process, such as the uncertainty of power 

generated by renewable energy sources, should be considered. 
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