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 Detection and calculation of wheat ears are critical for land management, 

yield estimation, and crop phenotype analysis. Most methods are based on 

superficial and color features extracted using machine learning. However, 

these methods cannot fulfill wheat ear detection and counting in the field due 

to the limitations of the generated features and their lack of robustness. 

Various detectors have been created to deal with this problem, but their 

accuracy and calculation precision still need to be improved. This research 

proposes a deep learning method using you only look once (YOLO), 

especially the YOLOv8 model with depth and channel width configuration, 

stochastic gradient descent (SGD) optimizer, structure modification, and 

convolution module along with hyperparameter tuning by transfer learning 

method. The results show that the model achieves a mean average precision 

(mAP) of 95.80%, precision of 99.90%, recall of 99.50%, and frame per 

second (FPS) of 22.08. The calculation performance of the wheat ear object 

achieved accurate performance with a coefficient of determination (R2) 

value of 0.977, root mean square error (RMSE) of 2.765, and bias of 1.75. 
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1. INTRODUCTION 

Wheat is a cultivated crop, and its yield is essential for food security. The rapid growth of the human 

population in the world, resulting in the demand to increase crop yields, becomes more urgent [1]. Data 

released by Statista in 2023 shows that the volume of world wheat production reached more than 778 million 

tonnes in 2021-2022, an increase of 4 million tonnes compared to the previous year. Wheat production is 

forecast to increase by about 286 million tonnes worldwide by 2023. Wheat yield forecasting is a critical part 

of the agricultural management process that can be the reference for field operations and agricultural 

decision-making. Identifying and counting wheat ears helps monitor growth, forecast wheat yield, and 

analyze crop phenotype characteristics. Automatic detection of wheat ears not only improves work efficiency 

but is also essential for the development of intelligent agricultural machinery. An efficient and automated 

algorithm for detecting and counting wheat ears is needed. 

The conventional method for calculating wheat ear numbers involves a manual process that is time-

consuming and susceptible to errors. The calculation is done by manual yield prediction in the field, capacity 

prediction, annual data prediction, and remote sensing image estimation [2]. These methods are empirical, 

low accuracy, and also labor intensive. The volumetric techniques are expensive and inefficient in measuring 

wheat density. Remote sensing is based on satellite images used as samples. Because the images are far apart, 

they are only suitable for large-scale processing and analysis, resulting in low accuracy of wheat prediction. 

On the other hand, multiple linear regression-based predictions are heavily influenced by weather factors, 

making their accuracy hard to ensure and unsuitable for field yield estimation. 

https://creativecommons.org/licenses/by-sa/4.0/
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The presence of computer vision in the field of research indicates that earlier investigations 

employed machine-learning techniques to identify wheat ear objects. In Xu et al. study [3], the K-means 

algorithm was applied to automatically segment wheat ear images, followed by their utilization in training 

and testing convolutional neural network (CNN) models. Research by Grbović et al. [4] also uses 

segmentation and thermal images and then compares them with ground truth to assess the accuracy of the 

system used. Fernandes-Gallego et al. [5] performed detection by utilizing a red-green-blue (RGB) camera 

and then built an automatic wheat ear calculation system with three steps, namely with Laplacian frequency 

filter, median filter, and find maxima segmentation. Although wheat ear recognition has achieved good 

results, most of these methods require artificially adjusting the image, causing insufficient accuracy in 

different environments or farmlands. Noise disturbances such as the level of exposure and background 

disturbances also make the detection and calculation of wheat ears not optimal. 

Deep learning has achieved impressive results in various fields in recent years. Significant progress 

has been made in target detection technology, which is one of the core problems in computer vision. Deep 

learning-based target detection algorithms are divided into multi-stage and single-stage. All these algorithms 

use CNN, which is based on the convolution multiplication of the input image with a kernel and then 

produces a feature map that will be reprocessed to classify an object [6]. Standard target detection algorithms 

for multi-stage models are region-based fully convolutional network (R-FCN) [7], region-based 

convolutional neural network (R-CNN) [8], Fast R-CNN [9], Faster R-CNN [10], Mask-RCNN [11] and for 

single-stage models is you only look once (YOLO). In the multi-stage model, the first step is to determine 

candidate regions that may contain targets to be detected. It then performs detailed identification of the 

targets in each candidate region to perform classification and regression. Despite its good accuracy in object 

detection, the multi-stage model has a longer computation time due to its complex structure. In contrast, the 

single-stage model is more effective and efficient by using the help of anchors and grid boxes to localize the 

target region and constrain the object shape to predict the bounding box in one step. YOLO has achieved 

several developments and model improvements, starting with YOLO9000 [12], YOLOv3 [13], YOLOv4 

[14], YOLOv5, YOLOv6 [15], YOLOv7 [16], and YOLOv8. 

Various studies on wheat ear detection using the YOLO model have shown promising results. The 

research conducted by Yang et al. [17] modified YOLOv4 by adding a convolutional block attention module 

(CBAM) [18] and a dual-channel (attention and spatial) module to the neck layer. The results show that the 

model can remove background noise and perform well on three datasets, namely WD, WEDD, and GWHD 

datasets, with mAP of 94.00%, 96.40%, and 93.11%, respectively. Zhao et al. [19] improved the YOLOv4 

receptive field with spatial pyramid pooling (SPP) [20] in the feature fusion section to extract multi-scale 

features. The goal is for the resulting features to have solid and robust location information of the wheat 

object. The method showed an accuracy of 96.40% on the HRED dataset and 93.11% on the GWHD dataset. 

Li and Wu [21] used the YOLOv5 model and improved the perceptual field by sampling four times in the 

feature pyramid to improve small target detection. In addition, the research also added a CBAM module 

along with attention and spatial modules to overcome the problem of decreasing gradients during training. 

The accuracy of the model was 94.32% using the GWHD dataset. Meng et al. [22] used the YOLOv7 model 

on the 2021 GWHD dataset with a mAP of 93.86% with FPS 35.93, R2 0.9895 (low light), 0.9872 (blur) and 

0.9882 (occlusion). 

Some of the studies mentioned above show that models trained on several datasets from certain 

regions need to be more generalizable and experience a decrease in accuracy due to overlapping and varying 

sizes of wheat ear objects. In addition, the previous research also did not display how many total estimated 

objects were detected in the processed image, so rechecking the output of the generated code is required. This 

research uses the YOLOv8 model as the base model and then enhances it with several tests to be more 

suitable for detecting wheat ears on complex backgrounds. YOLOv8 will be optimized gradually by 

performing several test scenarios. First, the effect of convolution depth and channel width values of each 

YOLOv8 variant was tested. Second, several optimizers such as stochastic gradient descent (SGD), Adam, 

AdamW, and RMSProp are tested to determine which optimizer is suitable for wheat ear detection. Thirdly, 

layer modification and convolution modules are performed to strengthen detection. Finally, the 

hyperparameters were tuned with the transfer learning method for maximum accuracy. 

 

 

2. METHOD 

2.1.   Dataset 

We use the original distribution dataset to compare the model performance with previous research 

methods, where the GWHD 2020 wheat ear dataset used in this research consists of 3,422 training images 

and 1,276 testing images used for model performance evaluation [23]. The dataset is an RGB image with a  

1024×1024 pixels resolution and an annotation file in txt format. The GWHD dataset was collected between 
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2016 and 2019 by 9 institutions in 10 locations covering genotypes from Europe, North America, Australia, 

and Asia. The GWHD dataset consists of sub-datasets obtained with different planting practices and row 

spacing varying from 12.5 cm (ETHZ_1) to 30.5 cm (USASK_1), planted with average planting density 

(Arvalis_1, Arvalis_2, Arvalis_3, INRAE_1 part of NAU_1) and high seed density (RRES_1, ETHZ_1 part of 

NAU_1). The GWHD dataset covers a wide range of pedoclimatic conditions, such as being grown in the 

Picardy region of France (Arvalis_3), produced in mountainous or highland regions of Switzerland 

(ETHZ_1), or the Alpes de Haute Provence (Arvalis_1, Arvalis_2). Figure 1 shows image samples from the 

GWHD dataset distribution. 

 

 

 
 

Figure 1. Some example images 

 

 

2.2.  YOLOv8 algorithm 

YOLOv8 is the latest YOLO model released in 2023, precisely in January, by Ultralytics, also the 

developer of YOLOv5. YOLOv8 is a detector consisting of 2 main parts: the backbone network and the head 

network. The backbone model is used to extract features from a given input image. This model uses a 

modified version of the cross stage partial network, especially CSPDarknet53 architecture, as the backbone, 

which consists of 53 convolutional layers and uses a technique called cross-stage partial connection to 

improve the flow of information between the various network layers. Meanwhile, the head network contains 

several convolution layers and a series of fully connected layers. These layers are responsible for the 

predicted bounding box, object score, and class probabilities for the detected objects. In addition, there is also 

attention in the head network that allows the model to focus on different parts of the image and adapt various 

features based on their relevance to the given task. 

The YOLOv8 classification loss function uses BCE loss. Regression loss takes the form of CIOU 

loss+DFL and VFL, which proposes an asymmetric weighting operation. The DFL of the box position is 

modeled as a general distribution. The network focuses faster on the distribution of locations close to the 

object location, and the probability density is as relative as possible to that location. The following is shown 

in (1). 

 

𝐷𝐹𝐿(𝑆𝑖𝑆𝑖+1) = − ((𝑦𝑖+1 − 𝑦) 𝑙𝑜𝑔(𝑠𝑖) + (𝑦 − 𝑦𝑖) 𝑙𝑜𝑔(𝑠𝑖+1)) (1) 

 

where 𝑠𝑖 is the sigmoid output for the network, 𝑦𝑖  and 𝑦𝑖+1 are the interval orders, and 𝑦 is the label. 

Compared to previous models, YOLOv8 can be easily extended and contains a framework that can support 

earlier versions of YOLO and switch between different versions [24]. In addition, YOLOv8 implements free 

anchor boxes where the model detects objects directly without looking at the offset of known anchor boxes. 

Anchor boxes are predefined boxes with a specific width and height that see object classes with the desired 

scale and aspect ratio. They are selected based on the size of the objects in the training dataset and are 

arranged on the image during detection. Figure 2 shows the architecture of YOLOv8 when extracting input 

images. 

It can be seen in Figure 2 that first, the input image is given, and then the feature extraction process 

is carried out in stages following the concept of FPN. Each layer in P1, P2, P3, P4, and P5 has a different 

layer size and depth. It is intended to find the location and position of the object. Then, the last three layers 

perform extraction again before entering the object detection section. The detection head applies the 

localization metric as previously described. 
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Figure 2. YOLOv8 architecture 

 

 

2.3.  System design 

The training and testing process is shown in Figure 3. Based on the flowchart, training starts with 

preparing the train data and the YOLOv8 model and then preparing the model configuration, such as 

selecting parameters such as training iterations of 600 epochs and selecting an image size of 1,024 following 

the original size of the dataset. During the training process, a fine-tuning method is also performed to find the 

proper adjustment to the object. The training process produces pre-trained weights, which will then be reused 

in the testing process. Object detection and calculation based on evaluation metrics are performed in this 

phase. In addition, adjustments or model configurations are made again to optimize the performance of the 

YOLOv8 base model. Some of the configurations carried out in this study include the following. 

 

 

 
 

Figure 3. Flowchart training and testing 
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2.3.1. Testing the depth multiple and width multiple values 

In the first test, the model training is performed on the depth multiple variables, which is a multiple 

of the channel depth and width multiple, which is a multiple of the model layer channel. In general, the 

YOLOv8 model consists of 5 models namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x. 

Larger multiples of depth indicate adding more layers to the neural network, while multiples of width add 

more filters to the layers, adding more channels to the layer outputs. The addition of both makes the model 

larger and requires more computing power. The depth multiple and width multiple values of each of the five 

models are shown in Table 1. 

 

 

Table 1. Comparison of depth multiple and width multiple values 
Model Depth multiple Width multiple 

YOLOv8n 0.33 0.25 

YOLOv8s 0.33 0.50 
YOLOv8m 0.67 0.75 

YOLOv8l 1.00 1.00 

YOLOv8x 1.00 1.25 

 

 

2.3.2. Testing the optimizer 

This test aims to compare optimizers against evaluation metrics. The tested optimizers consist of 

SGD [25], Adam [26], AdamW [27] and RMSProp [28]. The primary role of using the right optimizer is to 

minimize the model's error or loss of function, thereby improving performance. The best optimizer will be 

selected to optimize the hyperparameter value in the following test scenario. 

 

2.3.3. Testing of architecture layers and modules 

This test uses several modules of the YOLOv8 architecture with several different structures. The 

modules used in this testing are those available in the YOLOv8 repository. Additionally, we made 

convolutional layer adjustments to several models under test to assess the impact of depth on model 

performance. We experimented with multiple available models, subsequently modifying convolution and 

attempting combinations of convolution modules in the backbone and head networks. The aim is to identify 

which model exhibits stronger feature extraction and achieves the highest accuracy. 

 

2.3.4. Hyperparameter tuning and transfer learning 

Hyperparameter tuning refers to finding optimal values for the model's hyperparameters [29]. This 

test aims to find the right combination to improve the model's performance and generalization ability 

significantly. In addition, transfer learning is also performed to ease the heavy computational burden [30]. 

The results are analyzed based on several performance metrics, such as precision, recall, F1-score, and FPS. 

In addition, ear of grain calculation metrics such as R2, RMSE, and bias are used. 

 

𝑃 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑃
 (2) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ×𝑃 ×𝑅 

𝑃 +𝑅
 (4) 

 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑖

𝑁
𝑖−1

𝑁
 (5) 

 

Among these metrics, the true positive (TP) represents instances where the detection correctly 

identifies a wheat ear, matching the actual presence of a wheat ear. Conversely, the false positive (FP) occurs 

when the detection falsely identifies an ear of wheat when it is part of the background, indicating incorrectly 

counted wheat ears. The false negative (FN) corresponds to situations where the background is mistakenly 

labeled as a wheat ear, signifying uncounted wheat ears. Precision (P) quantifies the proportion of correct 

wheat ear detections for all predictions. Recall (R) calculates the ratio of true positives to the total actual 

wheat ears, revealing how effectively the model identifies positive cases among all real positives. The 

F1-score offers a means of assessing the method's performance by balancing the importance of precision and 

recall. In this context, mAP represents the mean average precision achieved in this evaluation. 
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𝑅 =  
𝑇𝑃

𝑇𝑃 +𝐹𝑁
 (6) 

 

RMSE = √1

𝑛
∑ (𝑚𝑖 − 𝑐𝑖)

2𝑛
𝑖=1  (7) 

 

Bias =
1

𝑛
∑ (𝑚𝑖−𝑐𝑖

)𝑛
𝑖=1  (8) 

 

Coefficient of determination (R²), and root mean square error (RMSE) bias are used as evaluation 

indicators to measure the counting performance of the model. Where 𝑛 represents the number of wheat ear 

images, 𝑚𝑖 − 𝑐𝑖 represents the number of wheat ears manually labeled and counted by the model in the i 

image, and �̅� represents the average number of wheat ears. The bias signifies the mean count for each 

detected image and the actual discrepancy. 

 

 

3. RESULTS AND DISCUSSION 

 Model training and validation were performed using the original distribution of the GWHD dataset. 

The hardware used in this experiment is an Intel i5-12400F processor and NVIDIA GeForce RTX 3080 GPU 

with 12 GB VRAM, which is implemented using PyTorch deep learning framework and Python 

programming. In addition, the CUDA 11.8 parallel computing framework and CUDNN 8.9.4 deep neural 

network acceleration library are used in this research. 

 

3.1.  Experiment result 

3.1.1. Test results for depth multiple and width multiple values  

Based on the test results of the depth multiple and width multiple values, it can be seen in Table 2 

that the YOLOv8x model has the best accuracy (mAP) of 91.00%. In addition, the YOLOv8x model also has 

a precision value of 99.50%, recall of 99.10%, and F1-score of 99.30%, where these values are the highest 

values of the other four models. Despite having the best performance, the YOLOv8x model has the lowest 

FPS value of 24.27. This is due to the increased convolution and channel width. The model has a larger depth 

multiple and width multiple values, so the model is heavier. In contrast, the lightest YOLOv8n model has the 

highest FPS of 188.68, but the accuracy is very low at 68.60%. 

 

 

Table 2. Test results for depth multiple and width multiple values 
Model Depth multiple Width multiple mAP Precision Recall F1-score FPS 

YOLOv8n 0.33 0.25 68.60% 95.10% 94.40% 94.75% 188.68 
YOLOv8s 0.33 0.5 68.60% 95.10% 94.40% 94.75% 192.31 

YOLOv8m 0.67 0.75 87.20% 99.20% 99.10% 99.15% 60.98 

YOLOv8l 1 1 87.60% 99.00% 98.80% 98.90% 40.49 
YOLOv8x 1 1.25 91.00% 99.50% 99.10% 99.30% 24.27 

 

 

3.1.2. Test result for optimizer 

The following test scenario looks at the effect of the optimizer on the model. The model chosen for 

this test is based on the previous test, namely the YOLOv8x model, which has a depth multiple of 1 and a 

width multiple of 1.25. Some of the optimizers tested were SGD, Adam, AdamW and RMSProp. Table 3 

shows the results of testing several types of optimizers. 

 

 

Table 3. Test results for optimizer 
Optimizer mAP Precision Recall F1-score FPS 

SGD 89.20% 99.30% 99.10% 99.20% 24.45 

Adam 69.30% 95.40% 95.10% 95.25% 24.57 

AdamW 84.90% 98.70% 98.70% 98.70% 24.45 
RMSProp 22.30% 62.10% 48.00% 54.15% 20.20 

 

 

Based on the table, the SGD optimizer is suitable for the model and has the highest mAP value of 

89.20%. Likewise, the precision, recall, and F1-score values outperform other optimizers, with 99.30%, 

99.10%, and 99.10%, respectively. This test also shows that the SGD, Adam, and AdamW optimizers do not 

experience overfitting, while the RMSProp optimizer experiences overfitting. 
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3.1.3. Test results for architecture layers and modules 

This test uses the configuration from the previous best test. The three models tested shown in  

Table 4 used the same configuration: a depth multiple values of 1, a width multiple values of 1.25, and the 

SGD optimizer. The YOLOv8x-P2 model has 1 more extensive detection layer added before the original 3 

layers in the head layer. The YOLOv8x-P6 model uses 1 extra smaller detection layer after the initial 3 layers 

in the head layer consisting of. The Mod-YOLOv8x-P6 model has the same structure as the YOLOv8x-P6 

model, with deeper convolution layers in some backbone layers. 

Based on the table, it can be seen that the YOLOv8x-P2 model has the lowest accuracy, where its 

accuracy has decreased by 3.4% mAP from the original YOLOv8x model with 91.00% mAP. In addition, it 

also has a very low FPS of 15.4. The model produces a less robust feature map despite having a deep 

convolution layer to extract objects. The YOLOv8x-P6 model has a 0.8% mAP improvement from the 

original model (YOLOv8x), and the FPS has decreased by 1.77. By modifying the convolution layer and 

applying the C2F module to the backbone and head, which previously the head network used the C2 module, 

the YOLOv8x-P6 modified model was shown to have an increase of 1.5% from the original model 

(YOLOv8x) with a mAP of 92.50% along with an increase in precision, recall, and F1-score of 99.60%, 

99.30%, and 99.40% respectively and an FPS value of 22.1. 

 

 

Table 4. Test results for architecture layers and modules 
Model mAP Precision Recall F1 score FPS 

YOLOv8x-P2 87.60% 98.80% 98.70% 98.70% 15.4 

YOLOv8x-P6 91.80% 99.50% 99.30% 99.40% 22.5 

Mod-YOLOv8x-P6 (proposed model) 92.50% 99.60% 99.30% 99.40% 22.1 

 

 

3.1.4. Hyperparameter tuning results and transfer learning method 

The previously trained Mod-YOLOv8x-P6 model will be retrained by adjusting the hyperparameters. 

Transfer learning will also be carried out in preparing the model by utilizing the pre-trained weights from the 

previously trained YOLOv8x-P6 model. The results can be shown in Table 5 with the hyperparameter 

configuration used in this test is the initial learning rate of 0.0025, the final learning rate of 0.001, the 

momentum of 0.1, and the weight decay of 0.0005. It can be seen from Figure 4 that the model accuracy curve 

increases gradually with increasing iterations. After passing 300 iterations, precision, recall, and mAP show a 

flat curve, which means no more improvement and indicates the model has reached the optimal ability. 

 

 

Table 5. Hyperparameter tuning results and transfer learning method 
Model mAP Precision Recall F1-score FPS 

Proposed model 95.80% 99.90% 99.50% 99.90% 22.08 

 

 

 
 

Figure 4. Proposed model curve 

 

 

3.2.  Calculation of wheat ears 

When testing the detection effect of the proposed model, 10 images with wheat ear objects aligned 

or called slightly oriented and 10 images with wheat ear objects more varied or heavily oriented are selected 

randomly from the test dataset, as exemplified in Figure 5. Then, the proposed model will be used to detect 

these datasets and determine the success of the model. Examples of detection results can be observed in 
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Figure 6. Figures 6(a) and 6(b) are images with slightly oriented wheat ear objects, while 6(c) and 6(d) are 

images with heavily oriented wheat ear objects. 

Detected wheat ears are marked with a red box with an object label. The calculation results of wheat 

ear objects are shown in each image's upper right corner area. This estimates how many objects are detected, 

making the calculation more efficient when the model is applied to the camera. Then, each saw wheat ear 

object has a label to ensure no repeated calculations occur. In Figure 6(a), 31 objects were detected, and  

3 failed, with 91.17% accuracy. Figure 6(b) detected 14 objects, 0 failures, and 100% accuracy. Figure 6(c) 

saw 29 objects, 1 failure, and 96.66% accuracy. Figure 6(d) detected 25 objects, 3 fails, and 89.28% 

accuracy. According to the results, only a few wheat ear objects are left behind. This is because some objects 

overlap with each other. The sample images represent some randomly selected sample images. To determine 

the success of the object, model performance metrics such as R2, RMSE, and bias are used, as shown in 

Figure 7. Here is a graph that compares the actual value with the estimated value. 

 

 

  
Slightly Oriented Heavily Oriented 

 

Figure 5. Random sample image 

 

 

    
Slightly Oriented Heavily Oriented 

(a) (b) (c) (d) 

 

Figure 6. Some of the sample images, such as 6(a) and 6(b), are slightly oriented, while 6(c) and 6(d) are 

heavily oriented 

 

 

 
 

Figure 7. Sample detection results 
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3.3.  Comparison with previous methods 

After going through the training, testing, and calculating objects, comparisons with previous 

research methods, including CBAM-YOLOv4, SPP-YOLOv4, and CBAM-YOLOv5, using the GWHD 2020 

dataset results are shown in Table 6. The table reveals that the proposed model attains the second-best mAP 

value of 95.80%, outperforming both the CBAM-YOLOv4 and CBAM-YOLOv5 models, although it lags 

behind SPP-YOLOv4 by a marginal 0.6%. In addition, the precision, recall, and F1-score values 

outperformed the 3 previous models with 99.90%, 99.50%, and 99.90%, respectively. 

 

 

Table 6. Comparison with previous method  
Model mAP Precision Recall F1-score FPS 

CBAM-YOLOv4 [17] 93.11% 87.55% 91.01% 89.25% N/A 

SPP-YOLOv4 [19] 96.40% 96.40% 90.24% 93.00% 51.01 
CBAM-YOLOv5 [21] 94.32% 88.52% 98.06% 93.05% N/A 

Our method 95.80% 99.90% 99.50% 99.90% 22.08 

 

 

The FPS value generated by the modified YOLOv8 model is 28.93 behind the SPP-YOLOv4 model, 

which has an FPS value of 51.01. This is due to using different GPUs, and our model has a more profound 

architecture. The proposed model can still detect the wheat ear object well. The other two models, CBAM-

YOLOv4 and CBAM-YOLOv5, do not include FPS values in their research. 

In addition, we also compare this study with the ear of wheat calculation metric in Figure 8. This 

comparison is done to see if the proposed model has a good ear of wheat calculation performance when 

compared to the three previous studies. Figure 8 displays the outcomes of the comparison. 

In Figure 8, the R2, RMSE, and bias values of CBAM-YOLOv4 are 0.988, 2.097, and -3.3, 

respectively. The SPP-YOLOv4 model with R2 and RMSE of 0.937 and 4.810 did not have any bias values 

in its study. CBAM-YOLOv5 model with R2, RMSE, and bias values of 0.976, 3.178, and 2.37, respectively. 

The proposed model with R2, RMSE, and bias values are 0.977, 2.765, and 1.75, respectively. 

Based on the above, the proposed model's performance is the second-best after CBAM-YOLOv4 for 

the coefficient of determination and RMSE. Both parameters mean that the model more perfectly explains the 

variance in the target variable and provides insight into the accuracy of the prediction and how closely the 

model matches the actual data. As for the bias value, the proposed model has the smallest value of 1.75 

compared to the other models, which indicates that the model consistently predicts higher values than the 

actual values. 

 

 

 
 

Figure 8. Comparison between R2, RMSE and bias 
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4. CONCLUSION  

Accurately detecting and counting wheat ears provides a good reference value for food yield 

estimation. Farmland and lighting conditions sometimes make the detection results not optimal. Through this 

research, the optimized deep-learning model YOLOv8 is used to detect and count wheat ears. After the 

model was trained and tested on the GWHD dataset with different conditions, varieties, lighting, and 

farmland levels, the model achieved good accuracy. The model was gradually optimized with several 

configurations, such as using depth multiple and width multiple values of 1 and 1.25, respectively, using 

SGD optimizer, increasing the convolution layer and applying C2F module to the modified backbone and 

head models as well as tuning the hyperparameters and transfer learning method. The results show an 

increase in performance metrics, namely mAP of 95.80%, precision of 99.90%, recall of 99.50%, and  

F1-score of 99.90%. In addition, the FPS value obtained by the model is 22.08. The proposed model can also 

automatically calculate the detected wheat ear object equipped with a name label. The model's accuracy is 

indicated by the R2 value of 0.977, RMSE of 2.765, and bias of 1.75. The proposed model fulfills the need 

for automatic wheat ear detection and calculation effectively and efficiently. The model can also be 

integrated with drone cameras for direct field implementation. 
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