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 We introduce a method for detecting humans in thermal imaging using an 

end-to-end deep learning model. Our objective is to optimize the human 

detection process in thermal imaging by investigating the mask region-based 

convolutional neural network (Mask R-CNN). The model, an advancement 

of the faster region-based convolutional neural network (Faster R-CNN), not 

only captures bounding boxes encompassing human subjects but also 

delineates segmentation masks around them. Our investigation extends to 

the evaluation and comparison of various convolutional neural networks for 

feature learning, like residual network (ResNet) and Inception ResNet, all 

integrated into the Mask R-CNN framework. Furthermore, the experimental 

results show that our proposed technique achieves high accuracy. 

Specifically, the Mask R-CNN model using ResNet50-V1 achieved the best 

results, with an F-value of 87.85%, a recall of 79.33%, and a precision of 

98.41%. 
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1. INTRODUCTION 

The demand for human/pedestrian detection based on computer vision has risen significantly in 

various domains, including security, intelligent monitoring, search and recuse, surveillance systems, and 

other fields. Consequently, human/pedestrian detection has become a challenging and important field, 

attracting significant interest from the research community in recent years [1]. The most challenging task is 

the detection and identification of human activity during continuous 24/7 operations in environments such as 

border controls, school campuses, stations, and airports [2]. A visual camera can be set up during daytime 

operations, but it has obvious limitations in nighttime or dark environments. On the other hand, the visual 

camera is very sensitive to illumination effects. Thermal cameras (or infrared cameras) can help solve 

lighting problems, and thermal imaging with infrared cameras can enhance human visibility in low-light, 

dark or obscured environments. 

Thermal imaging systems are utilized in real-time applications across military, industrial, and 

commercial sectors. This technology enhances surveillance capabilities, allowing for the detection of humans 

in low-light conditions, which is important for border security and urban safety. Additionally, in search and 

rescue missions, it efficiently identifies people in difficult environments, ultimately aiding in life-saving 

efforts. In the security and surveillance, it assists in monitoring people in crowded areas such as school 

campuses, stations, and airports. It helps identify potential threats and manage public events safely. 

Specifically, the detection of pedestrians in school campus surveillance is essential for safeguarding students, 

staff, and visitors. This system can enhance situational awareness, enabling rapid response to emergencies. 

https://creativecommons.org/licenses/by-sa/4.0/
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Therefore, thermal cameras are expected to work all the time. However, thermal image processing 

remains a challenging task due to several factors, including lower signal-to-noise ratio (SNR), polar 

inversion, reflection, and halo effects [3], [4]. Traditional human detection systems were built on handcrafted 

features and rely on machine learning algorithms. Their performance is often susceptible to the requirement 

of constructing intricate sets comprising numerous low-level features combined with high-level context from 

detectors and context classifications. With the development of deep learning, more powerful tools that can 

learn higher-level and deeper semantic features are being introduced to solve problems that exist in 

traditional architectures [3].  

In traditional approaches, human detection in thermal imaging can be considered a two-stage 

approach [5], [6]. Human candidate extraction is the first stage, and the second stage involves classification. 

A multi-scale sliding window detector, thresholding segmentation, and background subtraction were used for 

candidate extraction [7]. The multi-scale sliding window detector is one of the most popular techniques for 

pedestrian detection in both visual camera and thermal camera image processing [8], [9].  

By applying thresholding segmentation or background subtraction, the computation time can be 

decreased through a reduction in several regions [10], [11]. In thermal imaging applications, the thresholding 

segmentation relies on the premise that the human (or object) emits more heat and is warmer than the 

background. The distinction between objects and backgrounds is typically substantial, making this method 

ineffective in detecting humans who are cooler than the background, such as during the summer or daytime 

[12]. However, it demands considerable computational power and memory resources and usually requires a 

fixed camera and a static background [13], [14], [15]. 

Many methods based on deep learning have been applied to both visual and thermal images to 

enhance the accuracy of detection systems [16], [17]. With the recent advances of convolutional neural 

network (CNNs) in the computer vision community, they are attracting the attention of researchers exploring 

how to effectively extract information from both visual and thermal images [18], [19]. Deep learning models 

based on CNN architectures were applied to replace traditional classifiers in the classification stage. These 

approaches yielded significant results.  

Trinh and Kim [9] used a multi-scale sliding window approach with image pyramids, combined 

with CNN, for binary classification in real-time pedestrian detection using thermal imaging. An effective 

human detection system in thermal imaging, based on a combination of background modeling and CNN, was 

proposed by Shahid et al. [20]. The authors presented a method for detecting pedestrians in thermal images 

where adaptive fuzzy C-means clustering and CNNs were utilized [21]. The adaptive fuzzy C-means was 

used as a thresholding segmentation approach to determine candidate regions. The CNN model was then 

applied as a binary classification. In study [22], a combination of two techniques, namely K-means clustering 

and the tiny you only look once, version 3 (YOLO v3), is employed for processing thermal images. This 

approach follows a two-step procedure. Initially, anchor boxes are created using the K-means technique. 

These anchor boxes play an important role in identifying the boundaries of objects. Subsequently, the tiny 

YOLO v3 model is employed to effectively forecast the boundary boxes of the identified objects, using the 

anchor boxes as references.  

Recently, end-to-end deep learning has been widely and successfully applied to human detection in 

thermal imaging. Ivašić-Kos et al. [23] proposed using the YOLO model to locate humans in thermal images. 

Wang and Hosseinyalamdary [24] proposed using the RetinaNet method to address the issue of detecting 

humans in thermal images. They use additional information from temporal components in the video as 

compared to still images, resulting in improved human detection outcomes. In [25], a pixel-wise method 

based on CNN is proposed to address the challenge of detecting humans. The results presented in this paper 

are compared with those of the five traditional and most effective approaches. Li [26] focused on the 

detection of pedestrians within thermal images by employing the YOLO v3 model. The authors introduced a 

strategy that utilizes the strengths of YOLO v3, a deep learning architecture, to precisely identify pedestrians 

in infrared images. The study [27] introduced an innovative strategy for detecting humans through the 

utilization of YOLO v5 and transfer learning. The research centers on the utilization of thermal image data 

obtained from unmanned aerial vehicles (UAVs) to enhance surveillance capabilities. Akshatha et al. [28] 

investigated Faster R-CNN and single shot multibox detector (SSD) to detect humans in aerial thermal images.  

In this study, we propose a comparison of different feature learning approaches based on deep 

learning for detecting humans in thermal images. Specifically, we aim to enhance the performance of the 

human detection system by considering the effectiveness of the Mask R-CNN model. The Mask R-CNN is an 

extension of the Faster R-CNN, which not only extracts bounding boxes containing human objects but also 

identifies segmentation masks around the subjects. We also explore and compare the effectiveness of various 

CNNs for feature learning, such as ResNet50 V1, ResNet101 V1, and Inception ResNet V2, within the Mask 

R-CNN framework. We evaluated the experiment using our human dataset for thermal imaging. The results 

show that the proposed method obtains high performance in detecting people in thermal imaging. 
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2. PROPOSED METHOD  

In this research, thermal images are analyzed using the Mask R-CNN model [29] with varying CNN 

backbone structures to identify human subjects. The flowchart representation of the new approach is 

illustrated in Figure 1. The Faster R-CNN model architecture that has been further improved in terms of both 

training and detection speed is suggested in [30]. 

 

 

 
 

Figure 1. Overview of the Mask R-CNN model for human detection in thermal images [29] 

 

 

This Faster R-CNN consists of two modules: 

− Regional proposal network (RPN): A CNN network that suggests regions and object types to consider 

within the region. 

− Fast R-CNN: A CNN network that extracts features from region proposals and produces bounding boxes 

and labels. 

Both modules operate on the same output of a deep CNN. The RPN works by taking the output of a 

pretrained deep CNN and feeding the feature map into a small network that generates multiple region 

proposals and prediction labels. Region proposals are bounding boxes based on predefined anchor boxes or 

shapes designed to expedite and enhance region recommendations. The prediction for the label is expressed 

in binary, indicating whether an object is present or not in the region proposal. The first stage employs a deep 

CNN to generate a feature map. Unlike Fast R-CNN, this architecture does not directly generate RoIs on the 

feature maps; instead, it employs the feature maps as input to the RPN network to detect region proposals. 

Simultaneously, the feature maps are fed into the classifier to classify objects within the region proposals 

identified by the RPN network. 

Building upon Faster R-CNN, Mask R-CNN introduces a third parallel branch for predicting object 

masks. Mask detection involves a fully connected network applied to each RoI. As pixel-level segmentation 

demands finer alignment compared to bounding boxes, Mask R-CNN enhances the RoI Pooling layer to 

achieve more precise mapping of RoIs to the regions in the original image. Mask R-CNN applies the same 

two-stage process, with the first stage identical to Faster R-CNN (that's RPN). In the second stage, in parallel 

with layer prediction and box offset, Mask R-CNN also outputs a binary mask for each RoI. The Mask  

R-CNN segmentation will use the result of the "heat map" and from here, apply deconvolution and unpooling 

to obtain the mask on the original image. Through deconvolution and unpooling, we can build a predictive 

partition on the original image for all classes of objects. This is also the output for the object partition block.  

In addition to Faster R-CNN, the Mask R-CNN incorporates a significant improvement by replacing 

the RoI Pooling block with a module called RoI Align. This alteration plays a pivotal role in enhancing the 

accuracy of Mask R-CNN. Both RoI Pooling and RoI Align share the primary objective of standardizing the 

size of the region of interest for the subsequent layers. RoI Pooling [30] involves generating a compact 

feature map (e.g., 7×7) from each RoI. On the other hand, RoI Align is devised to address the localization 

errors inherent in RoI Pooling. RoI Align mitigates severe quantization effects; for instance, it employs x/16 

instead of [x/16] to avoid coarse quantization. This precise alignment ensures that the extracted features align 

accurately with the input pixels. 

 

2.1.  Backbone CNNs 

We used the network architecture for Mask R-CNN based on how to select the network for the 

feature extraction (backbone) corresponding to the top of the network corresponding to Figure 2. The 

backbones we use in Mask R-CNN are based on well-known CNN models. These CNN models serve as 

feature extractors from the input image. CNN has proven effective and significant feature learning. 
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We investigate and compare the effectiveness of some state-of-the-art deep CNN models as the 

backbone for human detection in thermal images, such as ResNet50 [31], ResNet101 [31], and Inception 

ResNet [32]. These architectures have been determined to have high results in object recognition and are 

widely used by other studies.  

We implement the Mask R-CNN model based on the TensorFlow object detection framework on 

Google Colab. The process involves several steps, including setting up the environment, preparing the 

dataset, configuring the model, and training the model.  

− Step 1 (environment setup): Install the TensorFlow object detection API  

− Step 2 (dataset preparation): For training Mask R-CNN model based on TensorFlow object detection API, 

we initially label humans in our infrared images using the Labelme tool, resulting in .json files containing 

labeled humans. Our dataset has been annotated with bounding boxes and masks. The next step involves 

converting the .json annotation files to COCO format, which includes images with humans labeled as 

“people”, along with bounding boxes and masks. Because the object detection API uses the TFRecord file 

format, we proceed to convert the COCO files into TFRecord format. 

− Step 3 (model configuration): We download and install pre-trained backbone models of Mask R-CNN 

based on the COCO 2017 dataset and their configuration files. The backbone models such as ResNet50-

V1, ResNet101-V1, and Inception ResNet-V2 are used in our experiments. We adjust the configuration 

file with num_classes is set to 1 (only detect human label in thermal image) to match our requirements. 

The other parameters and configuration settings are used by default in the configuration file. 

− Step 4: Train our object detection model based on TensorFlow. 

 

 

 
 

Figure 2. Mask R-CNN backbone architecture 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Dataset and experiment setup 

We evaluate the performance of our detection system using a thermal dataset collected by the 

research team of Chonnam National University [7], [9]. The data is acquired using an Argo S thermal 

imaging camera operating at a resolution of 640×480, capturing frames at a rate of 31 frames per second. 

This camera is placed at a height of about 10~12 m from the ground (on the third floor of the building), as 

shown in Figure 3. The database was captured at various points around the Gwangju campus of Chonnam 

National University (CNU). It contains recordings from different locations and features varying sizes of 

moving objects, with the majority being quite small. The videos were taken outdoors during the summer 

months (July to September), when the temperatures typically range from 18 °C to 30 °C on average. 

When employing thermal cameras, objects with higher temperatures than the background will 

appear brighter, while objects with lower temperatures will appear darker. During the night, as the body 

temperature is typically higher than the background, humans are seen as white due to this phenomenon 

known as polarity inversion. To address this issue, our newly devised method is designed to effectively 

manage such scenarios. Figure 4 shows examples of thermal images in our dataset. 

In the experiments, we evaluate the outcomes of the proposed model by randomly selecting 540 

thermal images from 3 videos. The training dataset comprises 448 images, while the test dataset comprises 92 

images. In our dataset, several challenges impede accurate detection, as shown in Figure 4 such as occlusion 

(where humans can be partially obscured by tree branches, or when a car passes by and blocks the view, or is 

obstructed by other obstacles), various-sized objects (the humans in the image have varying sizes, especially 

most of them are small-sized and far from the camera's position), reflections (arising from varying surface 
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emissivity can distort thermal patterns, leading to inaccuracies), and so on. There is a significant amount of 

diversity in situations involving shifts in weather and lighting conditions, fluctuations in body and 

background temperatures, and sudden changes in intensity. This event takes place when the car enters the 

frame. At that moment, the camera automatically standardizes the thermal measurements for all areas within 

the scene and converts them into grayscale. Consequently, the vehicles appear brighter and cause the 

surrounding environment to become darker than its typical state. This results in a sudden shift in the frame's 

intensity, making it darker compared to the preceding frame. So, our dataset is a very challenging dataset. 

 

 

 
 

Figure 3. Example of the thermal camera and location to record thermal videos [7], [9] 

 

 

 
 

Figure 4. Examples of our thermal dataset 

 

 

In our experiments, the size of each input image used to train the model was 640×480 pixels. 

Subsequently, the input images are passed through the RoI Pooling layer to be resized to 1024×1024 pixels. 

The input images are all maintained at a fixed size so that they can be grouped into multiple batches, thereby 

speeding up the training process.  

To identify areas in the image that are likely to contain humans (regions of interest or candidates), 

we employ the intersection over union (IoU) metric for evaluation. In this study, we consider a region as a 

valid RoI (candidate) only when its IoU is greater than or equal to 0.5. If not, we exclude that region. This 

process is applied to all regions, resulting in a selection of regions where the IoU is greater than 0.5. The 

model's effectiveness is evaluated by calculating recall, precision, and F1-score based on these frames. 

 

3.2.  Results analysis 

In this section, we evaluate the effectiveness of the Mask R-CNN algorithm for detecting humans in 

thermal imaging, utilizing various CNN-based backbones. We focus on the challenging conditions of thermal 

imaging for human detection methods, such as detecting small-sized objects, background similarity, and 

occlusion. Table 1 presents the performance comparison of the results of Mask R-CNN with various 

backbones. Based on Table 1, we observe that the Mask R-CNN model achieves a precision rate of over 

96%, indicating a reduced likelihood of misrecognizing objects, which corresponds to lower noise detection. 

However, the recall rate is less satisfactory, attributed to challenges such as very small size of human 
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subjects, occlusion by tree leaves, and the similar intensity between humans and the background in the 

images, leading to a higher likelihood of the model overlooking them. Notably, ResNet50-V1 stands out with 

the highest recall at 79.33%, indicating its effectiveness in detecting humans. ResNet101-V1 demonstrates 

exceptional precision at 98.9%, implying accurate human predictions. Meanwhile, Inception ResNet-V2 

obtains lower recall, precision, and F1-score. When considering the F1-score, which balances precision and 

recall, ResNet50-V1 maintains a solid balance with an F-value of 87.85%. These results emphasize the trade-

offs and strengths of each model, offering valuable insights into their suitability for object detection tasks. 

Finally, our investigation revealed that the Mask R-CNN model with the ResNet50-V1 backbone 

outperformed others in accuracy, achieving a precision rate of 98.41% and a recall of 79.33%, with an  

F1- score of 87.85%. Figure 5 illustrates the comparison of the three backbone models for thermal imaging 

based on Mask R-CNN. Figure 5(a) represents the input thermal image. Figure 5(b) shows the results of 

Mask R-CNN using ResNet 50-V1. Figure 5(c) shows the results of Mask R-CNN using ResNet101-V1. 

Figure 5(d) shows the results of Mask R-CNN using Inception ResNet-V2.  

 

 

Table 1. Performance results and computation cost of backbones in the Mask R-CNN model. 
Backbones Recall (%) Precision (%) F1– score (%) Model training time (s) Time to test each frame (s) 

ResNet50-V1 79.33 98.41 87.85 1615.15 0.27 

ResNet101-V1 75.16 98.90 85.41 2442.38 0.27 
Inception ResNet-V2 72.59 96.38 82.81 3443.25 0.68 

 

 

In addition, we compared training and testing times for each backbone model used. Table 1 also 

presents a comparison of the processing times of the backbones in the Mask R-CNN. We observed that 

ResNet50-V1 emerges as the most efficient in terms of training time, requiring only 1615.15 seconds to 

complete. ResNet101-V1 and Inception ResNet-V2 follow, with training times of 2442.38 seconds and 

3443.25 seconds, respectively. When it comes to analyzing frames, both ResNet50-V1 and ResNet101-V1 

exhibit the same processing speed, taking 0.27 seconds per frame. In contrast, Inception ResNet-V2 is 

relatively slower, needing 0.68 seconds for each frame. These results offer valuable insights for choosing a 

model based on computational efficiency, with ResNet50-V1 showcasing superior training speed and real-

time frame analysis.  

We also compare the performance of Mask R-CNN models with the SSD approach [28] on our 

dataset, as shown in Table 2. We realize that the Mask R-CNN variants significantly outperform the SSD 

using backbone ResNet50-V1 methods across all metrics. The Mask R-CNN with ResNet50-V1 

demonstrates the best performance, with the highest F1-score and excellent precision, indicating a high rate 

of accurate detections and a low rate of false positives. Although the Mask R-CNN with ResNet101-V1 and 

Inception ResNet-V2 have slightly lower recall and F-values, they still maintain high precision and 

considerably outperform the SSD approach.  

 

 

  
(a) 

 

(b) 

  
(c)  (d) 

 

Figure 5. Comparison results with different CNN backbones: (a) input image, (b) result based on the  

ResNet 50-V1, (c) result based on the ResNet101-V1, and (d) result based on the Inception ResNet-V2 
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Table 2. Performance comparisons of various methods in our dataset 
Approaches Recall (%) Precision (%) F1– score (%) 

Mask R-CNN with ResNet50-V1 79.33 98.41 87.85 

Mask R-CNN with ResNet101-V1 75.16 98.90 85.41 

Mask R-CNN with Inception ResNet-V2 72.59 96.38 82.81 

SSD with ResNet50-V1 66.94 79.52 72.68 

 

 

While the study presents a comprehensive analysis of Mask R-CNN backbones, it acknowledges 

limitations like the lower recall rate in complex imaging scenarios. In some cases, the objects have the same 

intensity as the background, leading to false negatives (missed detections). When people are close to each 

other or occluded by trees or other objects, parts of these objects are lost. This can make it challenging for the 

algorithm to detect and separate humans, potentially reducing the recall rate. The further away a person is 

from the camera, the smaller the object size becomes, and the less detail there is in the image for the 

algorithm to analyze, making accurate detection more difficult. Improving recall often comes at the cost of 

reducing precision, so there is usually a trade-off to be managed in these systems. The intricacies of these 

scenarios necessitate further, more detailed research to enhance detection accuracy. These limitations are 

illustrated in Figure 6 and will be considered in future work. 

 

 

 
 

Figure 6. Examples of miss detection errors of our method in shown in the red ellipse regions 

 

 

4. CONCLUSION  

This study employs the Mask R-CNN framework, coupled with a comparison of backbones 

including ResNet 50-V1, ResNet 101-V1, and Inception ResNet-V2 to effectively detect humans in thermal 

imagery. We investigate human detection using a thermal database recorded at the Gwangju campus of 

Chonnam National University. This method shows great potential for enhancing campus security, providing 

an important capability for maintaining a secure environment through continuous monitoring. Furthermore, 

our approach can be extended to other application domains, such as search and rescue operations, where it 

has the potential to detect individuals in challenging environments. It can also be applied to critical areas like 

border control. Our model has demonstrated favorable accuracy results, as described in the experimental 

results section. However, there are certain limitations within this topic, outlined as follows: i) In frames 

where numerous objects are present, or objects are obscured by trees or exhibit lower temperatures than the 

background, the model does not achieve optimal results; ii) Dataset limitations: the actual dataset remains 

constrained; therefore, there is a necessity to amass more data and provide accurate labeling to enhance the 

model's training effectiveness. The dataset has remained relatively unchanged, consisting solely of three 

videos. 

Our next goal is to expand the database by collecting data from various other sources that exhibit 

high variability. This approach will enable us to train the model more efficiently. Additionally, we plan to 

employ methods for enhancing video processing. Rather than treating each frame individually, we intend to 

explore the interframe relationships within videos. 
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