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 Because of its spectral-spatial and temporal resolution of greater areas, 

hyperspectral imaging (HSI) has found widespread application in the field of 

object classification. The HSI is typically used to accurately determine an 

object's physical characteristics as well as to locate related objects with 

appropriate spectral fingerprints. As a result, the HSI has been extensively 

applied to object identification in several fields, including surveillance, 

agricultural monitoring, environmental research, and precision agriculture. 

However, because of their enormous size, objects require a lot of time to 

classify; for this reason, both spectral and spatial feature fusion have been 

completed. The existing classification strategy leads to increased 

misclassification, and the feature fusion method is unable to preserve 

semantic object inherent features; This study addresses the research 

difficulties by introducing a hybrid spectral-spatial fusion (HSSF) technique 

to minimize feature size while maintaining object intrinsic qualities; Lastly, 

a soft-margins kernel is proposed for multi-layer deep support vector 

machine (MLDSVM) to reduce misclassification. The standard Indian pines 

dataset is used for the experiment, and the outcome demonstrates that the 

HSSF-MLDSVM model performs substantially better in terms of accuracy 

and Kappa coefficient. 
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1. INTRODUCTION 

Remote-sensing images are those that are obtained using remote-sensing sensors, such as those 

supplied by satellites and drones. The main source of worldwide coverage, offering photographs of every 

region on Earth, is satellite imagery. In this approach, satellite imaging is used in many sectors, such as 

forestry, agriculture, oceanography, weather studies, and shoreline studies. It works especially effectively in 

the domains of precision agriculture and plant phenotyping identification [1], [2]. One such indicator is the 

normalized-difference vegetation index (NDVI) [3], from which the NDVI distributed mapping is typically 

derived using standard methods, which typically use the initial unmanned aerial vehicle (UAV) multi-spectral 

(MS) image. Inaccuracy in the NDVI distributed mapping could be caused by the original MS pictures' low 

spatial resolution. When compared to spectral resolution, MS picture spatial resolution is typically 

inadequate. Hyperspectral images (HSI) and panchromatic (Pan) images have low spectral resolution and 

high spatial resolution, respectively [4]. Utilizing MS images results in the loss of certain spatial information. 

Consequently, it is possible to simultaneously improve the spectral and spatial resolutions of the combined 
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MS and HSI. This trend encouraged the proposed research to design an effective hybrid fusion, i.e., spatial-

spectral fusion technique for object classification. The resultant NDVI distributed mapping will have higher 

resolution and improve object classification performance.  

One of the primary requirements that must be fulfilled before the satellite images can be utilized for 

object categorization applications is high resolution. Hyperspectral sensors produce images with high spectral 

information but low spatial information. However, multispectral sensors are image sensors that capture both a 

large amount of geographical data and a small amount of spectral-information. A preprocessing technique 

called image-fusion enhances an image's spectral and spatial resolution. As illustrated in Figure 1, the image 

fusion method finds application in many domains, including medical image visualization, machine vision [5], 

bioinformatics security, land classification, navigation, variation identification, digital imaging, military 

applications, satellite, and aerial imaging [6], [7], robotic vision, food microbe detection [8], photography, 

and surveillance [9]. The goal of this study is to examine current advancements in image-fusion techniques 

used in HSI-based object classification methods, pinpoint issues and difficulties encountered, and provide a 

successful feature-fusion method that preserves intrinsic object characteristics in both spatial and spectral 

domains.  

 

 

 
 

Figure 1. Architecture of proposed hybrid HSI fusion technique for object classification 

 

 

The image-fusion approach [10] considers two photographs from the same area taken by different 

sensors; the main goal is to enhance the spatial and spectral resolution of one image without compromising 

the quality of the information about the intrinsic characteristics of the object. The present techniques aid in 

creating a fusion image with a better resolution, but there is a chance that the unwanted artifacts and noise 

elements caused by inadequate registration will affect how the fused image looks overall in the source 

photos. The enhanced quality of the final fused image will appear significantly different, depending on the 

task at hand and the source image. The most crucial stage in understanding the significance of the fusion 

process is evaluating the image quality. The objectives of object categorization applications [11] vary, thus 

choosing the best image fusion technique is essential. It can be challenging to choose the best method for 

implementing remote sensing object classification, especially in supervised classification environments 

where the "Hughes-phenomenon" exists because of an imbalance between the small training sample size and 

the extremely high spectral dimensions of HSI, which have negative effect on classification accuracy [11], 

[12]. This work presents a hybrid fusion technique namely hybrid spatial-spectral fusion (HSSF), where 

feature fusion is carried out both spatially and spectrally. Ultimately, a multi-layer deep support vector 

machine (MLDSVM) method is employed to accomplish object classification utilizing the spatial-spectral 

fused feature. The significance of the research work is given as: 
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− The article presents a spectral feature fusion process that minimizes the total number of bands needed for 

hyperspectral imaging-based item categorization.  

− Second, a spatial feature fusion process that preserves and minimizes each object's intrinsic properties 

was introduced by the work.  

− Lastly, a new soft-margin weights optimization for a multi-layer deep support vector machine 

classification algorithm was presented that lowers misclassification. 

The paper's organization is as follows: section 2 examines the limitations of the many image fusion 

and classification methods currently in use for the application of remote sensing object categorization. The 

hybrid fusion technique's suggested methodology is presented in section 3. The experiment investigation and 

comparison with the current fusion-based object categorization methodology are presented in section 4. 

Finally, a direction for further research was suggested in the research conclusion. 

 

 

2. LITERATURE SURVEY 

This section studies various existing fusion and classification techniques for improving the quality 

of satellite images for effective provisioning of remote sensing object classification applications. In study 

[13] showed outlier [14] during the registration process significantly impacts fusion performance; recently, 

deep learning-based techniques [15] have been used to effectively remove the outliers and enhance fusion 

accuracy [16]. Using spatial data from HSI characteristics, an HSI-based crop classification model was 

developed in [17]. Lastly, crop categorization is carried out to estimate large-scale crop areas. They analyzed 

precision in the early-seasonal predicting approach and modeled a transfer learning approach using growing 

season data. For improved crop-type mapping, multispectral time-series data and synthetic-aperture radar 

data were integrated in [18]. They demonstrated how inaccurate it is to only use radar data, determined which 

feature combination improves accuracy, and researched misclassification to improve crop profile modeling. 

They looked at two different fusion techniques and demonstrated how feature selection helps cut down on 

computational overhead. Yin et al. [19] explored fusion methods for scene classification using HSI, taking 

into account several points of view. They assessed scene classification with both single-side and multiple-

side image combinations [20]. Recent convolution neural network (CNN)-based crop categorization 

techniques and their advantages for precise outcomes were examined in [21]. To achieve better fusion, 

Zhang et al. [22] presented a CNN that combines interleaving perception; the model is concentrated on 

fusing heterogeneous information from light detection and ranging (LiDAR) data and HSI. A bidirectional 

autoencoder was created to perform the reconstruction of LiDAR and HSI features together. The fused 

information is then fed into a two-branch CNN to perform classification. Gao et al. [23] created a technique 

for identifying the land cover of complicated wetlands with patchy, mixed vegetation. First, CNN is utilized 

to merge the HSI and multispectral characteristics. After the model ensures a high quality of spatial-spectral 

feature resolution, pixel-by-pixel object classification is carried out using the fused image's spatial and 

spectral visual correlation. The fusion method known as enhanced multiscale feature-fusion network 

(EMFFN) was first introduced in [24]. Using two subnetworks, the spectral cascaded dilated convolutional 

network (SCDCN) and parallel multipath network (PMN), the model extracts multiscale spatial-spectral 

information [25]. When extracting multiscale characteristics from long-range data of bigger fields, the 

SCDCN is employed. Next, small, medium, and large-scale features are spatially captured using PMN. In the 

end, a hierarchical fusion of features ensures improved high-level semantic features even with insufficient 

training data [26], [27] 

 

 

3. PROPOSED METHOD 

This section introduces an effective HSI fusion technique that reduces the band and feature size and 

retains high-quality features both spatially and as well as spectrally. Finally, using the fused features 

information the object classification process is done using a machine learning algorithm. The architecture of 

the proposed HSI object classification methods is given in Figure 1. 

 

3.1.  Spectral-spatial feature fusion technique 

The raw HSI 𝐽 with band size of 𝐾 can be expressed using (1).  

 

𝐽 = (𝐽1, … , 𝐽𝑂) ∈ 𝒮
𝐶×𝑂 (1) 

 

where 𝐾 is represented as 𝒮𝐶×𝑂, the raw HSI is segmented into 𝑁 clusters with equal spectral band size, the 

parameter 𝐶 defines dimensions and parameter 𝑂 defines the pixel size of raw HSI. The band size in each 

cluster is expressed as (2). 
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𝐶1, 𝐶2, … , 𝐶𝑁 (2) 

 

The averaging-based image fusion is done at each group and the corresponding fusion data 𝑄 is 

given using (3). 

 

𝐽𝑛 =
∑ 𝐽𝑛

𝑜𝐶𝑛
𝑜=1

𝐶𝑛
 (3) 

 

where parameter 𝑛 defines the 𝑛th group, 𝐶𝑛 defines the band's size in the 𝑛th group, 𝐽𝑛
𝑜 defines the 𝑜th band 

in the 𝑛th group of the raw HSI, and 𝐽𝑛 defines the 𝑛th spectral band after performing fusion. In (3) enables 

the spectrally reduced pixels of HSI to retain the object's physical properties i.e., quality of object reflectance 

will be retained. Further, the model is very effective in eliminating noise. The spectrally reduced HSI 𝐽 is 

again divided into multiple sub-clusters of neighboring bands as defined in (4). 

 

𝐽𝑙 = {
(𝐽(𝑙−1)𝐴+1,…,𝐽(𝑙−1)𝐴+𝐴), 𝑙 = 1,2, … , ⌊

𝑁

𝐴
⌋

(𝐽𝑁−𝐴+1,…,𝐽𝑁), 𝑙 = ⌈
𝑁

𝐴
⌉ ≠ ⌊

𝑁

𝐴
⌋

 (4) 

 

where 𝐽𝑙 defines the 𝑙th subcluster, 𝐴 defines the band size of each cluster, ⌈
𝑁

𝐴
⌉ represents the minimum value 

not smaller than 
𝑁

𝐴
, ⌊
𝑁

𝐴
⌋ represents the maximum value not larger than 

𝑁

𝐴
. Then, for obtaining shading and 

reflectance features of each object optimization is done using an intrinsic feature extraction mechanism at 

each subcluster 𝐽𝑙 as defined in (5). 

 

(𝑇𝑙
∗
, 𝑆𝑙

∗
) = arg min

𝑆𝑙,𝑇𝑙
𝐸(𝐽𝑙, �̂�𝑙 , �̂�𝑙) (5) 

 

where 𝑇𝑙 defines shading elements of the 𝑙th subcluster and 𝑆𝑙 defines reflectance elements of the 𝑙th 
subcluster. Finally, the reflectance features of objects in multiple subclusters are fused to obtain the 

corresponding intrinsic features of objects, which is defined as a matrix representation with 𝑛-dimensional 

feature �̃� as defined in (6). 

 

�̃� =

(

 
𝑆1
⋯
𝑆𝑙
⋯

𝑆
⌈
𝑁
𝐴
⌉)

 ∈ 𝒮𝑁×𝑂 (6) 

 

The intrinsic feature depends on the surface feature of the earth; the illumination and climate 

conditions impact the intrinsic properties of objects. To extract semantically meaningful features spatially 

the shading feature must be removed from the intrinsic feature. Let the intensity feature, intrinsic feature, 

and shading feature be defined using parameters 𝐽 ∈ 𝒮𝑠∗𝑑, 𝑆 ∈ 𝒮𝑠∗𝑑, and 𝑇 ∈ 𝒮𝑠∗𝑑, respectively. The HSI 

for a pixel 𝑞 is excessed as a pixel-wise multiplicative of object reflectance and shading features as defined 

in (7). 

 

𝐽𝑞 = 𝑆𝑞𝑇𝑞 (7) 

 

where 𝑞 represents pixel indexes. In (7), the parameters 𝑆𝑞  and 𝑇𝑞 are unknown parameters and 𝐽𝑞 is the 

known parameter. The reflectance properties of objects will vary extremely at the edges and remain similar 

within the respective object class. The value of reflectance keeps changing with variation in intensity value; 

thus, identifying the exact intensity value will result in identifying similar reflectance output. Therefore, 

reflectance 𝑆𝑞  is measured as (8). 

 

𝑆𝑞 = ∑ 𝑏𝑞𝑟𝑆𝑟𝑟∈𝒪(𝑞)  (8) 

 

In (8), 𝑏𝑞𝑟 defines the parameter that estimates intensity similarities between spectral angle and intensity 

value among pixel indexes 𝑞 and 𝑟. In measuring 𝑏𝑞𝑟 affinity graph through the Gaussian function both the 

range distance between intensity 𝐽𝑞 and 𝐽𝑟 and the space distance between pixel 𝑞 and 𝑟 are used through (9),  
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𝑏𝑞𝑟 = {
exp [−(

‖𝑞−𝑟‖2
2

2𝜎𝑡
2 +

‖ 𝐽𝑞− 𝐽𝑟‖2
2

2𝜎𝑠
2 )] , 𝑖𝑓𝑟 ∈ 𝒪(𝑞)  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (9) 

 

where 𝜎𝑡 defines the space optimization parameter and 𝜎𝑠 defines the range optimization parameter. 

Therefore, using (9), the 𝑆𝑟  can be established through (10). 

 

𝑆𝑟 = ∑ {exp [−(
‖𝑞−𝑟‖2

2

2𝜎𝑡
2 +

‖ 𝐽𝑞− 𝐽𝑟‖2
2

2𝜎𝑠
2 )]}𝑟∈𝒪(𝑞) 𝑆𝑟  (10) 

 

Using (9) the HSI 𝐽𝑞 structure can be preserved with better texture 𝑆𝑞  representation. The object intrinsic 

feature is established by considering �̃�𝑞 =
1

𝐽𝑞
 through linear properties using (7) and (8). 

 

{
𝑆𝑞 = ∑ 𝑏𝑞𝑟𝑆𝑟 ,𝑟∈𝒪(𝑞)

�̃�𝑞 =
1

𝐽𝑞
𝑆𝑟 ,

 (11) 

 

Using (11), the value of 𝑆𝑞  and 𝑇𝑞 is approximated to decompose 𝐽𝑗 to 𝑆𝑗 and 𝑇𝑗 ∀𝑗 ∈ {1, 𝑄}. Therefore, the 

reflectance value of different objects by eliminating shading is obtained. Thus, aiding in better spatial feature 

intrinsic representation. Once the fusion of both spectral and spatial is done. The final fused feature of 𝑆 of 

different objects is represented as a vector form defined as 𝑌 and trained using the machine learning 

algorithm defined below. 

 

3.2.  Multi-layer deep support vector machine model 

The feature space of objects is expressed as 𝑌 ∈ 𝑆𝑒, the index is defined as 𝑍 = {−1 + 1}, and the 

corresponding object distribution considering 𝑌 ∗ 𝑍 is defined as 𝐸. The margin of standard SVM is 

computed as (12). 

 

𝛽𝑗 = 𝑧𝑗𝑥
𝑈𝛼(𝑦𝑗),   𝑗 = 1,2,3, … , 𝑛 (12) 

 

where 𝛼(𝑦𝑗) defines feature mapping of 𝑦 to kernel 𝐿. The traditional SVM [28] is usually designed through 

the assumption that the object is distinguishable and hyperplane have the competence to classify the object 

feature 𝑇 with minimal false positives; therefore, the SVM margin is estimated as (13). 

 

min
𝑥

1

2
‖𝑥‖2  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑧𝑗𝑥

𝑈𝛼(𝑦𝑗) ≥ 1,   𝑗 = 1,2,3, … , 𝑛, (13) 

 

However, when crops have comparable characteristics, when data is unbalanced, or when crops are classified 

in a mixed cropping setting, using the aforementioned in (13) will result in high misclassification. Moreover, 

there are situations in which certain crops have relatively few features available, while other crops have many 

features available; this can cause problems with data imbalance. The outcome of applying the SVM 

classification constructed with the hard margin given in the preceding equation is not that good. In light of 

data imbalance and the presence of label-noise concerns, this work introduces soft-margin with multi-layer 

deep SVM for optimizing the decision boundary for crop classification. By concurrently maximizing the 

margin average and lowering the margin difference, the proposed multi-layer deep SVM model optimizes the 

decision boundary and its difference is calculated using (12). 

 

�̂� =
1

𝑛2
∑ ∑ [𝑧𝑗𝑥

𝑈𝛼(𝑦𝑗) − 𝑧𝑗𝑥
𝑈𝛼(𝑦𝑗)]

2𝑛
𝑘=1

𝑛
𝑗=1  (14) 

 

and the margin average is computed through (15). 

 

�̅� =
1

𝑛
∑ 𝑧𝑗𝑥

𝑈𝛼(𝑦𝑗) =
1

𝑛
(𝑌𝑧)𝑈𝑥,𝑛

𝑗=1  (15) 

 

Using (16), the optimization of the decision boundary is updated as (16). 

 

min
𝑥

1

2
‖𝑥‖2 + 𝛿1�̂� − 𝛿2𝛽 ̅such that 𝛼(𝑦𝑗) ≥ 1,   𝑗 = 1,2,3, … , 𝑛 (16) 
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where 𝛿1 and 𝛿2 are bounds utilized in getting optimal performance. The work further develops an effective 

margin maximization and error minimization to classify the object 𝑇 which are indistinguishable using (17). 

 

min
𝑥,𝜇

1

2
‖𝑥‖2 𝛿1�̂� − 𝛿2�̅� + 𝐷∑ 𝜇𝑗

𝑛
𝑗=1 such that𝑧𝑗𝑥

𝑈  𝛼(𝑦𝑗) ≥ 1 − 𝜇𝑗 ,   𝜇𝑗 ≥ 0,   𝑗 = 1,2,3, … , 𝑛, (17) 

 

where variable 𝐷 is a regularization term used for optimizing penalty for wrong classification, and in 

measuring feature loss the work uses slack variable 𝜇; in this work higher penalty is given for larger error.  

The classifier construction for multi-label object classification using MLDSVM is done using a 

pairwise-based mechanism. Let's consider there is 𝑍 number of object classes where 𝑍 = {1,2, … ,𝑚}, and 

𝑚(𝑚 − 1/2) hyperplane is constructed on all probabilistic pairwise classifiers employing MLDSVM. The 

MLDSVM initially carryout binary classification between two classes 𝑗 and 𝑘 using function 𝑓𝑗𝑘(𝑦) ∈

{−1,1} where 𝑗 ≠ 𝑘 ∈ 𝑍. In this work, before making any prediction  𝑦𝑞, it is essential to compute the 

weighted function 𝑇𝑗(𝑦𝑞) of each class 𝑗 ∈ 𝑍 to differentiate between the classes as defined through (18). 

 

𝑇𝑗(𝑦𝑞) = ∑ sgn{𝑔𝑗𝑘(𝑦𝑞)}
𝑚
𝑘=1
𝑘≠𝑗

 (18) 

 

where sgn(∙) defines signum function which is used for getting the real value of binary classification. The 

classification outcome 𝑦𝑞 is obtained according to maximum weighted objects as expressed through (19). 

 

𝑗∗ = argmax
𝑗∈𝑍

{𝑇𝑗(𝑦𝑞)}. (19) 

 

The adoption of hybrid spatial-spectral fusion combined with MLDSVM aids in attaining higher accuracy in 

comparison with a traditional model which is experimentally shown in the next section.  

 

 

4. RESULT AND DISCUSSION 

In this section, the performance of the HSSF-MLDSVM based hyper-spectral image object 

classification using HSI has been compared with the other existing feature fusion-based object classification 

techniques spectral-spatial dependent global learning (SSDGL) [10], central attention network (CAN) [11], 

convolution neural network -active learning-Markov random field (CNN-Al-MNF) [12], enhanced-multiscale 

feature-fusion network (EMFFN) [24], 3-dimension self-attention multiscale feature-fusion network (3DSA-

MFN) [25], adaptive spectral-spatial feature fusion network (ASSFFN) [26], low-rank attention multiple 

feature-fusion network (LMAFN) [27], and deep support vector machine (DSVM) [28]. For evaluating the 

proposed HSSF-MLDSVM and other existing HSI object classification techniques, the Indian Pines dataset 

has been used. Overall-accuracy (OA), average-accuracy (AA), the kappa-coefficient (K), and time required 

for computation are some of the most commonly utilized metrics in current HSI-based object classification 

techniques to evaluate the effectiveness of various HSI fusion based object-classification approaches. By 

attaining higher values for the OA, AA, and K, the technique shows the best performance. Moreover, by 

decreasing the time for the computation, the techniques can be deployed in real-time. 

 

4.1.  Dataset description 

An airborne visible-infrared imaging spectrometer (AVIRIS) sensor that was positioned over the 

northwestern corner of Indiana was used for capturing the data for the Indian-Pines dataset as shown in 

Figure 2. When gathering hyperspectral information, a wavelength of 0:4-2:5 ×10−6 meters is used alongside 

145×145 pixels and 224 bands. Indian-Pines Dataset is necessary since two-thirds of the area that was 

measured is agricultural, while the remaining one-third is made up of forest along with other naturally 

present flora. Indian-Pines dataset also includes two-lane highways, two-way streets, residential 

neighborhoods, and other low-rise structures. In addition, some crops are still in the beginning phases of their 

development, which accounts for fewer than five percent of the total data acquired in the Indian Pines 

dataset. According to Figure 2, there are an overall 16 crops (or labels) that make up the ground-truth 

information. In a manner comparable to [10], and [11], the water-absorption spectrum bands are removed, 

and the total number of the bands that comprise the spectral spectrum is decreased to 200. 

 

4.2.  Study the classification performance of the proposed method used for object classification 

In this section the significance of proposed classifier employing HSSF and its classification 

accuracy and Kappa coefficient graphical outcome have been studied in Figure 3. The results show the 

proposed model without HSSF achieved an average accuracy of 81.45% and Kappa coefficient of 82.61% for 
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Indian-pines HSI. On the other side, the proposed model with HSSF achieves an average accuracy of 99.93% 

and Kappa coefficient of 99.91%. Thus, results show employing HSSF aids in significantly improving 

classification accuracy by reducing misclassification.  

 

 

 
 

Figure 2. Pseudo-color image and ground-truth map for Indian Pines dataset 

 

 

 
 

Figure 3. Spatial-spectral performance study on object classification 

 

 

4.3.  Comparative study 

In this section, the experimentation has been done using the Indian-pines dataset and has been 

evaluated using the OA, AA, K, and time required for the computation metrics. The proposed HSSF-SVM 

technique has been compared with the existing techniques like SSDGL, CAN, CNN-Al-MNF, EMFFN, 

3DSA-MFN, ASSFFN, LMAFN, and DSVM techniques. The accuracy that has been achieved for the 

various objects (class name) has been given in Table 1. From the results presented in Table 1, it can be noted 

that the presented HSSF-SVM technique attains the best accuracy in terms of OA, AA, K, and time required 

for the computation for all the objects in comparison to the other existing techniques. Moreover, the proposed 

HSSF-SVM technique induces the least computing overhead when compared with all the CNN-AL-MNF and 

EMFFN techniques. 
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4.4.  Classification map comparison 

Figure 4 shows the classification produced by existing HSI object classification methods. The 

accuracies of different existing HSI object classification methods are given inside the parenthesis. The result 

clearly shows the proposed method produces very high accuracies by reducing the false positive in 

comparison with existing HSI object classification methods; thus, produces better classification maps in 

comparison with existing HSI object classification methods. 

 

 

Table 1. Comparative analysis 
Class name DSVM 

(2020) 

[28] 

CNN-Al-MNF 

(2020)  

[12] 

SSDGL 

(2022) 

[10] 

CAN 

(2021) 

[11] 

EMFFN 

(2021) 

[24] 

3DSA-MFN 

(2022) 

[25] 

ASSFFN 

(2022) 

[26] 

LMAFN 

(2023) 

[27] 

HSSF-

MLDSVM 

[Proposed] 

Alfalfa 100 92.71 100 87.8 100 98.67 93.18 98.78 99.97 
Corn notill 100 92.98 99.63 98.05 96.88 99.59 96.24 64.40 100 

Corn mintill 100 88.7 99.24 97.99 99.22 100.00 97.85 66.02 100 

Corn 100 97.7 100 94.37 99.97 98.73 97.35 90.95 100 

Grass pasture 99.43 92.9 99.56 98.39 99.37 100.00 98.91 83.37 99.93 

Grass trees 98.89 98.89 100 99.7 99.80 99.54 99.71 96.72 99.89 

Grass pasture 
moved 

100 76.74 100 100 100 100.00 40.74 99.57 100 

Hay windrowed 98.72 97.87 100 100 100 99.09 100 99.70 99.98 
Oats 100 38.89 100 77.78 100 99.42 84.21 100.00 99.97 

Soybean notill 95.75 92.27 99.68 98.17 98.07 99.56 96.86 74.01 99.56 

Soybean mintill 100 95.07 99.36 98.33 97.91 100.00 98.67 67.36 99.79 

Soybean clean 99.63 90.51 99.11 97.94 99.31 99.56 96.98 80.43 100 

Wheat 100 96.53 100 100 100 98.47 98.46 98.55 99.88 

Woods 100 99.28 100 98.77 99.53 98.73 100 93.01 100 
Buildings  

grass trees 

95.45 88.4 100 92.51 99.55 99.37 100 86.90 99.87 

Stone steel  
towers 

100 97.12 100 98.81 99.73 99.37 98.88 98.30 100 

OA (%) 98.86 98.79 99.63 98.1 98.85 99.52 98.11 75.41 99.91 

AA (%) 99.24 94.28 99.79 96.16 - 99.32 93.62 78.15 99.93 
Kappa (%) - - 99.58 97.84 98.36 99.24 97.84 87.38 99.91 

Time (s) - 8109.34 - - 279.65 - - - 104.45 

 

 

     

Three-band false color 
composite 

Ground truth DSVM, 2020 [28] 
(98.86%) 

CNN-Al-MNF, 2020 
[12] (98.79%) 

SSDGL, 2022 [10] 
(99.63%) 

     

     

EMFFN (2021) [24] 

(98.85%) 

3DSA-MFN, 2022 [25] 

(99.52%) 

ASSFFN, 2022 [26] 

(98.11%) 

LMAFN, 2023 [27] 

(75.41%) 

HSSF-MLDSVM 

[Proposed] (99.91%) 

 

Figure 4. Classification maps produced using different HSI object classification methods 

 

 

5. CONCLUSION 

This paper discusses various current HSI classification method using different fusion method 

adopting machine learning, deep leaning, and hybrid feature fusion mechanism; however, the current method 

exhibit poor performance for classes with less features; thus, shows they are not effective handling class 

imbalance issues; further, research shows current method failed to handle the impact of noisy i.e., mixed-

pixel; thus, failed to provide classification performance requirements of realistic platform; in this work a 

novel hybrid fusion method is developed combing feature of both spatial and spectral in more semantic 

manner; then, the fused feature of different object are trained with novel multi-layer deep SVM model to 
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perform object classification; experiment are conducted on two benchmark datasets; the result shows 

proposed method can handle both class imbalance and noisy mixed pixel problem using limited amount of 

training sample; the proposed HSSF-MLDSVM attains much improved performance in comparison with 

current HSI classification methodologies in terms of accuracy and Kappa coefficient. Future work would 

consider validating the model by introducing artificial noise representing more realistic HSI object 

classification scenarios. 
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