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 A dual-frequency measurement is employed in conjunction with an 

innovative Ifree filtering technique for mitigating the primary sources of 

Ifree influence on ground-based augmentation systems (GBAS) to safeguard 

the reliability of GBAS. The protective level achieved through the 

conventional Gaussian overbounding approach that are considered as much 

conventional technique. This adherence to tradition results in decreased 

reliability and a higher likelihood of false alarms. In contrast, the utilization 

of the Ifree algorithm contributes to reducing errors associated with dual-

frequency measurements. This paper proposes the overbounding process 

according to Bayesian Gaussian mixture model (GMM) for maintaining 

Ifree-based GBAS range error. The Bayesian GMM is utilized for single-

frequency model errors to examine the ambiguity estimations. The Monte 

Carlo (MC) simulation is established for defining estimated GMM assurance 

level accuracy which is attained through the general estimation method. 

Then, the last Bayesian GMM which is utilized for overbounding Ifree error 

distribution is investigated. According to the property of convolution 

invariance, the vertical protection in position field is determined without 

presenting difficult numerical calculations. 
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1. INTRODUCTION 

The ground-based augmentation system (GBAS) is a technology designed to enhance the accuracy 

and consistency of air navigation during landing. This technique delivers innovative civil aviation facilities to 

improve accuracy, availability, integrity, and endurance [1]. Truthfulness is the main aspect of indicating the 

security of precision methods at airports. It refers to its ability to alert when the output is not reliable. The 

reference station of GBAS broadcasts disparity correlation with truthfulness parameters [2], [3]. The GBAS 

verifies the integrity in three ways: delivering disparity correlations of local-area and elimination of general-

mode errors; delivering the authorized user through a personalized monitor for system faults; and enabling 

the user to create a residual error bound to make navigation actions [4]. Due to free electrons, the ionospheric 

delay along the path of the Global Navigation Satellite System (GNSS) signal is circulated consistently under 

normal conditions [5]. Whenever GNSS signals travel with the circulated ionosphere, a severe error that 

potentially compromises the truthfulness of GBAS is observed [6]. The ionospheric threat anomaly is 

displayed as a wavefront wedge and spatial linear semi-infinite at a fixed speed in mid-latitude areas [7]. The 

space-based augmentation system (SBAS) communicates real-time error correlations through geostationary 
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satellites. This SBAS utilizes a global positioning system (GPS) signal which provides an easy way for 

SBAS signal to GPS receiver without the substantial modifications [8], [9]. Additionally, SBAS generates 

truthfulness in data correlation for error bound positions. This truthfulness data contains covariance errors of 

each correlation, clock, orbit and ionosphere [10]. These covariances are utilized to define weight 

measurements during the position method and are employed to distinguish the error bound calculations [11]. 

By utilizing this error bound, the SBAS-based GNSS establishes whether or not to employ GNSS [12]. 

Further, for developing a scientific algorithm, a weighed mean model is employed to define output scores for 

positioning the SBAS. Then, ionospheric correction is attained from the local estimated ionospheric delay 

[13]. During the ionospheric delay, the spatial correlation is high, where a regional map containing SBAS 

map exposure which is enlarged through spatial prediction technique [14]. There are two analyses on this 

map, temporal and prediction, which consume the past and interior observations [15]. In the recent years, it is 

seen that over-bounding relies on localization for defining its location and pose which subsequently aids the 

path planning and navigation processes [16]. The localization techniques such as cooperative positioning, 

field measure from sensors and range-based techniques are developed to attain high-level positioning 

accuracy [17]. However, the sensors deployed in this localization system generate measurement errors like 

single-point solution in GPS and offset drifts in the inertia sensors [18].  

Gao et al. [19] implemented a Gaussian mixture model (GMM) for handling samples from 

ionosphere-free based GBAS errors. The GMM was applied to individual-frequency errors which examined 

the vagueness. In addition, Monte Carlo was executed to determine the evaluated GMM assurance level 

accuracy attained by the common estimation method. A road test displayed that the GMM overbound secured 

vertical protection levels (VPLs), with better computational rate compared to various non-Gaussian 

overbounds. However, the developed method had multiway errors which required an innovative degree of 

arithmetical correlation among frequencies. Lee et al. [20] developed an optimum parameter rise to improve 

the accessibility of individual-frequency GBAS for smart air transportation. The performance of three 

geometry-screening algorithms was related to four airports with low and mid-latitude areas. The target and 

optimum parameter performance were parallel in terms of availability. The optimal parameter minimized 

computational rate through the target parameter. Hence, the developed method needed to enhance the GBAS 

availability for designing a much more accurate and lower conventional ionospheric model which considers 

the features of equatorial plasma bubbles (EPBs). Maurer et al. [21] introduced the flight trial demonstration 

of secure GBAS through L-band digital aeronautical communications system (LDACS). The GBAS 

information was genuine with TESLA protocol secure GBAS, and the secured message was communicated 

to the aircraft by LDACS. The LDACS was applied to very high frequency (VHF) data broadcast (VDB) 

which offered a minimum of ten times in data-rate ability. It provided a sufficient data rate for broadcasting 

secured GBAS data while providing spare ability for various services on similar channels. This method 

enhanced the data rate and improved the range and cyber security. Lee et al. [22] suggested a viability of 

GPS L2C Signals for space service volume (SSV) receivers on SBAS-Geostationary Orbit (GEO) satellites. 

The satellite perceptibility, precision dilution, and navigation error are enhanced when the GPS L2C signal 

was deployed in GEO satellites over arithmetical simulation. The evaluation assumed that the Ifree correction 

was accomplished with exterior information, and the signal transmitted over Ifree was omitted. Nonetheless, 

decrease in geometric dilution of precision (GDOP) was higher, while navigation errors inclined to reduce 

through the threshold.  

Bang and Lee [23] presented the under-sampled ionospheric irregularity threat parameterization by 

3D model for SBAS. This methodology was presented for under-sampled ionospheric threats to reduce the 

magnitude of grid ionospheric vertical errors (GIVE). An under-sampled threat model was created with a 

developed 3D metric set and historical ionospheric storm data from GNSS stations in South Korea. 

Nonetheless, the introduced method was required to be comprised of a performance investigation behavior of 

enhancement by applying a new threat model for high-range station establishments. Wang et al. [24] 

recommended the methodology of signal quality monitor (SQM) for BeiDou navigation satellite System 

(BDS) B1C/B2a signals, which simply extended to dual-frequency integrations of various GNSS core 

patterns. The comparison of the SQM algorithm’s performance was performed based on convolutional multi-

correlator and emerging Chip Domain Observables. Its exhaustive iteration design was analyzed by including 

the algorithm’s practices through enhancing code-phase length and sample frequency. Additionally, the 

metric interpretation was performed for promoting total performance by conserving the low execution 

difficulty. Jardak and Jault [25] implemented a probable Low Earth Orbit (LEO) satellite-based opportunistic 

navigation for high-dynamic applications. The less-duration mission was expected to overcome the 

performance of optimum navigation which was used to estimate probable LEO space vehicle (SV) signals of 

opportunity (SOP) for large-dynamic vehicles. This Doppler shift information was more illustrative than the 

attained error distribution among the satellite and user terminals. These results illustrate the possibility of 

LEO SV signals for navigation of high-dynamic vehicles in the GNSS environment. But the huge satellite 

orbit errors and clock drifts were the limiting factors of Doppler shift-based positioning performance. From 
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the overall analysis, the existing methods have limitations such as that the multiway errors required an 

innovative degree of arithmetical correlation among frequencies. They need to enhance the GBAS 

availability for designing a much more accurate and lower conventional ionospheric model. They need to 

enhance the error rate, range and cyber security, along with the navigation errors inclined to reduce with the 

threshold. They require to comprise a performance investigation behavior of enhancement, through applying 

a new threat model for high-range station establishments. The major contributions of this research are as 

follows: i) This paper proposes the overbounding process based on the Bayesian Gaussian mixture model to 

maintain Ifree-based GBAS range error; ii) Ifree-based protection with Bayesian GMM overbounding is 

utilized to estimate the protection levels that enhance the accuracy without enhancing the computational 

complexity; and iii) The influence of errors mainly contains satellite position errors, velocity errors, and 

clock drift. 

The rest of the manuscript is organized as follows: section 2 illustrates the proposed method. The 

overbounding Ifree-errors based on Bayesian GMM are presented in section 3. The results and discussion are 

illustrated in section 4. Section 5 describes the conclusion of this paper. 

 

 

2. PROPOSED METHOD 

The process of overbounding Ifree-based GBAS based on GMM is described in this section. The 

suggested method has a possibility of overbounding Ifree-based errors securely. Initially, a block diagram of 

the methodology is presented, then the details required to achieve a redesigned closed-form GMM 

overbounding to minimize the progressiveness are studied. The process of Ifree filter is presented in Figure 1. 

 

 

 
 

Figure 1. Ifree filtering process 

 

 

3. OVERBOUNDING IFREE-ERRORS BASED ON GAUSSIAN MIXTURE MODEL 

3.1. Process of overbounding Ifree-based error 

The Ifree filtering isolates ionospheric first-order effects with the Ifree integrations of global 

navigation satellite system (GNSS) calculations from dual-frequencies. The Ifree filtering algorithm’s input 

is shown in (1) and (2), 

 

𝜌𝐼𝑓𝑟𝑒𝑒 = 𝜌𝑓1 −
1

𝜁
(𝜌𝑓1 − 𝜌𝑓2)   (1) 

 

𝜙𝐼𝑓𝑟𝑒𝑒 = 𝜙𝑓1 −
1

𝜁
(𝜙𝑓1 − 𝜙𝑓2)   (2) 

 

where, 𝜌 and 𝜙 are the range and carrier-phase measurements, respectively. 𝜁 is estimated as 𝜁 = 1 − 𝑓1
2 𝑓2

2⁄ . 

The low-pass filter is utilized for reducing higher-frequency noise in input calculations. The filtering output 

is shown in (3), 

 

�̂�𝐼𝑓𝑟𝑒𝑒 = 𝑅 + (𝜀1 −
1

𝜁
(𝜀1 − 𝜀2)) +

1

𝜁
𝐼𝐹𝐵 (3) 

 

where, 𝑅 is the carrier-phase and code measurements of all common terms which contain true distance 

among the user and satellites, satellite and recipient clock biased, and tropospheric interruption. 𝜀 are the 

errors in filtering which include thermal noise and multipath errors. 𝐼𝐹𝐵 represents the inter frequency bias. 

The Ifree-based errors are designed through the integration of dual frequencies that produce higher 

individual-frequency errors. Among them, one can evaluate overbounding directly according to Ifree-based 

filtering quantities. A corresponding illustration of Ifree filtering and overbounding is presented in Figure 2. 

Here, Figure 1 is transformed into Figure 2(a) because Ifree filtering is a linear system. With the 

help of additivity and homogeneousness properties, Ifree-based GBAS is degraded in dual components. 

Furthermore, the dimensions are integrated when transmitting with a similar low-pass Hatch filter. The 
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overall process of overbounding is presented in Figure 2(b) according to the equal Ifree filtering algorithm. 

The range error overbounding model (REOM) and range error distribution model (REDM) are recognized by 

utilizing every frequency error. Next, Ifree-based GBAS of REOM is attained by folding dual individual-

frequency REOM linearly. The Ifree-based overbounding depends on an error of independent derivative from 

dual-frequency measurements. The overbounding is not derivative from the last Ifree-based error estimation 

directly. If one frequency measurement is inhibited with another frequency it is viable to be modeled and 

received during sample collection. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Corresponding figure of Ifree filtering process (a) A corresponding illustration of Ifree filtering 

process. (b) The Ifree-based overbounding in GBAS 

 

 

3.2.  Single-frequency REDM formation 

It describes the errors associated with measuring a quantity within a specified frequency range of 

band. The error displays a large tail when the elevation is minor. Due to the overbounding cumulative 

distribution function (CDF) [26] necessitating the location parameter 𝜇 is zero while the dual-component 

GMM REDM is recognized and specified in (4). 

 

𝑝(𝑦) = 𝜔1𝜑(𝑦; 0, 𝜎1) + 𝜔2𝜑(𝑦; 0, 𝜎2)   (4) 

 

where 𝜔1 + 𝜔2 = 1. The three reasons for selecting dual-component GMM: 

a. This model reduces the number of components by distributing adequate flexibility. In this, one 

component defines the core while the other defines tails.  

b. Overbounding a multi-component model with dual-component model.  

c. This model avoids nonconvergence and overfitting problems. The suggested model is utilized to evaluate 

the parameters, where the heavy tail is inattentive for higher upgradation, and the distributed error is 

attended for Gaussian distribution. At this moment, the expectation-maximization (EM) crashes for 

convergence, thus the understandable Gaussian overbounding is selected. 

 

3.3.  Single-frequency REOM formation 

The REOM construction is essential to substitute present parameters in REDM through bounds. This 

model provides an upper bound or an approximation of the maximum error that occurs within the defined 

frequency band. In order to enhance and reduce the parameter scores, the REDM parameter calculated 

through the EM algorithm is overbounding. The 𝜎1 is greater than 𝜎2, then the overbounding model structure 

is shown in (5), 
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𝑝𝑂𝐵(𝑦) = (𝜔1 + ∆𝜔)𝜑(𝑦; 0, 𝜎1 + ∆𝜎1) + (𝜔2 + ∆𝜔)𝜑(𝑦; 0, 𝜎2 + ∆𝜎2)  (5) 

 

where, ∆𝜃 = (∆𝜔, ∆𝜎1, ∆𝜎2) denotes the modified parameter value 𝜃. Then the modified parameter value 

increases the overbounding to be gradually conservative. Before estimating the overbounding module 

through the Louis algorithm stimulated through previous results, it is essential to validate whether there is a 

convergence possibility equivalent to nominal confidence. Hypothetically considering an uncertainty, the 

probable error sources and qualification of module error are critical. The empirical distribution functions 

converge to primary CDF via the overall probability of whether the sample size is appropriately huge. This is 

done through experimental circulation of restricted samples dissimilar to the primary distribution. The 

module error rises mostly due to the limited number of components. However, GMM is a real model with an 

enlarging component which is controlled in practical environment applications, approximately. Therefore, in 

(4) comparatively estimates sample data more than the accurate estimation. The selected parameter of a 

correct parametric is presented in Table 1. Another model violates a GMM which is known as false 

parametric. If a correct estimation is precise while a false module is imprecise, then an existing error is 

tested. The selected parameter of a false parametric is presented in Table 2. The MC simulation process is 

presented in Figure 3. 

 

 

Table 1. The selected parameter of the correct 

parametric model 
Parameter 𝜔1 𝜎1 𝜎2 

 
Group 

1 0.85 1.82 0.75 
2 0.95 0.97 0.11 

3 0.975 1.50 0.30 

4 0.50 1.50 0.50 
 

Table 2. The selected parameter of the false 

parametric model 
Distribution NIG GCET GPO Stable 

Parameter 

𝛼 = 0.65 

𝛽 = 0 

𝜎 = 0.65 

𝜇 = 0 

𝐸𝑙 = 1.57 

𝜎 = 0.8 

 

𝜎 = 0.82 

𝛾 = 0.03 

 

𝛼 = 1.95 

𝛽 = 0 

𝜎 = 0.9 

𝜇 = 0 
 

 

 

 
 

Figure 3. Flowchart of MC simulation process 

 

 

Additionally, the correct estimation of Bayesian GMM is determined. For a correct parametric 

module, the accurate estimation is called a parent parameter which is defined as corresponding to the primary 

distribution directly. For a false parametric module, Bayesian GMM primary distribution is shorter. The 

optimum range is estimated through the decreased selected cost function for replacing the parent parameter 

which is represented as (6), 
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(𝜔𝑜𝑝𝑡 , 𝜎1,𝑜𝑝𝑡 , 𝜎2,𝑜𝑝𝑡) =
𝑎𝑟𝑔𝑚𝑖𝑛
𝜔, 𝜎1, 𝜎2

∫ |𝐹(𝑍; 𝜔, 𝜎1, 𝜎2) − 𝐺(𝑍)|𝑑𝑧
∞

−∞
  (6) 

 

where, 𝐺(𝑍) is the sample's primary distribution. 𝐹(𝑍; 𝜔, 𝜎1, 𝜎2) is the CDF of Bayesian GMM. Most 

significantly, these parameters are inadequately decided through primary distributions. In total, thousands of 

Monte Carlo (MC) experimentations [27] are followed through later choosing parameters and distributions. 

In Figure 3, the upper loop defines the model type in which every model produces 2500 individual samples. 

Later, the true value probability named as coverage probability dropping in the specified assurance level is 

defined. Atlast, the sample type is restored and this procedure is repeated until all simulations. 

 

3.4.  Ifree-based REOM formation 

The convolution is essential for attaining Ifree-based overbounding where individual-frequency 

overbounding unlocks the below convolution, and the output according to mathematical estimation neglects 

any obvious distribution. Therefore, overbounding data is unable to broadcast through restricted parameters 

over the signal route. The scientific characteristics of distribution overbounding are essential. The 

overbounding Ifree-based error and distribution model of every frequency is represented in (7), 

 

𝑝𝑂𝐵,𝑖(𝑦) = 𝜔𝑖,1𝜑(𝑦; 0, 𝜎𝑖,1) + 𝜔𝑖,2𝜑(𝑦; 0, 𝜎𝑖,2)     (7) 

 

where, 𝑖 = 1 and 2 denote various frequencies. Considering that the Ifree measurement errors are individual, 

the overbounding is preserved for the later convolution procedure. 

 

3.5.  Ifree-based protection level estimation using GMM overbounds 

For ensuring integrity, the GBAS protection levels are deployed in position while the error 

distribution feature parameters are broadcast in a range [28]. Hence, project overbounding into the protection 

level is crucial to verify the truthfulness. The vertical error is higher than lateral error, then vertical protection 

is considered as a sample. The position error 𝐸𝑣 is linear integration error for each employed satellite which 

is shown in (8), 

 

𝐸𝑣 = ∑ 𝑆3,𝑘𝐸𝑘
𝑁
𝑘=1      (8) 

 

Here, 𝑆3,𝑘 is the 𝑘th row element’s vertical-position of estimation matrix 𝑆, while 𝑁 is the quantity of visual 

satellites. 𝐸𝑘 is 𝑘th error equivalent satellite covering every error source range which includes noise, 

tropospheric and multipath errors. Subsequently, the probability density of position error is defined through 

GBAS range errors. The GMM calculates the accurate observations by means of the Gaussian possibility 

densities. Every GMM comprises of 𝐾 Gaussian distributions, then every observation 𝑞 have the 

distributions as numerically presented in (9), 

 

𝑃(𝑞𝑖|𝜋, 𝜇, 𝛾) = ∑ 𝜋𝑗𝑁(𝑞𝑖| 𝜇𝑗 , 𝛾𝑗
−1)𝐾

𝑗=1      (9) 

 

where, 𝑞𝑖 is a low-dimensional data attained through an autoencoder, 𝜇 = {𝜇𝑗}, 𝛾 = {𝛾𝑗} and 𝜋 = {𝜋𝑗} 

respectively are the mean, covariance matrix and mixing coefficient. ∑ 𝜋𝑗 = 1𝐾
𝑗=1 , then the observation is 

attained through the (10) and (11), 

 

𝑐𝑖~𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋1, 𝜋2, … , 𝜋𝑘), (10) 

 

𝑝𝑖|𝑐𝑖~𝑁(𝜇𝑐𝑖 , 𝛾𝑐𝑖
−1),  (11) 

 

This paper presents the GMM into a Bayesian GMM through mean, coefficient mixture and covariance 

matrix taken as latent variable in the prior distribution as represented numerically in (12), 

 

𝑃(𝜋1, 𝜋2, … , 𝜋𝐾|𝛼0) =
Γ(𝐾𝛼0)

[Γ(𝛼0)]𝐾 𝜋1
𝛼0−1

… 𝜋𝐾
𝛼0−1

, (12) 

 

where, 𝛼0 is a concentration parameter, the value of mixing coefficient is near to zero and Γ(x) is a Gamma 

function. The mean and covariance matrix are sampled through the (13), 

 

𝑃(𝜇𝑗|𝛾𝑗) = 𝑁 (𝜇𝑗|𝛽0(𝜂0𝛾𝑗)
−1

) 𝑊(𝛾𝑗|𝑣0, 𝜎0), (13) 
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Hence, the processes involved in Bayesian GMM generation for every observation are presented in (14), 

(15), (16) and (17), 

 

𝜋1, … , 𝜋𝑘~𝐷𝑖𝑟(𝛼0), (14) 

 

𝑐𝑖~𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋1, … , 𝜋𝑘),  (15) 

 

(𝜇𝑗|𝛾𝑗)~𝑁𝑊(𝛽0, 𝜂0, 𝑣0, 𝜎0),  (16) 

 

𝑝𝑖|𝑐𝑖~𝑁(𝜇𝑐𝑖 , 𝛾𝑐𝑖
−1),  (17) 

 

The traditional GMM employs expectation maximization (EM) to solve the parameters iteratively, but the 

EM does not find the optimum global solution continuously and it specifies the number of clusters. So, the 

Bayesian GMM is employed to solve these issues.  

 

 

4. RESULTS AND DISCUSSION 

4.1. Effects of error sources 

The major error sources affect the position by applying Ifree-based GBAS range errors according to 

GMM like satellite position, velocity error, and clock drift. The user position and attitude error effects are 

described in the below subsections. The attained results illustrate that the user positions are susceptible to 

satellite positions. Likewise, the attitude error is susceptible to satellite positions and invulnerable to velocity 

errors and clock drift. 

 

4.1.1. Satellite position error 

The position error is included at the top of the baseline which comprises thermal noise due to which, 

every position consumes a fixed error on it. Tables 3 and 4 show the position error on the root mean square 

error (RMSE) position and the RMSE attitude. The position error increases for an intermediate of 2.5 km in 

position error and extends for a worst of 4.4 km. The attitude error degrades through the intermediate of 

0.72° in position error based on noise. The degradation of attitude error improves to the worst case of 1.87^°. 
 

 

Table 3. Influence of position error on RMSE position 
Satellite Axis Satellite effects 

Noise Intermediate Worst 

X 100 1,300 2,400 

Y 80 1,100 2,200 
Z 200 1,500 2,600 

 

Table 4. Influence of position error on RMSE attitude 
Satellite Dimension Satellite effects 

Noise Intermediate Worst 

roll 1.0 1.5 1.8 

pitch 1.6 2.0 2.4 
yaw 3.0 3.5 5.0 

 

 

 

4.1.2. Satellite velocity error 

This error alters shift prediction and the output affects navigation evaluation. The position error is 

included in the upper baseline which encompasses thermal noise. Because of this issue, every position 

consumes fixed error on it. Tables 5 and 6 illustrate the velocity error on RMSE position and attitude. The 

position error is degraded to an intermediate of 273 m based on noise. The degeneration achieves a worst 

case of 1.09 km. 
 

 

Table 5. Influence of velocity error on RMSE position 
Satellite Axis Satellite effects 

Noise Intermediate Worst 

X 100 300 800 

Y 50 180 500 
Z 150 250 600 

 

Table 6. Influence of velocity error on RMSE attitude 
Satellite Dimension Satellite effects 

Noise Intermediate Worst 

roll 1.2 1.2 1.4 

pitch 1.5 1.5 1.8 
yaw 3.5 3.5 3.8 

 

 
 

4.1.3. Satellite clock drift 

The guideline encompasses thermal noise which is attached to fixed satellite clock drift. Consider 

every satellite value randomly utilizing a gaussian distribution through the standard deviation for the 

intermediate and worst case of 1ppb and 10ppb, correspondingly. Tables 7 and 8 show the clock drift on 

RMSE position and RMSE attitude, respectively. 
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Table 7. Influence of clock drift on RMSE position 
Satellite Axis Satellite effects 

Noise Intermediate Worst 

X 80 150 1,000 

Y 50 100 900 

Z 150 180 1,100 
 

Table 8. Influence of clock drift on RMSE attitude 
Satellite Dimension Satellite effects 

Noise Intermediate Worst 

roll 1.0 1.0 1.2 

pitch 1.3 1.3 1.6 

Yaw 3.3 3.3 3.6 
 

 

 

4.2. Comparative analysis 

This section shows the comparative analysis of the proposed overbounding process for Ifree-based 

GBAS range error based on GMM in terms of satellite position, velocity error and clock drift, as shown in 

Table 9. The satellite position, velocity error, and clock drift of the existing method [25] are assessed for 

estimating the ability of the suggested method. The suggested method achieves better results on all three 

parameters with three satellite effects like noise, intermediate and worst cases.  

 

 

Table 9. Comparative analysis of the proposed method with the existing method 
Effects of error 

sources 

Author Noise Intermediate Worst 

Position 
error (m) 

Attitude 
error (˚) 

Position 
error (m) 

Attitude 
error (˚) 

Position 
error (m) 

Attitude 
error (˚) 

Satellite position error Jardak and Jault [25] 190.0 2.70 1,533 8.90 2,566 3.60 

Proposed method 126.6 1.86 1,300 2.33 2,400 3.06 
Satellite velocity error Jardak and Jault [25] 146.6 2.60 266.6 7.80 723.3 2.83 

Proposed method 100.0 2.06 243.3 2.06 633.3 4.46 

Satellite clock drift Jardak and Jault [25] 126.6 2.63 183.3 2.63 1,166 2.93 
Proposed method 93.33 1.86 143.3 1.86 1,000 2.13 

 

 

5. CONCLUSION 

The Ifree-based filtering technique efficiently mitigates the GBAS ionospheric anomalies as it 

amplifies noise and affects obtainability. To increase the availability, this paper recommends an 

overbounding process for Ifree-based GBAS range error according to Bayesian GMM. In order to fit heavy-

tailed and single-frequency error, a dual-component Bayesian GMM model is recognized. The general 

ambiguity estimation method is established through the MC test. Moreover, the nonparametric technique is 

employed to remunerate for this erroneousness. According to the property of convolution invariance, the 

vertical protection level in the position field is determined without presenting difficult numerical calculations. 

This research study characterizes the performance of both position and attitude to the satellite position, 

velocity error and clock drift. This enables the understanding and evaluation of every error source’s 

contribution to the navigation errors. Future work will be carried out to improve the augmentation process 

using Bayesian GMM overbounds. 
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