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 The optimal scheduling of the loads based on dynamic tariffs and 

implementation of a direct load control (DLC) based demand response 

program for the domestic consumer is proposed in this work. The load 

scheduling is carried out using binary particle swarm optimization and a 

newly prefaced nature-inspired discrete elephant herd optimization 

technique, and their effectiveness in minimization of cost and the peak-to-

average ratio is analyzed. The discrete elephant herd optimization algorithm 

has acceptable characteristics compared to the conventional algorithms and 

has determined better exploring properties for multi-objective problems. A 

prototype hardware model for a home energy management system is 

developed to demonstrate and analyze the optimal load scheduling and DLC-

based demand response program. The controller effectively schedules and 

implements DLC on consumer devices. The load scheduling optimization 

helps to improve PAR by a value of 2.504 and results in energy cost savings 

of ₹ 12.05 on the scheduled day. Implementation of DLC by 15% results in 

monthly savings of ₹ 204.18. The novelty of the work is the implementation 

of discrete elephant herd optimization for load scheduling and the 

development of the prototype hardware model to show effects of both 

optimal load scheduling and the DLC-based demand response program 

implementation. 
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1. INTRODUCTION 

Domestic consumers account for a significant portion of the power utility's overall load demand in 

India. Due to the increased use of a variety of appliances by the consumer, the power demand is increasing 

exponentially, which creates demand generation imbalances and stability issues in the grid. Effective 

mechanisms are needed for scheduling and controlling domestic consumer loads so that peak power 

reduction, grid stability, and grid efficiency can be improved. The scheduling of the residential consumer 

loads helps the consumers to take benefit of different alternatives of using energy and reducing the energy 

cost. This can be achieved by implementing demand response (DR) actions like shifting the devices used 

during low energy price periods, interrupting the working cycle for certain periods, and altering parameters 

of certain loads like temperature settings in the case of an air conditioner or electric water heater. Some 

devices like electric water heaters, and air conditioners have high energy consumption rates and if these 

devices operate coherently by different consumers, it can cause voltage quality issues at the remote end of the 

feeder. Load Scheduling is used to organize the operation of a set of loads into various time slots while 

minimizing electricity cost and peak to average ratio (PAR).  

https://creativecommons.org/licenses/by-sa/4.0/
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Technologies that allow automatic adjusting of demand by some programmed or learned rules in 

response to price signals while maintaining consumer comfort is known as optimal load shifting [1]. 

By enabling consumers to plan their shiftable load, demand side management increases their participation in 

helping the power utility achieve system objectives [2]. The utility's various dynamic pricing schemes for 

consumers can help to manage electricity costs, peak load reduction, and peak to average ratio improvement. 

Real time pricing (RTP) based DR program when implemented for home energy management systems helps 

to decrease the consumer's electricity costs [3]. The DR program helps to protect the grid from the risk of 

outages during peak periods, balances demand and supply, improves the reliability of the grid and reduces the 

usage of the spinning reserves [4]. The application of the home energy management system (HEMS) is to 

schedule the different categories of loads as per the consumer's priority to reduce the electricity bill [5]. The 

demand-side management technique of scheduling the end consumer home appliances that use power from 

the utility and the rooftop solar units helps to reduce the energy bill and PAR [6]. The direct load control 

(DLC) based DR program is an incentive-based program in which the power utility can control the power 

consumption of the consumer remotely. The utility notifies the consumer ahead of time, and an incentive is 

paid to him for his contribution [7].  

Three different categories of devices were selected for our proposed model. Shiftable, curtailable, 

and fixed operation devices are selected for simulation and in the hardware model of the proposed work. The 

optimization code schedules the usage times of eight different devices in a house with different power 

requirements. The convenience of the consumer is taken into consideration by considering the preferred time 

interval for the optimal operation of the devices. The effective utilization of solar photovoltaic systems and 

energy storage can also help the utility and consumers effectively manage the load. Consumers' willingness 

to respond to a load schedule is influenced by a variety of factors, including the price of power, the time of 

day, the priority of use, and knowledge of extreme situations. The scheduling problem needs to consider 

economic optimization while satisfying varying levels of technical constraints. The controller controls the 

operation of devices based on the optimization algorithm meeting the conditions. 

The first part of this work is to develop a system that will reduce energy consumption and minimize 

the cost function considering the user's time preference and comfort by using the heuristic binary particle 

swarm optimization (BPSO) and discrete elephant herd optimization (DEHO) algorithms. The model 

considers various types of home appliances with operations related to RTP. The optimization scenarios with 

the integration of a photovoltaic system for more efficient load scheduling are also considered in the model. 

The various constraints, including daily energy requirements and consumer preferences, are considered. The 

mathematical model used to decide the schedule and the cost function is implemented in MATLAB using the 

BPSO and DEHO techniques. The load schedule seeks to determine the best time to use an appliance based 

on its power and the hourly variation of the electricity price. The second part of the work is the 

implementation of direct load control-based DR programs that help the utility manage peak loads, improve 

the peak-to-average ratio, and minimize the power procurement cost. The prototype hardware model is 

developed to demonstrate the effect of optimal load scheduling and DLC DR from both the consumer and 

utility point of view. 

In the literature review, the study and analysis of different scenarios, including developing the 

hardware model, are not reported in a single work. The focus of this work was to develop the simulation as 

well as the hardware model which can demonstrate the savings that can be achieved due to DR 

implementation. Our approach with optimization helps to reduce energy costs, and PAR, considering user 

priority which is also demonstrated by the prototype hardware model results. 

The primary contributions of the work are to i) Analyze the benefits of both optimal load scheduling 

and DLC-based demand response program; ii) Help to balance demand and supply to minimize electricity 

costs and minimize PAR; iii) Develop a prototype of a HEMS considering consumer preferences; and  

iv) Promote energy, cost savings, and efficiency improvement with participation of a large number of 

consumers based on the findings from the paper. The results indicate that the optimal load scheduling model 

minimizes the total electricity cost and PAR benefiting both the consumer and the utility. The effect of 

integrating photovoltaic (PV) systems into the utility supply grid also helps to reduce energy costs and peak 

power, benefiting both the consumer and the utility. 

 

 

2. LITERATURE REVIEW OF RELATED WORKS  

Optimization studies are available in the literature that focus on a single optimization goal of 

reducing total electricity costs by scheduling the operation of consumer devices. A multiperiod consumer 

management methodology is proposed for scheduling the loads, considering different types of demand 

response and supply options under a dynamic pricing scheme [8]. To reduce costs under the time of use 

(TOU) pricing plan, mixed integer linear programming (MILP) is utilized to schedule residential appliances 

optimally while taking solar PV and battery energy storage system (BESS) installation into account [9]. To 
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reduce the overall cost of the microgrid system, an updated particle swarm optimization (PSO) algorithm is 

employed to generate the best schedule strategy for the variable loads in the microgrid [10]. To optimally 

schedule the different loads based on time-varying pricing and user priority, a home automation system is 

designed and developed [11]. Smart load scheduling modeling using mixed integer nonlinear programming 

for a microgrid with PV systems is developed with the objective of either minimizing the peak load or the 

electricity cost [12]. An optimization strategy for the optimal energy management of the home considering 

thermostatic loads like an electric water heater, and solar photovoltaic (SPV) systems along with a BESS is 

presented in [13]. An optimization framework is developed in [14] for the best demand response scheduling 

at the residential community level, considering smart loads, BESS, electric vehicle (EV), and renewable 

sources using residual load modeling. For the energy management of smart homes, MILP-based optimization 

is used, taking into account the integrated approach of BESS, EV, smart loads, and renewable sources, which 

considers the requirements of both supply and demand sides [15]. A heuristic DR technique is adopted for 

scheduling the appliances to reduce the peak-to-average ratio with a focus on maintaining consumer 

confidentiality. To schedule the appliances on a flexible schedule without needing individual appliance 

consumption, the suggested solution uses a hopping strategy [16]. The shiftable home loads are scheduled 

using a cuckoo search optimization technique to balance the load curve and reduce costs [17]. In study [18], 

grey wolf optimization is used for the optimal scheduling of the household appliances of two different houses 

with TOU and RTP tariff schemes. 

Different DR contracts like load curtailment, load shifting, and onsite generation power are 

considered for the price-based self-scheduling model using the MILP optimization technique to obtain 

optimal DR schedules for the consumers in the day ahead energy markets [19]. To plan and regulate the 

power consumption of the air conditioner, electric water heater, washing machine, and refrigerator of the 

domestic consumer to lower the electricity bills by taking into account the DR signals, an artificial neural 

network (ANN)-based home energy management controller is simulated in MATLAB [20]. For the 

residential community considering aggregated air-conditioning loads, an energy management strategy is 

proposed to minimize energy consumption by using the MILP technique [21]. In study [22], load scheduling 

problem is formulated as a constrained multi-objective problem with minimizing energy cost and maximizing 

overall utility, and a modified version of the multi-objective optimization evolutionary algorithm based on 

decomposition using a differential evolution operator is adopted. MILP is adopted for optimizing the 

simultaneous demand and cost mitigation for five residential users using time of use rates with user time 

preference as the constraint [23]. A new RTP technique is presented in [24] that can be used to implement 

DR programs in order to reduce the peak load and the energy expenditure which is validated by simulation 

results. The Cuckoo search and symbiotic organisms search algorithms are used to efficiently schedule time-

shiftable loads in a task scheduling-based DR technique, and the results obtained are compared. The basic 

hardware model for the DR implementation for consumer loads has been developed by the authors in [25], 

but the results are obtained without optimization. PLC-based advanced metering infrastructure and the 

OpenADR 2.0 protocol are used for developing the automated demand response system for the control of 

residential loads. To verify the performance of the protocol simulation tests are performed [26]. For a 

microgrid with SPV system, wind energy, battery storage, and load energy management is implemented 

using Arduino and internet of things (IoT) based system. the Arduino microcontroller senses the 

environmental parameters and gives to IoT system for energy management and minimizing energy costs [27]. 

A genetic algorithm is proposed in [28] for household energy management to reduce energy costs and PAR. 

The user comfort and integration of renewable energy are not considered in their work. A multi-objective 

genetic algorithm is proposed by Ullah et al. [29] to minimize operating costs and reduce carbon emissions 

with incentives for consumers, but consumer comfort is not considered. In [30] the load scheduling scheme 

for the price-based DR program for IoT-enabled smart homes is suggested to minimize the energy cost and 

PAR. Mixed integer quadratic programming is proposed for the HEMS which is driven by a thermal source 

to reduce the electricity bill [31]. In study [32], a prototype hardware model is developed for appliance power 

scheduling and DR implementation, but the optimization is not carried out for scheduling of the consumer 

appliances. An improved binary bat algorithm is proposed in [33] to schedule the load demand of smart 

homes, reduce operation costs, and control energy generation from the distributed generator for a microgrid 

system. 

Elephant herd optimization (EHO) is the population-based swarm intelligence nature-inspired 

metaheuristic algorithm. In base EHO algorithm searching strategy generates continuous variables, so the 

algorithm needs to be adapted to the binary search space to solve the scheduling problem. In DEHO the 

encoding scheme, cross-over, and moving operators in updating and separating phases need to be considered 

to solve the optimization problem. In this paper, DEHO is adopted to solve the scheduling problem as it 

provides the advantages of having few control parameters, faster convergence, and high solution accuracy.  
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The currently available literature in this field focuses mostly on unique or partially related aspects. 

It is observed from the review and analysis that all the scenarios with grid power, and the SPV energy system 

including implementing the strategies on the hardware model are not reported in a single work. In most 

previous works, only optimization or simulation studies are carried out to see the effect of load scheduling 

there is no focus on developing the hardware model. This work develops a prototype hardware model to 

show how to schedule loads efficiently while controlling devices and implementing an emergency DLC DR 

program. The HEMS is designed and developed to optimally schedule the devices based on RTP rates, 

considering consumer satisfaction based on user-defined time preferences. HEMS also carries out control of 

the devices to implement the emergency DLC DR program. Scenarios with optimal load scheduling using the 

DEHO heuristic algorithm considering only grid power, grid, and SPV power with the prototype hardware 

model with grid power supply are analyzed and addressed in this paper. The heuristic algorithm BPSO and 

DEHO are used to obtain the output considering the cumulative nature of the devices i.e., only one vector for 

a large number of devices used in formulating the objective function and the constraints. Our approach to 

optimization helps reduce energy costs, and PAR, considering consumer priority which is demonstrated by 

the prototype hardware model. 

 

 

3. PROPOSED METHOD FOR FORMULATION OF LOAD SCHEDULING AND DR MODEL 

The consumer's interests and needs determine how much electricity they use throughout the day; 

therefore, the consumption pattern is not consistent and flat. The consumer must manage the power 

consumption pattern of time-shiftable devices for higher energy efficiency and reduced energy expenses. 

Different types of home devices are taken into consideration for the model simulation based on their power 

consumption patterns as shown in Table 1. The devices under consideration are divided into fixed, time, and 

power-shiftable categories. Devices that are required and must operate constantly for 24 hours or for a 

specific number of hours each day, such as refrigerators, are referred to as fixed or nonflexible devices. The 

users of power-shiftable devices are encouraged to complete a task within a certain time frame that is 

designated in the operation schedule. The third type consists of time-shiftable appliances, whose operation 

time can be changed to any other time slot without compromising performance, but the demand must be met 

without an interruption in between. 

 

 

Table 1. Details of consumer devices considered in the model 
Type of device Power rating (watts) Start point (Hour) Finish point (Hour) Energy requirement per day (kWh) 

Dishwasher 1,000 11 19 2 

Electric water heater 2,000 8 22 4 

Air conditioner 1,000 9 23 5 
Washing machine 500 9 17 1.5 

Electric vehicle 2,000 22 8 10 

Non-flexible loads 600 1 24 12 
Water Pump 400 1 13 1.2 

 

 

Total energy consumption and total energy cost for a day is given by (1) and (2) respectively. 

 

TEC=(∑ 𝑃𝑗
𝑡𝑋𝑗

𝑡)
𝑄
𝑗=1 ) + (∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 ) (1) 

 

TC=∑ 𝑅𝑡 [(∑ 𝑃𝑗
𝑡𝑋𝑗

𝑡)
𝑄
𝑗=1 ) + (∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 )]𝑀
𝑡=1  (2) 

 

where TEC is the total energy consumption, TC is the total energy cost, 𝑃𝑗 is a shiftable type of device, 𝑃𝑖  is a 

fixed type of device, 𝑄 is the total fixed type of devices, 𝐷 is total nonflexible devices, X indicates the status 

of operation i.e., on or off, 𝑅𝑡 is the real-time energy price prevailing at that time slot. 

The optimization of the electricity cost is realized using BPSO and DEHO methods. The results 

obtained using DEHO are presented in the paper and it can be established that the proposed DEHO has 

exhibited better conquest solutions. In load scheduling formulation it is assumed that the power utility 

provides the RTP tariff to the consumer one day in advance so the scheduling can be performed with the 

objective of minimizing the energy cost and PAR. For the implementation of a DLC-based DR program, it is 

assumed that the curtailment signal is provided by the power utility two hours in advance to the consumer. 

The optimization is implemented to schedule the usage of eight different appliances each with a distinct 

amount of energy consumption. The appliances are power-shiftable, so optimization can schedule power 

usage throughout various hours while maintaining a steady supply of energy. The output vector consists of 

the hourly schedule of each schedulable device. The mathematical model is based on a set of discrete 
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variables, and it needs to be optimized by minimizing an objective function. The objective functions 

formulated are linearly dependent on the decision variables under a given set of constraints. The first 

objective is to minimize the energy cost as given in (3), the second objective is to minimize PAR as per (4) 

and the third is the overall multiobjective function as per (5) is to minimize the energy cost and PAR. The 

functions used as objectives in the BPSO and DEHO algorithms are subject to constraints. The objective 

functions 𝐹1 and 𝐹2 are normalized to solve the multiobjective optimization function 𝐹3. 

 

𝐹1 = 𝑀𝑖𝑛[∑ 𝑅𝑡 [(∑ 𝑃𝑗
𝑡𝑋𝑗

𝑡)
𝑄
𝑗=1 ) + (∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 )]𝑀
𝑡=1 ] (3) 

 

𝐹2 = 𝑀𝑖𝑛 [
𝑀𝑎𝑥 ∑ (∑ 𝑃𝑗

𝑡𝑋𝑗
𝑡)

𝑄
𝑗=1 )+(∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 )𝑀
𝑡=1

∑ ∑ (
𝑃𝑗

𝑡𝑋𝑗
𝑡+𝑃𝑖

𝑡𝑋𝑖
𝑡

𝑀
)𝑛

𝑖=1
𝑛
𝑖=1

]  (4) 

 

Objective functions 𝐹1 and 𝐹2 are normalized by dividing with the unoptimized maximum value, and the 

normalized functions are used in solving multiobjective function 𝐹3 considering the weight factors 𝛼1 and 

𝛼2. Conflicting performance metrics generate a trade-off which is formulated as a constrained multiobjective 

optimization problem. 

 

𝐹3 = 𝑀𝑖𝑛(𝛼1𝐹1 + 𝛼2𝐹2)  (5) 

 

The objective functions are subjected to equality, inequality, and upper and lower bounds as 

constraints. Four parameters Sd, Fd, Pd, and Ed are used in the modeling of each type of device that can be 

scheduled. Here the Sd stands for the starting point of operation of the device, Fd is the finishing time, Pd is 

the power rating of the device, and Ed is the total energy requirement. The constraints related to the 

mandatory energy requirement, device operating window, power rating, and type of load (dimmable, 

shiftable) are considered. The formulations for scheduling of power shiftable, continuous operation devices, 

and alternate time slot operation are also considered in the analysis. For analysis, the values of α1 and α2 are 

taken as 0.6 and 0.4 as more priority is given to the objective of minimizing the cost and less priority to the 

PAR. The optimization can also be carried out with different values of α1 and α2. The result of the algorithm 

gives the total energy cost and the optimal schedule of the devices, representing their operation time and 

power consumption with consumer preference. The optimization using an algorithm is carried out for both 24 

as well as 96-time blocks for hourly and 15-minute time scheduling respectively. 

 

3.1.  Optimal scheduling of loads by DEHO algorithm 

In this section, the performance of the proposed DEHO derived from a population-based swarm 

intelligence nature-inspired metaheuristic algorithm is analyzed. It has been used to tackle many power 

system optimization problems and has proven to be quite successful in finding global or almost global 

solutions. EHO has good convergence characteristics and the potential to find the optimal solution. When 

compared to many other nature-inspired algorithms, this one can explore significantly better optimal 

solutions. EHO has a strong search ability and can find the fittest solution [34]–[36].  

The exploration and exploitation characteristics of the global optimization technique are 

mathematically modeled using the behavior of the clan's elephants. The matriarch is the oldest female 

elephant in each elephant family and guides the other elephants. The matriarch is considered the most 

suitable elephant in the family, which indicates the clan updating operator and is used to model and solve an 

optimization problem. As the base EHO algorithm search strategy generates continuous values to solve 

binary optimization problems, the EHO algorithm should be adopted to the binary search space. To solve the 

device scheduling problem DEHO algorithm is adopted. Proper encoding scheme, crossover, and moving 

operators in updating and separating phases need to be considered in the DEHO algorithm. 

The following steps are normally taken to implement the algorithm. First get the addresses of the 

initialization, cost function, and feasibility functions. Initialize the elephant population next, make sure there 

are no duplicates, compute the cost for each individual, order the population based on how well it fits the 

criteria, and calculate the average cost in subsequent steps [35], [37].  

All the elephants in the clan act as search agents in an elephant community of size ‘𝑠’ in the 

surrounding region. The vector ‘𝑝𝑒’ as in (6) gives the population of each elephant ‘𝑒’ at iteration ‘𝑗’ and (7) 

gives the population of size ‘𝑠’ with dimension ‘𝑐’ at iteration ‘𝑗’. The following steps were adopted in order 

to solve the optimization problem. 

Step 1: The position of each elephant in different clans except the matriarch and male elephant that holds the 

best and worst solution in each clan are updated. 
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𝑝𝑗𝑒 = [𝑝𝑗𝑒, 1𝑝𝑗𝑒, 2𝑝𝑗𝑒, 3. . . . . . . . . . . . . . . . . . . . 𝑝𝑗𝑒, 𝑑]  (6) 

 

where 𝑒=1.2.3 ... 𝑠 and 𝑗=1,2,3 … 𝑗𝑚𝑎𝑥 

 

𝑝 = (
𝑝𝑒, 1𝑡 … 𝑝𝑒, 𝑑𝑡

⋮ ⋱ ⋮
𝑝𝑠, 1𝑡 ⋯ 𝑝𝑠, 𝑑𝑡

) (7) 

 

Depending on the matriarch's position, each elephant in the clan 𝑝𝑒 will shift positions. In the following 

iteration, 𝑝𝑒 will update the position for the elephant in the clan as per (8). 

 

𝑝𝑒𝑗+1
= 𝑝𝑒𝑗 + 𝜌 ∗ (𝑝𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑒𝑗) ∗ 𝑟  (8) 

 

𝑝𝑒𝑗+11 and 𝑝𝑒𝑗 are the newly updated and old positions for the elephant 𝑒 in the clan 𝑝𝑒 respectively. 

𝜌 € [0,1] is the scale factor that determines the impact of the matriarch in clan 𝑝𝑖 on the elephant 𝑒. The 

distribution 𝑟 € [0,1] is considered to be uniform. 

Step 2: Updates the position of each clan's fittest elephant 

The best elephant can modify its position as per (9). 

 

𝑝𝑏𝑒𝑠𝑡𝑡+1 = 𝛽 ∗ 𝑝𝑐𝑒𝑛𝑡𝑒𝑟𝑡  (9) 

 

where scale factor 𝛽 € [0,1] influences the 𝑝𝑏𝑒𝑠𝑡. The 𝑝𝑐𝑒𝑛𝑡𝑒𝑟 is in the middle of clan 𝑝𝑒. 

Step 3: Separating the worst male elephants 

The single worst inferior elephant is used as a separation operator at each iteration to separate from 

the clan in accordance with (10). This is done to increase the searching ability of EHO. 

 

𝑝𝑒𝑤𝑜𝑟𝑠𝑡𝑡 = 𝑝 𝑚𝑖𝑛 + (𝑝 𝑚𝑎𝑥 − 𝑝 𝑚𝑖𝑛 + 1) ∗ 𝑟𝑎𝑛𝑑  (10) 

 

𝑝𝑒𝑤𝑜𝑟𝑠𝑡𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝑝 𝑚𝑖𝑛 + (𝑝 𝑚𝑎𝑥 − 𝑝 𝑚𝑖𝑛 + 1) ∗ 𝑟𝑎𝑛𝑑)  (11) 

 

where 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 are the upper and lower bound of the individual elephant position respectively. 

𝑝𝑒𝑤𝑜𝑟𝑠𝑡 is the worst elephant in the clan, rand is the random number, and the 𝑟𝑜𝑢𝑛𝑑() function that rounds 

each of the randomly generated vector components in continuous space to the nearest integer. The upper and 

lower bounds are equal to 1 and 0 since each of them can take binary values in the DEHO algorithm. 

Step 4: Convergence  

Clans are recombined after the separation phase to begin the next iteration of the clan update phase. 

Until the convergence condition is met, steps 1-4 are repeated. The DEHO algorithm is able to optimize the 

combination of the product of the scheduling vector with the power rating of devices. 

The procedure followed for coding the load scheduling optimization problem is as follows. All the 

residential devices with their power rating are represented by vector 'X.' So, the vector gives the power 

consumption of a device at any instant of time. For hourly scheduling in a day, the number of the elements in 

the vector is the product of 24 and the number of devices that are scheduled. If the time slots for the day are 

given by 'T' and the number of devices considered is 'D'. The number of elements in the vector is considered 

as T*D. The first T elements of the vector will be the status of device 1 multiplied by its power rating P1, and 

the second T elements will be the status of device 2 multiplied by its power rating and this continues till all 

the devices are covered. The real-time price data for 24 hours or 15 minutes time block is obtained from the 

state power utility is considered with T number of elements in vector based on the number of devices. 

Now for solving the problem using DEHO the objective function with a set of constraints is 

considered, one related to the preferred time interval of operation and the other related to the total energy that 

the device can consume. The DEHO code file contains parameters like the number of particles/clans, scaling 

factor, a random value, upper bound, and lower bounds of 'X'. The output of the DEHO code file generates a 

random vector 'X' with 0 and 1 indicating the off and on status of the devices. The status obtained is then fed 

to the objective function file to find whether it obeys the constraints and the value of the objective function is 

saved to obtain the best position of the elephants. A similar procedure is repeated for all the elephants in the 

clan. Then the vector position is changed by altering the position of the matriarch separating the worst 

elephant and using predefined constants. This new vector is also fed to the objective function file and values 

are compared to that of randomly generated 'X'. The most desirable value and its corresponding index are 

saved and it replaces the inferior elephants in clans in 'X'. This procedure is repeated for a user-defined 

number of iterations, to get the best scheduling pattern for meeting the objective function. The desired 'X' 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1352-1368 

1358 

value obtained is separated based on the number of devices into T elements. The device rating is then 

multiplied by the optimal status of the devices to obtain the total power consumption and the load curve. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Load scheduling optimization and simulation  

Both BPSO and DEHO techniques are employed in the simulation to optimally schedule the 

consumer devices to reduce the peak load and energy expenses. The results obtained from both algorithms 

are then compared and analyzed. In the unoptimized case, the consumer has complete control over the 

functionality of his device and makes the decision about switching on and off the devices without any 

concern about the cost. In this work, it is assumed that the consumers turn on the load at the first or the 

second time slot of the specified time preference set decided as per their convenience. This type of switching 

results in a higher cost of energy and also a higher PAR for the utility. The energy bill of the consumer 

increases and the utility has to purchase power at a higher cost from the energy market due to unoptimized 

scheduling of the devices. The two scenarios are considered for the optimization based on either utilization of 

only the grid power and both grid power and SPV power to operate the consumer loads. 

 

4.2.  Scenario 1: consumer devices operating on utility grid supply 

Consumer devices in this case just use the grid supply for their operation and are scheduled based on 

the RTP signal. Consumer devices operate in accordance with the load scheduling algorithm based on RTP 

rates. The scheduling algorithm optimizes the operation of the devices based on the (3), (4), and (5), as stated 

in the previous section. The results of scheduling obtained based on the DEHO algorithm are shown in 

Figure 1. Table 2 lists the parameters used for carrying out the load scheduling optimization. For 15 minutes 

time period or 96 blocks in a day the results of the optimization carried out are shown in Figure 2. 

In comparison to the unoptimized scheduling of the devices, the operation of the devices has shifted to 

different time intervals with optimization. After simulation, it is observed that the device's operation is spread 

throughout a 24-hour time horizon with the goal of minimizing the cost and PAR. Table 3 shows the 

outcomes of various scenarios used to model the system, and Table 4 compares alternative optimization 

techniques based on the objectives. 

 

 

 
 

Figure 1. Optimal scheduling of devices using the DEHO algorithm 

 

 

Table 2. Parameters of the optimization algorithm 
Optimization type Parameters Parametric values 

DEHO 

No. of particles/Clans 150 
Scaling factor 0.1 

Maximum iterations 100 

Random value 0.5 
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Figure 2. Optimal scheduling of devices using the DEHO algorithm for 96 blocks 

 

 

Table 3. Modeling scenario comparison 
Scenario considered Cost in (₹) PAR 

Unscheduled 117.86 2.91 

Only Grid Power 105.81 2.506 
Grid+ SPV Power 63.14 1.887 

 

Table 4. Evaluation of different optimization strategies 
Optimization type Cost in (₹) Savings (₹) 

Unoptimized 117.86 -- 

BPSO 109.60 8.26 
DEHO 105.81 12.05 

 

 

 

4.3.  Scenario 2: consumer devices utilizing both utility grid supply and SPV power  

In this scenario, it is assumed that the consumer owns an SPV system that produces electricity, thus 

lowering the amount of electricity required from the grid as well as the amount of electricity purchased each 

day. The consumers own generation from SPV is represented as a negative load based on the projected 

generation pattern for the following day. The SPV output profile is included in the optimization problem for 

the period of the scheduling horizon. During simulation, the SPV system of a 5 kWp roof-mounted PV 

system of the consumer is considered. The energy yield of an SPV system is obtained using PV*SOL 

software based on the location of the consumers residential site. The projected SPV output for the day is 

utilized for the optimization to find the most suitable time to schedule the devices, as per the objective 

functions shown in (12) to (13). The SPV generation's installed capacity is considered less than the total 

connected load. This approach helps consumers automatically establish the optimum operation schedules 

while taking into consideration consumer convenience, dynamic RTP pricing, and SPV energy yield. Power 

obtained from the utility electricity is used to optimize the device schedule, and because there is no storage, 

solar power is fed quickly. To reduce their electricity expenditure, the user schedules their appliances 

obtained from the optimization as illustrated in Figure 3. DEHO algorithm schedules the operation of the 

devices throughout the day to achieve optimal consumption, hence lowering the cost and PAR. 

 

𝐹1 = 𝑀𝑖𝑛[∑ 𝑅𝑡[(∑ 𝑃𝑗
𝑡𝑋𝑗

𝑡)
𝑄
𝑗=1 ) + (∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 ) − (𝑆𝑃𝑉𝑡)]𝑀
𝑡=1 ] (12) 

 

𝐹2 = 𝑀𝑖𝑛 [
𝑀𝑎𝑥 ∑ (∑ 𝑃𝑗

𝑡𝑋𝑗
𝑡)

𝑄
𝑗=1 )+(∑ 𝑃𝑖

𝑡𝑋𝑖
𝑡)𝐷

𝑖=1 )−((𝑆𝑃𝑉𝑡))𝑀
𝑡=1

∑ ∑ ∑ (
𝑃𝑗

𝑡𝑋𝑗
𝑡+𝑃𝑖

𝑡𝑋𝑖
𝑡−(𝑆𝑃𝑉𝑡)

𝑀
)𝐷

𝑖=1
𝑄
𝑗=1

𝑀
𝑡=1

] (13) 

 

𝐹3 = 𝑀𝑖𝑛(𝛼1𝐹1 + 𝛼2𝐹2) (14) 

 

4.4.  Analysis of direct load control DR program implementation 

The power utility implements the DLC DR program for residential customers in response to 

contingency events and during periods of high wholesale electricity prices. When the utility encounters 

system contingencies, it directly controls the consumer devices in the case of a DLC-based DR program. The 
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control signal is sent from the utility to the consumer's HEMS via smart meters, and the devices are 

controlled. The energy consumption pattern data of one of the domestic consumers was analyzed over six 

months for the proposed implementation. The consumer's last 10 weekly days of recorded power usage data 

are used to estimate reference or baseline consumption. The baseline consumption is calculated using the 

average 24-hour readings over the previous ten days. For the day on which the DLC program is to be 

implemented, the calculated baseline consumption for the day is shown, and the average load for that day is 

computed. When the power utility wants to execute load curtailment, it sends a control signal to the 

consumer, who subsequently manages his devices via a controller and a series of relays. We have simulated 

the cases where 5%, 10%, and 15% curtailment is applied based on the consumption during peak hours. The 

amount of curtailment is decided based on the computed average and measured power. If the detected power 

exceeds the computed average power, the load is reduced based on the priority of the devices' operation. The 

detailed implementation of this is explained further in the prototype hardware model. Figures 4 and 5 

represent the results of simulations of the implementation of a DLC-based DR program regarding curtailment 

for two periods from 8:00 to 10:00 hours and 19:00 to 22:00 hours, respectively. 

 

 

 
 

Figure 3. Scheduling of devices considering both grid and 5 kW SPV power 

 

 

 
 

Figure 4. Comparison of predicted baseline load and objective load demand from 8:00 to 10:00 hours 
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Figure 5. Comparison of predicted baseline load and objective load demand from19:00 to 22:00 hours 

 

 

4.5.  Hardware model design and development  

Lack of effective building automation systems to manage the loads and lack of knowledge among 

the consumers to respond to the dynamic prices are major barriers to the effective implementation of DR 

programs for residential consumers. This problem is addressed by proposing the optimal and automated 

residential energy consumption framework which attempts to achieve the desired tradeoff between 

minimizing the electricity bill payment and the convenience of the consumers considering the operation of 

the household appliances under the RTP. The optimization strategy is developed first and then converted into 

code and then used to configure the Arduino-based controller. In case of the load scheduling the optimization 

code intelligently monitors the load during different pricing periods and accordingly sends the signal to 

control the operation time of the devices. A better and more efficient load devices scheduling plan is 

obtained. 

Emulating household devices like refrigerators, washing machines, air conditioners, electric 

vehicles, and nonflexible loads like lighting incandescent bulbs have been used in prototype hardware.  

Table 5 indicates the rating of the various devices used for emulating it on the prototype hardware model. 

The devices are classified into three different categories based on power consumption patterns fixed, 

variable, and shiftable type. The incandescent bulbs of different power ratings are used to represent the 

devices on the hardware model. Figure 6 indicates the methodology followed in the work to obtain the 

solution for load scheduling optimization and DR implementation. The hardware model developed provides 

consumers the ability to automatically perform the device controls based on utility prices, consumer 

convenience, consumer load priority, and reliability issues faced by the utility. 

The load shifting, controlling, and curtailing operations of the devices can be carried out as all these 

operations are programmed in the controller and are triggered when the load control signal is encountered. 

Basically, in the hardware model, there are two circuits namely the power circuit and the control circuit 

decided based on the voltage level. Figure 7 shows the power and the control circuit for the HEMS. All the 

loads are powered through a single-phase 230 V supply. The smart meter is used here only for measurement 

of the energy consumption. The power bank is used to obtain the DC supply to Arduino and node 

microcontroller unit (MCU). A DC power supply of 5 V is obtained for their operation. The control circuit is 

for controlling the loads using node MCU. Optocouplers are used in hardware circuits to provide isolation 

between the power circuit and the control circuit as well as for protection. All the loads are connected to the 

pins of Arduino with the help of relays and sensors which are powered accordingly. The voltage and current 

sensors are used for measurement of the voltage and current and further for computing the power and energy 

consumption based on the device operation. An app named load manager is developed for the consumer's 

smartphone that uses the Blynk platform to implement load scheduling and DLC DR program. The app 

designed is named load manager is shown in Figure 8. The app makes it convenient for consumers to 

participate in load scheduling and DR programs for device operation. As the node MCU can connect to a  

Wi-Fi router and keep an internet connection, the consumer can manage loads using a smartphone and the 

Blynk IoT platform's app. Using the voltage and current sensors, the controller determines the voltage, 

current, and power, and the power data is then shown on the app. The tariff rates of the utility are also 

displayed on the app. The controller unit is linked with the app for manual operation as well as notifications 

sent from the mobile application. The relays are used to control the operation of different devices based on 

instructions received from the controller. 
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Table 5. Device emulation in a prototype hardware 
Name of device For optimization rating (watts) For hardware prototype rating (watts) 

Dishwasher 1,000 100 
Electric water heater 2,000 200 

Air conditioner 1,000 100 

Washing machine 500 50 
Electric vehicle 2,000 200 

Non-flexible loads 600 60 

Water Pump 400 40 

 

 

 
 

Figure 6. Methodology to prototype system model solution 

 

 

 
 

Figure 7. Block diagram of the prototype HEMS model 

 

 

The prototype model is designed, developed, and coded in such a way that consumers have the 

option of participating in both optimal load scheduling and DLC-based DR programs based on their priority 

and preference. The state of devices with feedback features, such as washing machines, is examined so that 

the operation is not interrupted, as this will affect consumer satisfaction and processing items. For coding the 

consumer can feed the data such as start time, finish time, total energy usage, and number of devices based 

on which best schedule of operation of the devices will be obtained. Figure 9 shows the prototype hardware 

model with a set of loads, controllers, sensors, and smart meters. 
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Figure 8. Load manager app 

 

 

 
 

Figure 9. Developed prototype model 

 

 

In this work, it is assumed that the consumer receives information on RTP rates, emergency DLC 

signals, and price incentives for demand reduction from the power utility via the registered cell phone. In the 

optimization code, the RTP rates are applied to minimize the cost and peak-to-average ratio. For 

implementation of the DR program by the utility, the consumer registers his name, smart meter ID, email ID, 

and smartphone number with the database of the utility. The information of the consumers willing to 

participate in the program is uploaded on the utility server. Every consumer can be monitored in real-time by 

the utility. ThingSpeak, an IoT service, is used in the work to replicate the power utility's analysis of 

consumers' power consumption for metering and to provide incentives. The MATLAB code for load 

scheduling and DR is executed in ThingSpeak for data processing, analysis, and visualization. ThingsSpeak 

securely gathers power consumption data from the controller device. The website presents data graphically 

and in real-time. Since each channel has a unique channel ID, data is sent to that channel. Consumers can 

download data from a channel as a CSV file from the ThingSpeak website. 

 

4.6.  Implementation of load scheduling optimization on prototype hardware 

A smartphone application that allows users to schedule and manage device operations is created 

using the Blynk platform. Based on the notification received the consumer can decide whether to participate 

in the DR program. The switch is also used on the hardware module to control the manual or automatic 

operation. The consumer has to accord his consent before the scheduling of the devices as per the 

optimization algorithm code begins. The optimization code is sent to the Arduino-based node MCU for 
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further implementation. The objective function, constraints, consumer preferences, and control parameters 

for scheduling the devices are sent to the controller via personal computer (PC) for the devices to be 

optimally scheduled. The device operation will be based on the output of the DEHO optimization code which 

generates the device operation vector for the node MCU to control the relays. The optimization code's output 

vectors are aggregated to form a matrix with dimension T×D, where T is the number of time slots and D is 

the number of devices. The device vectors are transformed to digital 0's and 1's, indicating whether the device 

is turned on or off. The relays operating the device are normally open, and for timeslots where the device 

vector elements become greater than zero, the control signal to the relay is set high to connect the 

corresponding device. During the entire period, the Arduino/Node MCU should remain connected to the 

relays controlling the device operation. For remote operation of the devices, an internet (Wi-Fi) connection is 

needed. 

To simplify and for analysis purposes, the load consumption computation during prototype model 

development, a reference day has been divided into 72 time slots. The power utilized by the devices is 

measured using the voltage and current sensors using the microcontroller, and the data is then transferred to 

the ThingSpeak platform for monitoring and records. The real-time operation with a record of consumption is 

shown in Figure 10. The instantaneous values of voltage, current, and power at a certain instant are shown in 

Figure 11. The instantaneous values are the direct values without any multiplying factor for power 

measurement or the current measurement. Whereas the readings shown in Figure 10 are with multiplying 

factor to replicate with the simulation model. 

The data is collected regularly to keep track of how much power the devices utilize. Real-time 

energy consumption data can be received via a ThingSpeak service on the website. ThingSpeak enables the 

controller to deliver data to a specified channel. During the coding process, the channel ID and authentication 

credentials are provided to the controller. After establishing the channel ID and authentication information, 

real-time data on instantaneous and average power values can be retrieved. The collected data is sent to a 

server of the power utility to examine it for further study of energy billing and deciding on consumer 

incentives. The power consumption data is to determine the energy savings achieved over a period. The 

proposed hardware model, which is based on optimization code, can achieve device operating time within the 

customers' preferred time window, resulting in minimal power consumption while retaining consumer 

convenience. 

 

 

  
 

Figure 10. Measured power based on optimal device 

scheduling 

 

Figure 11. Actual instantaneous values of electrical 

parameters 

 

 

4.7.  Implementation of DLC DR program on prototype hardware 

Implementation of the DLC DR program by the state power utility for the domestic consumer is 

demonstrated with the hardware. DLC DR program is implemented only when the utility faces issues related 

to a power shortage, contingency situation or the wholesale electricity prices become very high on a 

particular day or a particular time of the day. The communication between the power utility and the 

consumers is must regarding power and information flow for implementation of DLC DR program. 

Whenever the power utility wants to implement this it sends the notification to the consumers one or two 

hours in advance. In the notification, all the information related to the start time, duration of the event, and 

the curtailment percentage needed is specified. The consumer choice is included in the programming code to 

indicate whether he wants to participate in DR or not. If the consumer gives his consent to participate then 

only the curtailment and control of his device operation can be done. The load curtailment value is decided 

from the average load data obtained from the baseline value. The average value of the load of the consumer is 
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computed by taking the last 10 days daily hourly consumption excluding DR event days. The actual value of 

measured power is then compared with the average value of baseline power. Only if the actual measured 

value of the power is more than the average value then the load curtailment is carried out by controlling the 

operation of the devices based on the priority of the operation of the devices set by the consumer. The 

consumer decides the priority of the operation of devices based on his convenience and need. 

The signal for DLC DR instructs every consumer who has signed a contract with the power utility to 

curtail his power requirement in exchange for the incentives. This is achieved through our algorithm which 

adequately curtails the load and the power. The required reduction needed is determined along with the value 

of the objective power. The current state of all the devices and the potential for the curtailment of the power 

is reviewed after computing the power difference. Consumers specify the order of priority for scheduling the 

devices, which is provided in the code. In the code for controlling the operation of the devices, the shiftable 

loads are given priority followed by curtailable and controllable loads. 

In this paper working on the algorithm for the model, 5%,10%, and 15% curtailment volume from 

the average load value is demonstrated. The model is tested for two peaks of the load curve one during the 

morning peak and the other during evening peak hours. For a certain DR event day, the working of the DR 

algorithm on the model is tested. Figure 12 shows the load manager app developed for displaying the 

notification to the consumer for DR implementation. Once the signal is received based on the code the node 

MCU's transmitter and receiver will decide the operation of particular devices to manage the load. 

 

 

 
 

Figure 12. Developed app for load management and consumer notification 

 

 

The power utilized by the devices before and following curtailment is recorded on the ThingSpeak 

service. The code includes a multiplying factor of 10 for getting measurement data to correlate the simulation 

and hardware results. The instantaneous values of voltage, current, and power values without any multiplying 

factor can also be obtained on the meter connected to the circuit. The measured value of the average power 

considered over a time period is sent to the ThingSpeak server. Since the time block of 15 minutes on 

average leads to precise energy billing and gives reliable data for the analysis, it is considered. Figure 13 

shows the readings obtained on the ThingSpeak server platform. Through the ThingSpeak platform, the 

information of every consumer participating in the DR program can be uploaded to the power utility database 

for analysis of energy consumed and providing incentives for participation in the DR program. The power 

curtailment volume is determined using the power before and load curtailment depending on device 

operation. The load curtailment value is also utilized by the power utility to provide monetary incentives to 

the consumers for assisting the utility in managing load demand. Figures 14 and 15 depict power before and 

after DR implementation for two time periods, namely morning and evening peak hours. 
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Figure 13. ThingSpeak server showing the average power consumption 

 

 

 
 

Figure 14. DLC implementation on actual load in a prototype model from 8:00 to 10:00 hours 

 

 

 
 

Figure 15. DLC implementation on actual load in a prototype model from 19:00 to 22:00 hours 

 

 

As previously mentioned, the DLC DR was implemented on the hardware model for two time 

periods per day. Table 6 shows the results achieved for a day with RTP rates on that day. Similarly, the 

analysis was carried out for DLC DR deployment on 5 days with RTP rates in effect on those specific days; 

the results obtained are provided in Table 7. The power utility can also determine the amount of consumer 

incentives that can be provided based on the amount of load reduction achieved. 
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Table 6. Implementation of DLC DR 

for 1 day 
Demand 

Curtailed (%) 
Energy Saved 

(kWh) 
Money 

Saved (₹) 

5 3.59 15.08 

10 4.91 35.7 
15 5.83 39.85 

 

Table 7. Implementation of DLC DR for 

5 days in the month 
Demand 

Curtailed (%) 
Energy Saved 

(kWh) 
Money Saved 

(₹) 

5 18.39 77.26 

10 25.13 182.93 
15 29.85 204.18 

 

 

 

5. CONCLUSION  
The DEHO algorithm proposed optimizes device scheduling based on user time preferences, 

resulting in significant cost savings and PAR reduction. The results of simulations and optimization show 

that load scheduling benefits both the power utility and the consumer. The prototype hardware 

implementation validates the simulation model. For different time durations, DLC-based DR implementation 

for the consumer is demonstrated using prototype hardware. Adoption of the proposed approach results in 

effective load control, reduced peak load, and improved load factor, all of which benefit both the consumer 

and the utility. If the proposed concept is adopted on a wide scale by the state power utility for domestic 

consumers, it has the potential to improve the security and reliability of the distribution system network of 

the power utility. 
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