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 Owing to its essential features, such as modularity and exceptional power 

quality, the modular multilevel converter (MMC) emerges as the optimal 

converter topology for high-voltage direct current (HVDC) applications. 

Traditionally, MMCs are controlled through a method called nearest level 

modulation (NLM), which generates N+1 AC output voltages, where N 

represents the number of sub modules (SMs) per arm. In this paper, we 

introduce a modified NLM technique designed to yield 2N+1 and 4N+1 

levels, with a focus on efficiently controlling internal dynamics. The proposed 

MMC is evaluated using a hardware-in-the-loop (HIL) environment to obtain 

real-time simulation outcomes. This MMC topology demonstrates a reduction 

in circulating currents and capacitor voltage ripple. 
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1. INTRODUCTION 

Modular multilevel converter (MMC) is a promising and dominant topology for high-voltage direct 

current (HVDC) applications. Among all other high-power voltage source converters, MMC is preferred for 

HVDC applications due to its modularity and fault-blocking capability features [1]. The MMC also offers 

several other notable benefits, such as reduced DV/DT stress, lower total harmonic distortions (THD) in 

output waveforms without the need for filters, and improved efficiency [2]. Essentially, MMC is composed 

of cells or sub modules (SMs) like unipolar cells (half-bridge), symmetrical bipolar cells (full-bridge), and 

asymmetrical bipolar cells (hybrid cells) [3]. The half-bridge-based MMC is the most commonly used 

topology because of its simpler structure, fewer switches, superior efficiency, and reduced cost [4].  

The literature suggests various pulse width modulation (PWM) techniques for controlling MMC, 

such as sinusoidal pulse width modulation (SPWM), space vector PWM, selective harmonic elimination 

(SHE), and nearest level modulation (NLM) [5]. NLM is preferred among all PWM techniques due to its 

salient features, such as operating at the fundamental switching frequency (reducing switching losses) and 

being easy to implement for a higher number of SMs [6], [7]. Furthermore, it offers attractive advantages, 

such as a natural voltage balancing algorithm and not involving complicated mathematical calculations as in 

the case of SHE. The conventional NLM method is shown in Figure 1, while (1) and (2) can be used to 

calculate the number of SMs to be inserted in the upper and lower arms. The sinusoidal reference waveforms 

are converted to staircase waveforms using the round function, and then, by employing the sorting algorithm, 

the SMs are inserted and bypassed accordingly. 

 

𝑁𝑈 = 𝑟𝑜𝑢𝑛𝑑0.5
𝑉𝑑𝑐

2𝑉𝑑
(1 + 𝑚 cos(𝑤𝑡)) (1) 
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Figure 1. Conventional NLM method for MMC 

 

 

2. COMPARISON WITH PREVIOUS RESEARCH 

In the conventional NLM-based MMC, the output waveform consists of N+1 levels, where N 

represents the number of SMs inserted in the upper and lower arms [2]. As a result, the conventional NLM 

requires a higher number of SMs to increase the number of levels in the output waveform. This leads to an 

increased number of power switches and passive components (inductors and capacitors) as well as more 

complex gate drive circuitry. Consequently, the overall complexity and footprint of the MMC station 

increase. 

A review of the literature indicates a need for the development of an enhanced MMC with a reduced 

number of cells, lower harmonic content, decreased circulating currents and minimized capacitor voltage 

ripple. Alexander and Thathan [8] suggested binary, ternary, and modified MMC configurations to achieve 

better power quality and reduced circuit complexity. However, the proposed research work suffers from 

increased THD and involves complex mathematical calculations. In research works [9], improved NLM with 

fewer SMs has been proposed. Nonetheless, the research lacks experimental verification, and the THD is 

higher compared to our proposed method. The research works [10]–[13] proposed MMCs with improved 

power quality and a reduced number of cells, but their proposed method cannot be extended to achieve 4N+1 

levels. The research in [1], [2] has proposed enhanced MMCs with improved power quality and a reduced 

number of cells compared to the aforementioned research works. However, the studies presented did not 

focus on circulating current, arm currents, and capacitor voltage ripple problems; results were only limited to 

the output voltage and current of the MMC. Therefore, there is an urgent need to implement a modified 

NLM-based enhanced MMC with reduced circulating current and capacitor voltage problem. 

Circulating current suppression and capacitor voltage balancing approaches have been the subject of 

extensive investigation. Ishfaq et al. [14] propose an adaptive proportional integral (API) controller strategy 

to regulate MMC's circulating and output currents by adapting control parameters in real-time based on 

operating conditions. This adaptive approach optimizes MMC performance, stability, and efficiency under 

various scenarios. Simulation results show the method's effectiveness in handling MMC circulating currents, 

outperforming traditional control techniques like the PR controller. Ud Din et al. [15] propose an integral 

back stepping (IBS) controller to regulate the output and circulating currents of grid-connected MMCs, 

improving overall performance and stability. Based on Lyapunov stability theory, simulation results 

demonstrate the controller's effectiveness in managing MMC internal dynamics under various conditions. 

In a study [16], sliding mode control (SMC) is introduced as a method for regulating output and 

circulating currents in MMC. The proposed controller enhances the stability and efficiency of MMC, with 

simulation results demonstrating its superior performance in comparison to PR based control technique. In 

study [17], a novel control strategy for reducing circulating current in MMC is proposed, utilizing model 

predictive control (MPC) combined with a genetic algorithm (GA). This approach aims to minimize 

circulating current by optimizing the switching angles of MMC modules. The MPC algorithm predicts the 
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MMC system's future state, while the GA algorithm optimizes the switching angles. Simulations evaluate the 

proposed strategy, demonstrating its effectiveness in circulating current suppression control (CCSC) and 

enhancing the MMC system's performance. 

However aforementioned research papers [14]–[17] depend on simulation-based findings and do not 

provide experimental validation to support its claims. Additionally, implementing API, SMC, and MPC for 

suppressing circulating currents requires the use of high-performance hardware, such as digital signal 

processors (DSPs) or field-programmable gate arrays (FPGAs). Compared to the aforementioned techniques, 

the proposed PI-based control for suppressing circulating current is easier to implement and best suited for 

small to medium power applications in MMC. Various strategies for addressing the MMC circulating current 

under unbalanced grid situations have been presented in literature [18]–[21]. However aforementioned 

research work has major limitations such as conventional NLM or SPWM technique is used and 

experimental verification is not performed. 

The major contributions of this research work include an enhanced MMC with a modified NLM 

featuring a reduced number of cells and harmonic content is proposed. Real-time simulation results for the 

modified NLM in the enhanced MMC are presented. The circulating current suppression control strategy for 

reducing circulating current has been applied to the modified NLM in the enhanced MMC. Detailed switch 

modeling (DSM) is considered the most accurate model among all modeling approaches, as it replicates the 

actual MMC behavior, switching dynamics, and electromagnetic transients. Unlike average or aggregate 

MMC modeling approaches, DSM is best suited for studying the internal dynamics of MMC, such as SM 

capacitor voltage, circulating current, and SM faults. Therefore, the enhanced MMC has been realized using 

the DSM approach. 

 

 

3. PROPOSED LABORATORY SETUP AND MODIFIED NLM METHOD 

Computer-based simulations, which utilize various software tools such as MATLAB, 

PSCAD/EMTDC, LabVIEW, Multisim, and PSIM, are known as offline simulations. These simulations have 

become popular for evaluating the performance of electrical circuits due to their cost efficiency and reduced 

effort requirements. Nevertheless, offline simulations may not accurately reproduce the true behavior of 

electrical circuits, leading researchers to approach their results with caution. To address this issue, 

researchers employ hardware-in-the-loop (HIL) setups to achieve real-time simulation outcomes. In contrast 

to offline simulations, real-time simulations using HIL more closely represent the actual behavior of electrical 

circuits. Figure 2 demonstrates the close resemblance between the outcomes of physical/experimental 

prototypes and HIL setups. 

Compared to computer simulations (offline simulations), real-time simulations offer more 

deterministic results and replicate the actual behavior of the converter [22]. Literature reviews suggest that 

real-time simulation results closely resemble the actual physical system [23]. There are known HIL setups 

available from different companies such as RTDS®, OPAL-RT®, Typhoon®, and dSPACE® for producing 

real-time simulation results. However, the proposed HIL setup is a joint collaboration between OPAL-RT® 

and National Instruments (NI). The proposed research laboratory uniquely combines computer simulation 

and hardware testing, allowing researchers to first perform LabVIEW-Multisim co-simulation at computer 

facilities. In this research work, LabVIEW-Multisim co-simulation is conducted in a way that the digital 

controller (modified NLM) is implemented using LabVIEW software and the analog circuitry of MMC is 

developed using Multisim. By utilizing LabVIEW-Multisim co-simulation, researchers initially investigate 

the behavior of the modified NLM for MMC through software simulation. After obtaining satisfactory 

software simulation results, the next step is to load the same modified NLM controller with minor 

modifications into the CompactRIO (CRIO), and the Multisim MMC circuitry is loaded into the NI PXIe 

hardware to achieve real-time simulation results. It can be concluded that the proposed HIL setup saves time, 

improves project quality, and provides flexibility for effectively testing and designing power converters. The 

transition from software simulation (offline simulation) to real-time simulation (HIL setup) is made easier 

with the proposed setup, as summarized in Figure 3. The proposed HIL setup is explained in detail in 

research works [22], [23].  

The electrical hardware solver (EHS) software (provided by OPAL RT) enables the automatic 

simulation of an electrical circuit without requiring expertise in FPGA or VHDL programming. This software 

is compatible with various simulation programs, including MATLAB, PSIM, Multisim, and LabVIEW. By 

utilizing these four programs, researchers can design the MMC-MTDC project and load it directly onto the 

NI PXIe FPGA hardware. EHS generates the electrical circuit model and produces real-time simulation 

results in nanoseconds, as depicted in Figure 4. 

As compared to analog setups, HIL configuration demands lesser maintenance, time, and cost. It 

provides a suitable framework to verify and validate the electrical system, enabling engineers and researchers 
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to transform their innovative concepts into reality as it generates results that are highly comparable to 

experimental outcomes. Figure 5 illustrates the configuration of the HIL laboratory that is currently 

accessible at our university. 

 

 

 
 

Figure 2. HIL setup vs physical setup 

 

 

The modified NLM method for half-bridge based MMC is implemented by introducing a small 

phase shift in the reference waveform for either the upper or lower arm in each phase of the three-phase 

MMC. The process of adding a small phase shift in the reference waveform to achieve 2N+1 and 4N+1 

output levels is depicted in Figure 6. The proposed modified NLM is loaded into National Instruments' 
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CompactRIO (CRIO) for controller HIL testing. The LabVIEW-developed control algorithm was initially 

compiled and then burnt into NI CRIO FPGA to observe the controller's real-world performance. The 

algorithm underwent evaluations at various MMC stages. The configuration of the system is depicted in 

Figure 7, while the outcomes derived from the CRIO are presented in Figure 8. After the controller exhibited 

the intended functionality, the CRIO-produced signals were employed to control an actual MMC circuit, 

which was executed on an NI FPGA-integrated PXIe platform. 

 

 

  
 

Figure 3. Proposed HIL setup 

 

Figure 4. EHS software 

 

 

 
 

Figure 5. EHS software 

 

 

 
 

Figure 6. Proposed modified NLM method for MMC 
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Figure 7. NI CRIO digital controller for implementing proposed modified NLM 

 

 

 
 

Figure 8. Gate signals for MMC switches from NI CRIO digital controller 

 

 

4. MMC MATHEMATICAL MODELING 

MMC mathematical modeling is applied in Figure 9. Equations (3) and (4) denotes Upper (Vau) and 

lower (Val) arm voltages. Equation (5) is of phase voltage. Equations (6) and (7) is of upper and lower arm 

currents. Moreover, equation (8) is for differential current. The differential current is composed of two 

components such as dc component and ac component. For successful operation of the converter, DC 

component is required and AC component of circulating must be eliminated. Sub-module upper arm 

capacitor voltage is represented in (9). It should be noted that CCSC can suppress harmonic components 

present in phase power and reduce energy variation. Circulating current is shown in Figure 9 with red dotted 

lines. 

 

𝑉𝑢𝑝 =
1

2
𝑉𝑑𝑐 − 𝑉𝑢 − 𝐿

𝑑𝑖𝑢

𝑑𝑡
 (3) 

 

𝑉𝑙𝑜𝑤 = −
1

2
𝑉𝑑𝑐 + 𝑉𝐿 + 𝐿

𝑑𝑖𝐿

𝑑𝑡
 (4) 

 

𝑉𝑝ℎ𝑎𝑠𝑒 = 𝑉𝑑𝑐 − 𝐿𝑜
𝑑(𝑖𝑢𝑎+𝑖𝑙𝑎)

𝑑𝑡
 (5) 

 

𝑖𝑈 = 𝐼𝑐𝑖𝑟𝑐 +
𝑖𝑑𝑐

2
 (6) 
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𝑖𝑈 = 𝐼𝑐𝑖𝑟𝑐 −
𝑖𝑑𝑐

2
 (7) 

 

𝑖𝑧, = (𝑖𝑢+𝑖𝑙)2 = 𝐼𝑑𝑐/3 + 𝑖𝑐𝑖𝑟𝑐, 𝑎 sin (𝑛𝜔𝑡 + 𝜑𝑦) (8) 

 

𝑉𝑐𝑢,𝑖 =
𝑉𝑑𝑐

𝑁
+ ∆𝑉𝑟𝑖𝑝𝑝𝑙𝑒,𝑢𝑎 (9) 

 

 

 
 

Figure 9. This is a figure schemes follow the same formatting 

 

 

5. PROPOSED SYSTEM DESCRIPTION 

Figure 9 presents a comprehensive block diagram of the entire control system for the closed-loop 

enhanced MMC station. The proposed enhancement features a modified NLM control, inner current control, 

CCSC, and outer control loops including active power control and alternative voltage control, as illustrated in 

Figure 7. The widely-accepted vector current control scheme is employed for the phase-locked loop (PLL), 

enabling independent and decoupled active and reactive power control. A thorough presentation of the 

mathematical equations and implementation processes for the vector current control scheme can be found in 

references [24]–[26]. The enhanced control system leverages a modified NLM method (4N+1 levels) that 

requires fewer SMs while also reducing harmonic content. Lastly, the CCSC ensures minimal circulating 

current, with its block diagram displayed in Figure 10. 

 

 

 
 

Figure 10. CCSC block diagram 
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6. REAL TIME SIMULATION RESULTS FOR ENHANCED MMC WITH REDUCING 

CIRCULATING CURRENTS AND CAPACITOR VOLTAGE RIPPLE 

The MMC circuit, developed using Multisim, is loaded into the NI PXI, a floating-point solver 

based on FPGA technology. This solver generates a bit file for the circuit and executes it within nanoseconds 

on the FPGA. Subsequently, the previously designed modified NLM is incorporated into an FPGA-powered 

CRIO controller to manage the circuit operating within the PXI system. 

It is important to note that the chosen number of SMs (SMs) is 12 (N=12). The conventional NLM 

can generate 13 levels of output voltage and current (N+1). However, the proposed modified NLM can 

produce 25 levels of output voltage and current (2N+1). By making minor adjustments to the phase shift of 

reference signals, the modified NLM can be further extended to achieve 49 levels of output voltage and 

current (4N+1). 

Before the 0.04-second mark, the 2N+1 levels modified NLM is activated, while the 4N+1 levels 

proposed modified NLM is activated after 0.04 seconds. Figures 11 and 12 display the output voltages and 

currents for the proposed modified NLM with 12 SMs, respectively. Consequently, it can be concluded that 

the proposed modified NLM is capable of achieving superior power quality (reduced THD) without 

increasing the number of SMs compared to the conventional NLM. 

 

 

 
 

Figure 11. Real-time simulation results for MMC output voltages with 25 and 49 levels 

 

 

 
 

Figure 12. Real-time simulation results for MMC output currents with 25 and 49 levels 

 

 

The MMC is deemed robust when it exhibits both improved power quality and effective internal 

dynamics control, such as reduced circulating current and capacitor voltage ripple. The proposed enhanced 

MMC not only guarantees optimized power quality with 4N+1 output waveform levels but also addresses 

circulating current and capacitor voltage ripple concerns. The internal dynamics control robustness, such as 

the CCSC, has been evaluated using a 49-level enhanced MMC. It is evident that the proposed CCSC 

performs well with the enhanced MMC (4N+1 levels), effectively reducing circulating currents to below 10% 

of the nominal current, as shown in Figure 13. Moreover, the proposed enhanced MMC ensures not only 

reduced circulating currents but also well-balanced sub module capacitor voltages, as illustrated in Figure 14. 

Figure 14 demonstrates that the MMC's capacitor voltage ripple is minimized, operating within safe 

limits and preventing the converter from tripping. Furthermore, the capacitor voltages remain balanced and 

adhere to standard grid codes. As a result of the effective suppression of circulating currents and capacitor 

voltage ripple, the proposed MMC exhibits smoother arm currents with reduced harmonic content, as 

displayed in Figure 15. Lastly, Figure 16 shows that the proposed enhanced MMC has a standard modulation 

index value of 0.8 p.u, ensuring that over-modulation and under-modulation issues are avoided during MMC 

operation. 
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Figure 13. Circulating currents for proposed MMC with 49 levels 

 

 

 
 

Figure 14. Sub-module capacitor for proposed MMC (Phase A) with 49 levels 

 

 

 
 

Figure 15. Arm currents for proposed MMC (Phase A) with 49 levels 

 

 

 
 

Figure 16. Modulation index value for proposed MMC with 49 levels 
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7. CONCLUSION 

Previous literature focused on the modified nearest level control (NLC) for MMC with 4N+1 levels; 

however, the studies were limited to examining the output voltage and current waveforms of MMCs. This 

research broadens the scope by investigating the internal dynamics control of modified NLC for enhanced 

MMCs. The presented results demonstrate that the proposed CCSC technique successfully addresses the 

circulating current and capacitor voltage ripple issues, while improving power quality (4N+1). Furthermore, 

the arm currents exhibit a smoother, sinusoidal profile, and the modulation index adheres to the standard 

value of 0.8 per unit (PU). This comprehensive analysis highlights the effectiveness of the proposed CCSC 

technique in managing the internal dynamics of enhanced MMCs, contributing to the advancement of MMC 

technology and its practical applications. 
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