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 Human detection and classification via Wi-Fi transmission have received a 

lot of attention in recent years as crucial facilitators in security and human-

computer interaction (HCI). The passive Wi-Fi radar (PWR) system used by 

previous researchers applied cross-ambiguity function (CAF) and CLEAN 

algorithms to process the detected signals. This paper explores the feasibility 

and viability of a PWR system in detecting and classifying human 

movements without utilizing CAF and CLEAN algorithms. The movements 

are performed by four participants but with comparable body sizes and 

heights. Three daily human movements are investigated namely walking, 

bending, and sitting, with each participant performing each movement 24 

times, providing a total of 96 samples per activity. The system is evaluated 

based on the consistency of the signal pattern in a frequency domain and the 

percentage accuracy is assessed using an artificial neural network (ANN) 

classifier and trained using a leave-one-out cross-validation (LOOCV) 

method. The frequency domain results reveal that the signals are consistent, 

with no noticeable variations or changes in the voltage intensity or shape of 

the main lobe. The classification of the movements shows that the classifier 

has an overall accuracy of 97.6%. 
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1. INTRODUCTION  

Passive radar systems for detecting targets employing opportunity illuminators have received a lot of 

interest recently. Early studies have utilized analogue transmissions such as very high frequency (VHF) radio 

[1] and ultra-high frequency (UHF) television broadcasts [2], [3] as opportunity illuminators. As digital 

processing has evolved, digital transmission has also increased in interest as the opportunity illuminators, 

such as a global system for mobile communications (GSM) [4], [5] and digital audio broadcasts/digital video 

broadcasts terrestrial (DAB/DVB-T) [6]. 

Nowadays, metropolitan areas have a large-scale deployment of Wi-Fi networks, and many public 

and private places are fitted with one or more Wi-Fi access points (AP). These Wi-Fi APs offer a variety of 

illumination sources, including the usage of a radar system. In recent years, passive Wi-Fi radar (PWR) has 

drawn increasing attention. It is fast expanding in coverage across a wide range of application industries, 

including military, security, healthcare, and transportation [7]–[9]. This is because Wi-Fi signals are 

https://creativecommons.org/licenses/by-sa/4.0/
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modulated using orthogonal frequency division multiplexing (OFDM), which has an ambiguity function that 

suggests appropriate accuracy [10]. Furthermore, the maximum usable bandwidth of the Wi-Fi signals is  

160 MHz, which enables a resolution of about 1 m [11]. 

The earliest research on a PWR system was published in [12], where the system was employed for 

locating and tracking users inside a building utilizing 3 receivers, and it was discovered that the system is 

capable of locating and tracking users with a high level of precision. Other researchers have also 

implemented the PWR system in localizing and tracking moving targets by exploiting multiple passive 

sensors as reported in study [1]. Besides that, the PWR system has also been utilized in sensing human 

presence [13], [14]. Expanding the capability of the PWR system, researchers have also proved that fall 

events can be detected in real-time using a widely deployed Wi-Fi device at home [15]–[17]. In addition, the 

PWR system has also been used for context-awareness applications such as human activity detection and 

recognition.  

In study [18], a power system is employed to simultaneously detect respiration and physical 

movements utilizing a wireless energy transmitter and two receivers. A primary receiver picks up signals 

directly from the source, whereas a secondary receiver picks up signals reflected off people in motion. This 

study aids in monitoring the activity of adults, which can be associated with their physical activity. The 

support vector machine (SVM) classifier was tested with three feature vectors and achieved an accuracy of 

85%. Meanwhile, 3 basic activities were conducted in [14] where a commercial Wi-Fi router was positioned 

in a corner of the room as noncooperative illuminator and a receiver device was positioned outside the room, 

separated by a plywood partition board. The receiver device was equipped with two wideband horn antennas: 

one directed towards the Wi-Fi access point and the other directed towards the room area to detect human 

motion. In all instances, the Doppler effect of movements is readily identified with distinct characteristics 

that can be effortlessly applied for subsequent motion classification. In study [19], 3 volunteers were 

involved in human activity classification where the activities that the volunteers needed to perform were 

standing and walking. In the study, 2 types of information were used, namely Doppler and received signal 

strength (RSS). The Wi-Fi access point (AP) was positioned in one corner of the room, and the sensor was 

placed on an 80 cm high desk. One antenna was aimed towards the surveillance area as the surveillance 

channel, which gathered signals from both human and fixed objects; and the other at the Wi-Fi AP as the 

reference channel, which was used to reconstruct the sent Wi-Fi signal. At the end of the analysis, it was 

discovered that the Doppler information provided 95.3% accuracy while the RSS information created 69.3% 

accuracy using SVM classifier. 

However, according to previous articles, the PWR system consists of reference and surveillance 

antennas that evaluate differences between reflected signals from the target and direct signals from the 

illuminator of opportunity. The second antenna complicates and bulks up the system, rendering it unsuitable for 

use as a monitoring system since the bulky system takes more space and is more difficult to move or carry as 

well as costly maintenance. Additionally, the cross-ambiguity function (CAF) and the CLEAN algorithms were 

used to process the collected signals. This results in a lengthy signal processing time. In contrast, the PWR 

system utilized in this investigation consists solely of surveillance antennas and does not employ the CAF or 

CLEAN algorithms. This strategy reduces the system's size and portability while enhancing its processing 

speed. The system also utilized a configuration based on forward scatter radar (FSR). Walking, bending, and 

sitting are performed by 4 volunteers with comparable body sizes and heights. Hence, the objective of this paper 

is to assess the practicability and viability of the PWR system for classifying the same human daily activities 

performed by different individuals without the reference antenna and additional algorithms. 

 

 

2. HARDWARE CONFIGURATION AND EXPERIMENTAL SETUP 

2.1.  Hardware setup 

The transmitter source in this work is a D-Link DSL-2640T wireless router which has an operational 

frequency range of 2.4 to 2.46 GHz. With a transmitter power of 16 dBm and a max gain of 2 dBi, the router 

can operate up to 100 m for indoor applications. An Alfa APA-M25 2.4+5 GHz dual-band indoor antenna 

with 8 dBi gain is included with the router. It is a directional patch antenna with a horizontal beam of 66° and 

a vertical beam of 16°. This type of antenna is utilized to avoid interferences from other directions. 

Meanwhile, the receiver consists of an antenna, a low noise amplifier (LNA), a diode detector, a low pass 

filter (LPF), and a data acquisition system (DAQ). The receiver's antenna is likewise a directional antenna, 

the Alfa APA-M25 2.4+5 GHz dual-band indoor antenna with 8 dBi gain. Figure 1 illustrates the receiver 

block diagram with its specification. 
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Figure 1. Receiver block diagram 

 

 

2.2.  Experimental layout 

All experiments are carried out in an indoor laboratory room at the School of Electrical Engineering, 

College of Engineering, UiTM Shah Alam. The geometrical arrangement used is depicted in Figure 2 with 

top and side views. The transmitter and receiver are perpendicularly positioned at a 4.5 m distance baseline, 

resembling the FSR configuration, and 1.2 m above the ground. The red dot, point 𝑂, represents the starting 

center point where the participant stands before experimenting. The crossing point of the baseline is 

represented by 𝑂’ and the final location for the participant to be after crossing 90° to the baseline, is at point 

𝑂”, which is 4.5 m from point 𝑂. As for a preliminary target signature detection, the crossing baseline is at 

90° because it produces a symmetrical and ideal target signature compared to alternative trajectories [20]. 

 

 

  
 

Figure 2. Experimental layout with top and side views 

 

 

3. RESULTS AND DISCUSSION  

In this section, it explains the results of the research and comprehensive discussion. Results can be 

presented in figures, graphs, tables and others that make the reader understand easily [21], [22]. The 

discussion can be made in several sub-sections. 

 

3.1.  Human activities 

This experiment investigates three daily human movements, namely walking, bending, and sitting. 

There are no mobility restrictions as there are multiple ways to complete the task, including a few or many 

swinging hands, small or large walking steps, and the volunteers' pace/speed. The objective of this study is to 

observe the signal pattern of the respective activity as it is formed in different ways. To complete the activity, 

each participant will begin all activities at point 𝑂 and end at point 𝑂”. 
 

3.2.  Participants and number of data 

In order to evaluate the sensor performance in capturing the signature of each activity, 4 volunteers, 

two males and two females ranging in age from 25 to 30 years old with very comparable body size and height 

participated in the data collecting. This is done to ensure the consistency of the signature even if it is 

executed by multiple participants but with the same criteria. Each individual collects 24 of 10-second 

samples with a frequency sampling, fs of 10 kHz for each movement, for a total of 96 samples per activity. 

 

3.3.  Signal processing 

Prior to signal processing, the collected signals are filtered with a Savitzky-Golay filter with the first 

polynomial order and 0.1 s window to eliminate extraneous noise. The collected pulsed (discrete) Wi-Fi 

signal is subjected to a cubic spline interpolation (CSI) procedure to fit all the data points and create a 

continuous and smooth curve that traverses x points. This will ensure that the intended signature can be seen 
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clearly. In comparison to other interpolations, CSI is superior at interpolating Wi-Fi signals [23]. The 

simplified formula for the CSI can be expressed by (1): 

 

𝑓(𝑥) = 𝑎(𝑥 − 𝑥1)
3 + 𝑏(𝑥 − 𝑥1)

2 + 𝑐(𝑥 − 𝑥1) + 𝑑 (1) 

 

where [a, b, c, d] are the local coefficients and [x, x1] are the knot intervals. 

The continuous (Doppler) signal, which is a time-domain signal, is then converted into a frequency-

domain signal to further examine the properties of the signals by using a fast Fourier transform (FFT) 

technique. This technique is applied as the frequency components from the time-domain signals convey 

crucial details about the signal. The information or features of the signal will be gathered and displayed in the 

frequency-domain signal's primary lobes, while the signal's noise will be retained in the side lobes. The FFT 

is defined by (2) [24]: 

 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0  (2) 

 

where x(n) is the signal with transform length, n=0 … N-1, k is the Nth root of unity equal to 0 … N-1, and N 

is the size of its domain. 

From the frequency-domain signal, the features of the signal are extracted manually by dividing the 

primary lobes into 4 divisions with 2 Hz division by using a centroid-based method. The features are 

extracted from 2 components, which are voltage intensity and frequency. In this work, an artificial neural 

network (ANN) approach is applied to classify the signal characteristics. ANN operates by transmitting the 

value of the current neuron, ynth in the current layer to all neurons on the following layer, ynth+1 via weight, w 

multiplication, and bias, b addition, which can be expressed by (3) [25]: 

 

𝑦𝑛+1 = 𝑓𝑥𝑛(𝑏𝑛 + ∑(𝑦𝑛)(𝑤𝑛)) (3) 

 

From the 4 divisions with 2 extracted components, therefore the input layer of the classifier is fed with eight (8). 

The hidden layer has 12 neurons, which appear to offer the best accuracy, while the output layer has three (3) 

neurons, which corresponds to the number of human movement classes. The number of epochs is 30. 

To validate the accuracy of the classification of the signals, a standard mean absolute error (MAE) 

by leave-one-out cross-validation (LOOCV) is applied. It computes the average absolute difference between 

true ratings, yi and prediction ratings, ŷi by utilizing one observation from the original sample as validation 

data and the rest observations as training data. This process is continued until each observation in the sample 

has been utilized as validation data once. The lower error values indicate better suggestion accuracy. The 

LOOCV is expressed by (4) [26]: 

 

𝐿𝑂𝑂𝐶𝑉 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1  (4) 

 

3.4.  Data analysis and discussion 

Before commencing data collection, it is necessary to assess the availability and strength of the  

Wi-Fi signal. Figure 3 exhibits the spectrum measurement recorded at the receiver location. The absence of a 

Wi-Fi signal results in the absence of any observable peak, as seen by the red dotted line. Alternatively, a 

peak at 2.47 GHz with a signal-to-noise ratio (SNR) of ~39 dB, as seen by the blue line, occurs when the  

Wi-Fi router is switched ON. As the measurement will not be inferred by other signals, this suggests that the 

experimental region is appropriate for carrying out the measurements. Furthermore, even though the SA is at 

4.5 m from the transmitter, the recorded SNR is still greater than 30 dB, which is reported to be excellent for 

Wi-Fi packet transfer [27]. 

The measured Wi-Fi signal without the presence of a target is shown in Figure 4(a). The inset 

clearly shows that the Wi-Fi transmissions are of the pulsed type, correlating with what has been reported in 

[10]. In the presence of a target, the measured signal is displayed in Figure 4(b). The graphic demonstrates 

the variation in signals that resulted from target movement. When the target blocks Wi-Fi transmission 

toward the receiver, the signal intensity, expressed in voltage (V), decreases. In Figure 4(c), the interpolated 

signal, which represents the Doppler signal of the crossing target, is plotted in the red line where the target 

signature is clearly visible. 

Figures 5(a), 5(b), and 5(c) illustrate the time domain Doppler signals for walking, bending, and 

sitting, respectively. Every target movement generates a distinctive signature. The signature of each activity 

is separated into specific divisions to indicate the action as explained in detail in Table 1. The sitting activity 

forms more pronounced signatures compared to the other activities as demonstrated in Figure 5(c). This is 
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because seated activities are more complicated and require more actions to be performed than walking and 

bending activities. 

Figure 6 compares the Doppler signals generated during walking, bending, and sitting. The 

comparison illustrates the distinct differences between the Doppler patterns of each activity. This 

demonstrates and verifies that the PWR system utilized in this experiment is functional and capable of 

capturing a variety of human motions by producing a distinct Doppler signal pattern. 

 

 

 
 

Figure 3. Display of the SA with and without the presence of a Wi-Fi signal 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 4. Raw pulsed Wi-Fi signal (a) without the presence of a target. Inset: pulsed signals, (b) with a target 

crossing the baseline, and (c) interpolated signal (red line) 
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(a) (b) 

  

 
(c) 

 

Figure 5. Time domain Doppler signal (a) walking, (b) bending, and (c) sitting 

 

 

Table 1. Signature of human movements 
Figure 5 Activity Time domain description 

(a) (b) (c) (d) (e) (f) (g) (h) 

(a) Walking Walking Approaching 

baseline 

Crossing 

baseline 

Leaving 

baseline 

Walking    

(b) Bending Walking Approaching 

baseline 

Bending 

down 

Standing 

up 

Leaving 

baseline 

Walking   

(c) Sitting Walking Approaching 
baseline 

Moving 
to chair 

Sitting 
down 

Leaning 
on chair 

Standing 
up 

Leaving 
baseline 

Walking 

 

 

 
 

Figure 6. Comparison of Doppler signals 

 

 

To examine the consistency of the signature, a total of 96 samples of each activity collected in the 

time domain as shown in Figure 6 are transformed into a frequency domain, where the sample's 

characteristics, presented in the main and side lobe forms, can be observed clearly. Figures 7(a) to (c) show 

the first 30 Hz of the frequency domain of 96 samples, where the main and side lobes can be observed, for 
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walking, bending, and sitting activities. From the figure, no obvious changes, and fluctuations in the voltage 

intensity as well as the shape of the main lobe are observed for 96 samples of each activity. This indicates 

that the participants engaged in the same activity and the signature is convincing and consistent even if it is 

performed by a different individual. Meanwhile, there is a fluctuation of waves in the side lobes generated by 

variable speeds of activity performance as well as other motions from minor parts of the body. 

Figure 8 illustrates the first 10 Hz of the frequency domain for all 3 activities, which portrays a 

significant signature distinction between the activities. In order to do the classification, the features of the 

signature are extracted manually where 4 divisions are selected with the same range of frequency, as plotted 

in red dotted lines. As the signals in the frequency domain appear to begin at 1 Hz and the noise signals 

appear to begin at 9 Hz, therefore, the features are divided equally into 4 divisions with a range of 2 Hz. The 

first division is from 1 to 3 Hz, while the second division is from 3 to 5 Hz. The third division is divided from 

5 to 7 Hz and the last division is from 7 to 9 Hz. In each division, the distinction range of the voltage 

intensity and frequency components for each activity are identified to classify the activities. 

 

 

  
(a) (b) 

  

 
(c) 

 

Figure 7. Frequency domain signals for 96 samples (a) walking, (b) bending, and (c) sitting 

 

 

 
 

Figure 8. Comparison of frequency domain signals for 3 activities and 4 divisions of feature extractions 
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Figure 9 shows the centroid-based features from the 4 divisions with Figure 9(a) first, Figure 9(b) 

second, Figure 9(c) third, and Figure 9(d) fourth division. The walking features are presented in blue color, 

the sitting features are presented in red color, and the bending features are presented in green color. From the 

figure, it can be seen that there is a good separation between walking classes with sitting and bending classes. 

However, there are certain points when the walking class breaks away from the group and overlaps with 

those 2 classes. This is due to overlapping signals of walking activity in the frequency domain with signals of 

bending and walking activities. On the other hand, sitting and bending classes appear to be highly 

overlapping. This is because the signals from both activities in the frequency domain are closer to one other 

and have intersections. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 9. Comparison of frequency domain signals for three (3) activities and four (4) divisions of feature 

extractions: (a) first, (b) second, (c) third, and (d) fourth division 

 

 

The confusion matrix's diagonal elements (green boxes) represent successfully categorized events, 

whereas the non-diagonal elements (pink boxes) represent inaccurate or misclassified events. The column 

and row of the confusion matrix represent the target and output class, respectively. As can be observed in 

Figure 10(a), for the walking target class in the first column, out of 96 tests, 1 element is misclassified into 

the bending class, yielding a classification accuracy of 99.0%. The second column, which represents the 

sitting target class, shows that there are 1 and 2 elements misclassified into the walking and bending classes, 

respectively, which results in 96.9% of classes being correctly classified. This is due to the inclusion of 

walking exercises as well as the resemblance of lowering the body from bending action. On the other hand, 3 

elements are misclassified into the sitting class for the bending target class, resulting in a classification 

accuracy of 96.9%. This is due to a result of the bending activity including lowering the body action that is 

similar to sitting activity. The last column of the confusion matrix displays the algorithm’s classification 

precision with 99.0%, 95.9%, and 97.9% for the activities of walking, sitting, and bending, respectively. The 

classifier has an overall accuracy of 97.6%, which is considered a relatively good result compared to the 

study carried out by [28] with a success rate of 78%, and in study [29] with a recognition accuracy of 84.65% 

with the ANN classification algorithm. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Human movement detection and classification capabilities using passive Wi-Fi … (Hidayatusherlina Razali) 

3553 

The classification accuracy using the KNN algorithm as shown in Figure 10(b) shows that there are 

3 and 1 element are misclassified into the sitting and bending classes, respectively, for the walking target 

class, yielding a classification accuracy of 95.8%. 2 and 3 elements are misclassified into the walking and 

bending classes, respectively, for the sitting target class, resulting in 94.8% of classes being correctly 

classified. For the bending target class, however, 3 and 2 elements are misclassified into the walking and 

sitting classes, respectively, yielding a classification accuracy of 94.8%. The algorithm’s classification 

precision for walking, sitting, and bending are 94.8%, 94.8%, and 95.8%, respectively. The classifier has an 

overall accuracy of 95.1%, which is comparable with the study carried out by [30] with 95.8% recognition 

accuracy and [31] with a classification rate of 96% using KNN classifier. Based on the two classifiers, the 

system may function well because the classification accuracy of both classifiers is greater than 95%. 

 

 

 
(a) 

 

 
(b) 

 

Figure 10. Confusion matrix illustrating the accuracy of all activities expressed as a number of elements and 

percentages with (a) ANN and (b) KNN classifiers 

 

 

4. CONCLUSION  

In this experiment, Wi-Fi pulse signals are used as an illuminator of opportunity to identify and 

categorize 3 daily human actions, namely walking, bending, and sitting, conducted by 4 distinct people with 

equal body proportions and heights. ANN classifier has been employed to classify the signals and trained 

using the LOOCV method. The results clearly reveal a different Doppler signal between all activities, with an 

overall classification accuracy of 97.6%. It may be inferred that the PWR is capable of detecting distinct 

human motions even when conducted by different persons with equivalent body sizes and heights. The 

obtained accuracy also shows that the PWR system used in this work is reliable even without the reference 

channel and additional algorithms. 
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