
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 3, June 2024, pp. 2908~2917 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i3.pp2908-2917      2908  

 

Journal homepage: http://ijece.iaescore.com 

Intelligent intrusion detection through deep autoencoder and 

stacked long short-term memory 
 

 

Mehdi Moukhafi1, Mouad Tantaoui1, Idriss Chana2, Aziz Bouazi3 
1IEVIA Team, IMAGE Laboratory, Department of Sciences, Ecole Normale Supérieure, Moulay Ismail University of Meknes,  

Meknes, Morocco 
2SCIAM Team, IMAGE Laboratory, ESTM, Moulay Ismail University of Meknes, Meknes, Morocco 
3IEVIA Team, IMAGE Laboratory, ESTM, Moulay Ismail University of Meknes, Meknes, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 5, 2023 

Revised Jan 3, 2024 

Accepted Jan 9, 2024 

 

 In the realm of network intrusion detection, the escalating complexity and 

diversity of cyber threats necessitate innovative approaches to enhance 

detection accuracy. This study introduces an integrated solution leveraging 

deep learning techniques for improved intrusion detection. The proposed 

framework consists on a deep autoencoder for feature extraction, and a 

stacked long short-term memory (LSTM) network ensemble for 

classification. The deep autoencoder compresses raw network data, 

extracting salient features and mitigating noise. Subsequently, the stacked 

LSTM ensemble captures intricate temporal dependencies, correcting 

anomaly detection precision. Experiments conducted on the UNSW-NB15 

dataset, and a benchmark in intrusion detection validate the effectiveness of 

the approach. The solution achieves an accuracy of 90.59%, with precision, 

recall, and F1-Score metrics reaching 90.65, 90.59, and 90.57, respectively. 

Notably, the framework outperforms standalone models and demonstrates 

the advantage of synergizing deep autoencoder-driven feature extraction 

with the stacked LSTM ensemble. Furthermore, a binary classification 

experiment attains an accuracy of about 90.59%, surpassing the multiclass 

classification and affirming the model's potential for binary threat 

identification. Comparative analyses highlight the pivotal role of feature 

extraction, while experimentation illustrates the enhancement achieved by 

incorporating the synergistic deep autoencoder-Stacked LSTM approach. 
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1. INTRODUCTION 

The burgeoning increase in cyberattacks over the past few years has accentuated the exigency for 

pioneering and effective methodologies to fortify our computer systems and preserve classified data [1], [2]. 

Artificial intelligence (AI) has surfaced as a promising implement in the crusade against cybercrime, with its 

unparalleled ability to scrutinize colossal volumes of data, spot anomalies, and respond to looming threats 

promptly [3]. By utilizing machine learning algorithms, AI-based security systems can incessantly oversee 

network activities, recognize latent susceptibilities, and take preemptive measures to prevent malicious 

intrusions [4]. The growing interest in machine learning for intrusion detection arises from its superiority 

over traditional signature-based systems [5]. Machine learning algorithms can identify malicious activity by 

https://creativecommons.org/licenses/by-sa/4.0/
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analyzing network traffic patterns, reducing false positives and enhancing accuracy. However, their 

effectiveness relies on data quality and quantity. The author Kasongo [6] introduces an Intrusion Detection 

System framework utilizing machine learning and recurrent neural networks to enhance network security. 

Leveraging an extreme gradient boosting-based feature selection algorithm, the framework demonstrates 

superior performance, achieving optimal accuracy and efficiency in binary and multiclass classification tasks 

on benchmark datasets. Another study done by Wei et al. [7] employed a neural network with improved 

feature selection and multi-objective immune algorithm but faced challenges in detecting various attacks 

within the University of New South Wales-Network based-15 (UNSW-NB15) dataset despite success in 

NSL-KDD (network-based intrusion detection system (IDS) evaluation dataset – KDD). 

In the work by Mebawondu et al. [8], the effectiveness of gain ratio (GR) was explored as a means 

of feature selection in conjunction with a multi-layer neural network for training the model. This approach 

was tested on the UNSW-NB15 dataset, and through the selection process, a total of 30 features were 

identified. Notably, the proposed system yielded an accuracy rate of 76.96%, which is indicative of the 

complexity of the dataset and its applicability within network intrusion detection systems (NIDS). However, 

it should be emphasized that the achieved accuracy rate is still considered low and requires further refinement 

and improvement. Alzaqebah et al. [9] have introduced a new bio-inspired meta-heuristic algorithm, which 

demonstrates a high degree of effectiveness in detecting and classifying multi-stage attacks. The proposed 

algorithm utilizes a one-versus-all sub-model based approach that addresses the multi-class classification 

challenge. Each sub-model in the proposed hierarchy employs an enhanced Harris Hawk optimization 

method with extreme learning machine (ELM) serving as the fundamental classifier. The work by Acharya 

and Singh [10] presented a new strategy to improve the performance of IDS that uses the intelligence water 

drops (IWD) algorithm. This algorithm is based on natural phenomena and starts by creating a graph that 

includes a collection of nodes and edges representing the search space. Then, the algorithm initializes a series 

of paths across the graph and employs these paths to form the feature subset, afterward, each subset is 

assessed using the support vector machine (SVM) classifier. 

Alzubi et al. [11] proposes modifications to the binary grey wolf optimizer (GWO) for feature 

selection in multi-attack classification using SVM, yielding promising outcomes on the NSL-KDD dataset. 

While traditional machine learning has achieved significant progress in automating anomaly detection [12], 

[13], deep learning pushes boundaries by offering a unique capacity to extract intricate features from raw 

data [14]. Unlike conventional methods that require manual feature engineering, deep learning can 

automatically uncover and represent subtle patterns and relationships present within the data [15], [16]. This 

end-to-end feature extraction capability proves particularly advantageous in an environment where threats 

and attacks evolve swiftly. In this work, we present a groundbreaking approach aimed at fortifying intrusion 

detection capabilities by seamlessly integrating state-of-the-art deep learning techniques. The core concept 

behind our methodology is to initiate the process by leveraging the potential of deep autoencoders. These 

autoencoders play a pivotal role in extracting both salient and latent features from raw network data. By 

employing this strategy, our approach seeks to enhance the sophistication of intrusion detection systems, 

paving the way for more robust and effective cybersecurity measures. Employing deep autoencoders as the 

initial phase of our approach lets us address a critical preprocessing challenge. Indeed Raw network data is 

voluminous and noisy, presenting a significant hurdle for effective intrusion detection; fortunately, deep 

autoencoders tackle this issue by learning to represent the data in a compressed format, focusing on the essential 

elements while discarding redundant or noisy information. This process inherently identifies the latent features 

that are most relevant for distinguishing normal network behavior from potentially malicious activities. 

Furthermore, the deep autoencoder phase establishes a foundation for the subsequent classification 

step. Therefore, by presenting the long short-term memory-based classifier with distilled and enriched 

features, we enhance the model's ability to discern intricate patterns and anomalies in network activity 

sequences. This strategic approach boosts detection accuracy and contributes to a more efficient utilization of 

computational resources, as the classifier now operates on a refined feature space. The rest of this paper is 

organized as follows: section 2 presents the proposed method, where we delve into the details of our 

approach that combines deep autoencoders and stacked long short-term memory (LSTM) networks for 

intrusion detection. We outline the architecture, explain the process of feature extraction, and elaborate on the 

network's configuration. In section 3, results and analysis, we present the outcomes of our experimentation 

and discuss the performance metrics achieved by our model. 

 

 

2. PROPOSED METHOD  

This section outlines our proposed malware detection framework and details the methodologies 

employed. As shown in Figure 1, the framework comprises three key steps. The initial step involves 

preprocessing of the UNSW-NB15 dataset, which includes essential data cleaning, label encoding, and 

standard scaling procedures to ensure data readiness and alignment with the ensuing methodologies. 
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Subsequently, in the second step, we leverage a deep autoencoder to distill essential attributes from the 

preprocessed raw network data. Trained to compactly represent input data, the deep autoencoder accentuates 

vital patterns while diminishing noise, ensuring subsequent analysis benefits from a focused feature set. The 

third step involves employing a stacked LSTM network ensemble for intrusion classification. 

 

 

 
 

Figure 1. Proposed system block diagram 

 

 

2.1.  Dataset description 

In this study, the analyses are conducted on the well-established UNSW-NB15 dataset [17], a 

widely recognized as a benchmark in the field of intrusion detection. The dataset was generated using the 

NIDS to simulate a real-world network environment. It encompasses various network activities, both benign 

and malicious, and provides a comprehensive representation of the complex behaviors encountered in actual 

networks. The UNSW-NB15 dataset is composed of a diverse range of attributes, totaling 49 features 

organized into seven major categories. These categories encapsulate attributes associated with basic flow 

features, content features, and time-based features. Each category contributes distinct information to the 

characterization of network traffic. 

This comprehensive dataset provides a rich source of information, enabling a nuanced analysis of 

network behavior. The inclusion of various categories ensures a holistic understanding of network traffic 

patterns, encompassing both fundamental flow characteristics and more intricate content and time-related 

attributes. Such diversity within the dataset enhances its utility in training and evaluating intrusion detection 

systems. The training subset, UNSW-NB15_train, consists of 175,341 instances, while the testing subset, 

UNSW-NB15_test, contains 82,332 instances. This division ensures a realistic assessment of our approach's 

generalization capabilities on unseen data. This distribution underscores the complexity of the dataset, 

encompassing a diverse range of attack scenarios that enables a thorough evaluation of intrusion detection 

techniques. 

 

2.2.  Preprocessing  

In preparation for subsequent analysis, we executed essential preprocessing steps to enhance the 

dataset's suitability. Two critical procedures, namely label encoding and standard scaling, were employed to 

ensure data readiness and alignment with the forthcoming methodologies. Label encoding was applied to 

transform categorical variables into numerical representations, a crucial step for machine learning algorithms 

that require numerical input. This conversion allows for a seamless integration of categorical information into 

our analytical framework. 

In the context of the UNSW-NB15 dataset, the challenge lies in effectively integrating both 

numerical and categorical attributes into data mining algorithms, particularly neural networks. This 

amalgamation can hinder cohesive analysis due to inherent differences between data types. Algorithms 

requiring numerical inputs encounter difficulties when processing nominal attributes. To address this, a vital 

preprocessing step transforms categorical attributes like "proto", "service", "state", and "label" into numeric 

values using LabelEncoder [18]. This conversion enables algorithms to navigate these attributes effectively. 

By employing LabelEncoder on specific categorical features within the UNSW-NB15 dataset, a seamless 

interface is established, facilitating compatibility with algorithms designed for numeric inputs. 

Within our exploration of the UNSW-NB15 dataset, a key preprocessing phase focused on 

normalization. This critical step facilitated the transformation of feature values, aligning them with a 

standardized scale. Employing the widely recognized StandardScaler technique [19], lets us to join the 

assumption of a standard normal distribution with a mean of 0 and a deviation of 1. This strategic approach 

contributes significantly to model convergence and the acceleration of the training process. Mathematically, 

the StandardScaler normalization process for a feature (X) is given by (1): 
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𝑋normalized =
𝑋−𝜇

𝜎
 (1) 

 

where 𝜇is the mean 
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1  and 𝜎 is the standard deviation √

1

𝑁
∑ (𝑋𝑖 − 𝜇)2𝑁
𝑖=1  of the feature values and 𝑁 

represents the number of data points in the feature. 

 

2.3.  Features extraction with autoencoder  

One of the key reasons for utilizing the autoencoder for feature extraction in the UNSW-NB15 

dataset is its capacity to reduce data dimensionality [20]. By learning to represent data succinctly, the 

autoencoder enables the compression of information while retaining crucial features for intrusion detection. 

This helps to improve efficiency of the detection process, diminishing resource requirements, and expediting 

computations, while maintaining a high detection performance. Furthermore, the autoencoder is adept at 

handling noisy and missing data present in the UNSW-NB15 dataset. By learning robust data representation, 

the autoencoder can reconstruct network connections despite imperfections in the data, enhancing system 

reliability and resilience by reducing the risk of false positives and false negatives. 

The architecture of the deep autoencoder [21] comprises 10 encoding layers and 10 decoding layers. 

Each encoding layer takes as input the output from the previous layer, enabling the learning of increasingly 

intricate features as information progresses through the network. Similarly, the decoding layers progressively 

reconstruct the data from the latent code, yielding high-quality outputs. The input data is represented by the 

vector 𝑥 ∈ 𝑅𝑚1 , where 𝑚1 is the number of dimensions (features) of the input. For each encoding layer  

(𝑘 ∈ [1, 10]), the computations are defined by (2) and (3): 

 

𝑒(𝑘) = 𝑊(𝑘)ℎ(𝑘−1) + 𝑏(𝑘)  (2) 

 

ℎ(𝑘) = 𝜎𝑘(𝑒
(𝑘))  (3) 

 

where ℎ(𝑘) is the output vector of the hidden layer (𝑘); 𝑊(𝑘) ∈ 𝑅𝑚𝑘×𝑚𝑘−1  is the weight matrix of hidden 

layer 𝑘, where 𝑚𝑘 is the dimension of layer 𝑘; 𝑏(𝑘) ∈ 𝑅𝑚𝑘 is the bias vector of hidden layer 𝑘; 𝜎𝑘 is the 

activation function of hidden layer 𝑘. 

Within the deep autoencoder architecture, the output of the final hidden layer, denoted as ℎ(10), 
serves as the latent code. This layer is alternatively referred to as the latent code output layer or the 

bottleneck layer. The latent code plays a pivotal role in encapsulating a compressed representation of the 

input data, effectively capturing abstract and essential features. By utilizing the output of the final hidden 

layer as the latent code, our deep autoencoder acts as a feature extractor, distilling intricate patterns from the 

raw input. This compressed representation is characterized by its ability to retain critical information while 

discarding less relevant details, thereby creating a focused and efficient encoding of the input data. The 10 

decoding layers perform the inverse operations of the encoding layers to reconstruct the data from the latent 

code. For each decoding layer 𝑘 ∈ [11, 20], the computations are defined by (4). 

 

𝑑(𝑘) = 𝑊(𝑘)ℎ(𝑘−1) + 𝑏(𝑘) (4) 

 

The final output layer 𝑦 produces the ultimate reconstruction of the input data from the output of the 

last decoding layer ℎ(20). For the training of the deep autoencoder, a loss function is employed to evaluate the 

disparity between the input data 𝑥 and the reconstructed output data 𝑦. In this article, we utilize the mean 

squared error (MSE) as the chosen loss function. The objective of the training is to minimize this loss 

function by adjusting the weights and biases of the deep autoencoder, thereby enabling the generation of 

optimal and compressed representations of the input data. 

 

2.4.  Architecture of stacked LSTM networks 

Classification is a pivotal aspect in intrusion detection, and stacked LSTM networks provide a 

relevant approach. This architecture extends classical LSTM neural networks [22] by stacking multiple 

LSTM layers [23], enabling the learning of intricate hierarchical representations of sequential data. Each 

LSTM layer in this stacked network in Figure 2 takes the outputs of the preceding layer as input [24], 

producing its own hidden outputs and thus facilitating the gradual learning of more sophisticated 

abstractions.  

Classification plays a pivotal role in the realm of intrusion detection, and one promising approach is 

the utilization of stacked LSTM networks. This architectural paradigm represents an extension of the 

conventional LSTM neural networks [22], achieved through the stacking of multiple LSTM layers [23]. This 
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innovation empowers the model to grasp intricate hierarchical representations within sequential data. The 

architectural configuration, depicted in Figure 2(a), demonstrates how each stratum of LSTM operates. 

Notably, the outputs from the previous layer serve as the input for each subsequent LSTM layer [24]. 

Consequently, every layer generates its distinctive hidden outputs, thereby facilitating the incremental 

acquisition of more sophisticated abstractions. 

Furthermore, it is crucial to delve into the internal structure of each LSTM cell, as illustrated in 

Figure 2(b). The core of each LSTM cell encompasses a set of interconnected components that bestow the 

network with its unique capabilities. Within this intricate structure, key elements such as the input gate, 

forget gate, and output gate operate in tandem to regulate the flow of information. The input gate governs the 

incorporation of new information, the forget gate manages the retention or removal of existing information, 

and the output gate oversees the information to be transmitted to the next time step. This orchestrated 

interplay allows LSTM cells to effectively capture and utilize sequential dependencies in the input data. 

 

 

  
(a) (b) 

 

Figure 2. Integrated architecture of (a) stacked LSTM network and (b) internal cell structure 

 

 

The proposed architecture commences with an input LSTM layer. This layer receives data encoded 

by the deep autoencoder, enabling the capture of relevant features and dimensionality reduction of the data. 

Following this, two hidden LSTM layers are stacked, facilitating the learning of intricate and hierarchical 

dependencies within temporal sequences. Each LSTM layer processes the outputs of the preceding layer and 

generates its own hidden outputs. The equations above describe the operation of stacked LSTM units in a 

recurrent network. Each unit (𝑙, 𝑢) at time ‘t’ calculates different gates and states to handle information based 

on the layer index 𝑙 and the unit index 𝑢. The forget gate (5) 𝑓𝑡
(𝑙,𝑢)

 determines how much previous information 

to forget, the input gate (6) 𝑖𝑡
(𝑙,𝑢)

 decides on new information to add, and the candidate update (7) 𝑔𝑡
(𝑙,𝑢)

 

represents potential new information using the hyperbolic tangent function (tanh). The output gate (8) 

𝑜𝑡
(𝑙,𝑢)

controls the amount of information to output using the sigmoid function σ. By using these gates, the cell 

state (9) 𝑐𝑡
(𝑙,𝑢)

 is updated, combining prior information with new information. Finally, the hidden output (10) 

ℎ𝑡
(𝑙,𝑢)

 is calculated, utilizing the output gate to control the amount of information to be output. These equations 

illustrate how stacked LSTM units interact to capture long-term dependencies in sequential data, considering 

the specific indices of the layer 𝑙 and the unit 𝑢. For the uppermost layer 𝑙 = 𝑁, 𝑥𝑡  typically corresponds to 

the actual data sequence, while for intermediate layers 1 < 𝑙 < 𝑁, 𝑥𝑡 represents the hidden output of the 

preceding layer ℎ𝑡
(𝑙−1)

: 

 

𝑓𝑡
(𝑙,𝑢) = 𝜎(𝑊𝑓

(𝑙,𝑢) ⋅ [ℎ𝑡−1
(𝑙,𝑢), 𝑥𝑡] + 𝑏𝑓

(𝑙,𝑢)) (5) 

 

𝑖𝑡
(𝑙,𝑢) = 𝜎(𝑊𝑖

(𝑙,𝑢) ⋅ [ℎ𝑡−1
(𝑙,𝑢), 𝑥𝑡] + 𝑏𝑖

(𝑙,𝑢)) (6) 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Intelligent intrusion detection through deep autoencoder and stacked … (Mehdi Moukhafi) 

2913 

𝑔𝑡
(𝑙,𝑢) = 𝑡𝑎𝑛ℎ(𝑊𝑔

(𝑙,𝑢) ⋅ [ℎ𝑡−1
(𝑙,𝑢), 𝑥𝑡] + 𝑏𝑔

(𝑙,𝑢)) (7) 

 

𝑜𝑡
(𝑙,𝑢) = 𝜎(𝑊𝑜

(𝑙,𝑢) ⋅ [ℎ𝑡−1
(𝑙,𝑢), 𝑥𝑡] + 𝑏𝑜

(𝑙,𝑢)) (8) 

 

𝑐𝑡
(𝑙,𝑢) = 𝑓𝑡

(𝑙,𝑢) ⋅ 𝑐𝑡−1
(𝑙,𝑢) + 𝑖𝑡

(𝑙,𝑢) ⋅ 𝑔𝑡
(𝑙,𝑢)

 (9) 

 

ℎ𝑡
(𝑙,𝑢) = 𝑜𝑡

(𝑙,𝑢) ⋅ 𝑡𝑎𝑛ℎ(𝑐𝑡
(𝑙,𝑢)) (10) 

 

Stacked LSTM networks offer enhanced modeling capabilities by virtue of their capacity to learn 

hierarchical representations. The key strength of stacked LSTMs lies in their ability to capture abstract 

features and temporal dependencies at different scales. This is achieved by stacking multiple LSTM layers on 

top of each other, creating a hierarchical structure that allows the network to learn intricate patterns within 

sequential data. By introducing multiple layers, each subsequent layer can build upon the representations 

learned by the preceding layers, enabling the network to discern increasingly complex features. This 

hierarchical learning approach makes stacked LSTMs well-suited for addressing the challenges of complex 

sequence processing tasks, where understanding long-range dependencies and extracting high-level 

abstractions are crucial. Following the LSTM layers, a dense layer with a softmax activation function [25] is 

added to generate. probabilities for each intrusion class, enabling multi-class classification. The softmax 

activation ensures that the probabilities lie within the range [0, 1], and their sum is equal to 1, facilitating the 

interpretation of classification outcomes. Mathematically, the output of the dense layer can be computed as 

(11): 

 

𝑃(𝑦𝑖|ℎ) =
𝑒ℎ𝑖

∑ 𝑒
ℎ𝑗𝐶

𝑗=1

 (11) 

 

where 𝑃(𝑦𝑖|ℎ) is the probability of class 𝑖 given the input ℎ, 𝑒ℎ𝑖 is the exponential of the 𝑖-th element of ℎ, 

and 𝐶 is the total number of classes. In summary, our stacked LSTM architecture leverages the advantages of 

LSTMs to capture intricate temporal patterns, integrating data previously encoded by the deep autoencoder. 

This approach enhances intrusion detection accuracy and presents a promising method to tackle challenges in 

computer security systems. 

 

 

3. RESULTS AND DISCUSSION  

In assessing the performance of machine learning and deep learning models for network intrusion 

detection, the current study focuses on employing a set of metrics to evaluate their effectiveness. These 

metrics provide an objective measure of each model's performance, enabling a rigorous comparison among 

different approaches. Table 1 summarizes these metrics, providing a clear overview of the criteria used to 

evaluate the models' performance. 

 

 

Table 1. Performance metrics of the IDS machine learning experiment 
Metric Formula  Explanation 

Accuracy Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

(12) Proportion of correctly classified instances out of the total 

instances. 
 

Precision Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

(13) Proportion of true positive predictions among all positive 

predictions made by the model. 
 

Recall 

(Sensitivity) 
Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
  (14) Proportion of true positive predictions among all actual positive 

instances. 
 

F1-Score F1-Score =
2×Precision×Recall

Precision+Recall
  

(15) Harmonic mean of precision and recall, providing a balance 

between the two metrics. 

 

 

Where 𝑇𝑃 is true positives, 𝑇𝑁 is true negatives, 𝐹𝑃 is false positives, 𝐹𝑁 is false negatives. The 

subsequent phase of our investigation delves into a comprehensive comparison between two pivotal models, 

thereby further illuminating the efficacy of our approach. As previously demonstrated, the integrated 

methodology proposed, which combines deep autoencoders for feature extraction and stacked LSTM 

networks for classification, has showcased remarkable success in the domain of network intrusion detection. 

Our approach has yielded an impressive accuracy of 88.90%, marking a substantial leap in distinguishing 

between normal and malicious network activities. Moreover, the precision, recall, and F1-Scores attained by 
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the proposed model stand at 89.28%, 88.90%, and 88.84%, respectively, underscoring the model's capability 

in accurately classifying network behaviors. To provide a more holistic perspective on our model's 

performance, we invite readers to refer to Figure 3 to view the performance of the proposed solution's 

multiclass classification, Figure 3(a) presents the multiclass confusion matrix derived from the assessment of 

the UNSW-NB15 dataset. In a parallel analysis, Figure 3(b) portrays a bar graph, shedding light on a head-to-

head comparison between the deep autoencoder/stacked LSTM model and the standalone stacked LSTM 

model. This visual representation juxtaposes the two models' performance across essential metrics, including 

accuracy, precision, recall, and F1-Score. The graph vividly illustrates the tangible enhancements realized by 

our deep autoencoder-enhanced approach, showcasing its superior performance in multiple dimensions. 

 

 

  

(a) (b) 

 

Figure 3. Evaluation of multiclass performance (a) confusion matrix and (b) displays the comparison between 

a stacked LSTM model and a deep AE stacked LSTM model 

 

 

Overall, these comparative analyses serve to emphasize the transformative impact of integrating 

deep autoencoders for feature extraction within the context of stacked LSTM networks. The profound 

improvements evidenced across multiple metrics collectively reinforce the significance of strategic 

preprocessing, while also validating the symbiotic synergy of advanced techniques. This synergy culminates 

in an intrusion detection model with heightened accuracy and precision, firmly establishing its potential to 

proactively safeguard against evolving cyber threats. The results are visually reinforced by Figure 4, 

illustrating the recall, precision, and F1-Score metrics for each class. Notably, the proposed approach excels 

in accurately classifying normal network traffic and generic attacks, as evidenced by high recall and precision 

values. However, challenges arise in distinguishing specific attack types such as "Analysis" and "Shellcode", 

reflected in comparatively lower recall and precision metrics. 

The difficulty in identifying these attack categories emphasizes the intricacies of differentiating 

nuanced and sophisticated attack patterns. Despite advancements in intrusion detection systems, the evolving 

landscape of cyber threats poses challenges in accurately discerning between benign and malicious activities. 

This intricacy is particularly pronounced when faced with sophisticated attacks that employ deceptive tactics 

to evade detection. 

Additionally, a binary classification task was conducted using the same model to differentiate 

between normal and attack instances. Remarkably, this approach achieved an accuracy of 90.59%, surpassing 

the performance of the multiclass classification. The recall, precision, and F1-Score metrics for this binary 

classification were measured at 90.75, 90.35, and 90.5, respectively. This substantial improvement 

underscores the model's proficiency in correctly identifying instances as either normal or attack. This trend is 

vividly depicted in Figure 5. In Figure 5(a) the binary confusion matrix, where the diagonal elements 

represent accurate predictions, further validating the model's effectiveness. Moreover, Figure 5(b) provides 

an insightful graphical representation of the recall, precision, and F1-Score metrics for both normal and 

attack instances, elucidating the model's robust capability in the binary context. These results underscore the 

model's capacity to excel in specific classification tasks, presenting avenues for tailored intrusion detection 

strategies. 
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Figure 4. Performance analysis across different attack classes 

 

 

  
(a) (b) 

 

Figure 5. Evaluation of binary class performance (a) confusion matrix and (b) displays the comparison 

between a stacked LSTM model and a deep AE stacked LSTM model 

 

 

Moreover, a visual representation in Figure 3(b) has been generated to illustrate the comparative 

efficacy of integrating feature extraction via a deep autoencoder in conjunction with the stacked LSTM 

model. This comparative analysis unveils a substantial amelioration across a spectrum of assessment metrics, 

thereby underscoring the paramount significance of the feature extraction phase. The amalgamation of the 

stacked LSTM model with the deep autoencoder manifests a discernible augmentation in accuracy, recall, 

precision, and F1-Score metrics, in contrast to the solitary stacked LSTM approach. This discernible 

enhancement corroborates the underlying hypothesis that the extraction of discerning features synergistically 

equips the model to capture intricate patterns, culminating in a more efficacious and resilient intrusion 

detection system. The graphical exposition vividly portrays the tangible benefits ensuing from this synergetic 

fusion, thereby accentuating the pivotal role of feature extraction in elevating the performance paradigm of 

the stacked LSTM model. 
 

 

4. CONCLUSION  

In this study, we presented an innovative approach to enhance network intrusion detection through 

the integration of deep learning techniques. The proposed framework, combining deep autoencoder-driven 

feature extraction and a stacked LSTM ensemble for classification, proved its effectiveness in improving 

detection accuracy on the challenging UNSW-NB15 dataset. The achieved accuracy of 90.59% underscores 

the potential of the approach to accurately differentiate between normal network activities and malicious 

intrusions. The synergy of deep autoencoder and stacked LSTM architecture has proved to be instrumental in 

addressing the complexities of network data. Our model's ability to capture nuanced temporal dependencies 

and hierarchically learn features contributes to its enhanced performance. Comparative analyses have 

highlighted the advantages of our approach, showing improvements in key metrics such as precision, recall, 

and F1-Score. Notably, the binary classification experiment further emphasizes the model's potential in 

binary threat identification, showcasing its adaptability to real-world scenarios. 

While the proposed approach has shown promising results, further research can focus on refining 

the framework's performance in recognizing specific attack types, such as "attack analysis" and "shell code", 

where challenges persist. Despite the advancements, accurately distinguishing these intricate attack patterns 

remains a persistent challenge due to their evolving nature and deceptive techniques. Additionally, 

investigations into optimizing the architecture's parameters and leveraging additional domain-specific 

features could lead to even better results. Fine-tuning the model's hyperparameters and incorporating features 

that capture nuanced aspects of specific attacks may enhance the overall performance and adaptability of the 

proposed framework. This iterative process of refinement is essential for developing intrusion detection 

systems that can effectively cope with the evolving tactics employed by cyber adversaries. 
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In summary, while the current approach has demonstrated promise, there is ongoing room for 

improvement in recognizing specific attack types. By delving deeper into the nuances of attack analysis 

and shell code detection and refining the model's architecture and features, we aim to advance the 

framework's capabilities and contribute to the ongoing efforts in enhancing cybersecurity defenses. The 

integration of deep autoencoder and stacked LSTM architecture presents a viable solution for enhancing 

network intrusion detection. As cyber threats continue to evolve, our approach provides a foundation for 

more robust and accurate intrusion detection systems, bolstering network security in the face of ever -

growing challenges. 
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