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 Magnetic resonance imaging (MRI) is a substantial imaging procedure for 

diagnosing brain tumors. However, brain tumor classification continues 

challenging due to the unequal distribution of classes within datasets, 

complicating precise diagnosis and classification. This research focuses on the 

class imbalance in medical image datasets by proposing a hybrid bio-inspired 

algorithm for brain tumor classification. A rider optimization and particle 

rider mutual information-based dendritic-squirrel search algorithm combined 

with an artificial immune classifier is developed and tested on imbalanced 

datasets generated from BRATS and SimBRATS. Experimental outcomes are 

encouraging, For the imbalanced BRATS dataset, the rider optimization-

based classifier achieved an accuracy of 94.84%, sensitivity of 92.96%, and 

specificity of 94.95%. The particle rider mutual information-based classifier 

outperformed others with 96.25% accuracy, 94.33% sensitivity, and 94.85% 

specificity. For the imbalanced SimBRATS dataset, the rider optimization-

based classifier achieved 94.95% accuracy, 92.05% sensitivity, and 94.04% 

specificity. The particle rider mutual information-based classifier excelled 

with 96.35% accuracy, 94.42% sensitivity, and 95.44% specificity. These 

findings suggest that the proposed algorithm effectively addresses class 

imbalance in medical image datasets, offering a robust solution for brain 

tumor classification. The particle rider mutual information-based classifier 

shows promise for enhancing diagnostic accuracy in clinical settings, 

demonstrating the efficacy of hybridized bio-inspired algorithms in managing 

imbalanced datasets. 

Keywords: 

Bio-inspired computing  

Brain tumor classification 

Imbalanced medical image 

dataset 

Immune computing  

Swarm intelligence 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Rahul Ramesh Chakre  

School of Computational Sciences, Faculty of Science and Technology, JSPM University Pune 

Pune, Maharashtra, India 

Email: rahulrchakre@gmail.com 

 

 

1. INTRODUCTION  

Due to the use of various imaging modalities in the medical field, the amount of medical image 

datasets is increasing rapidly [1]. Medical image analysis aids in diagnosing various illnesses. Due to its size, 

structure, and shape, multidimensional medical image analysis becomes a crucial task. The most common 

reason for cancer-related mortality is a brain tumor. Early diagnosis of this condition greatly increases the 

likelihood that the patient will receive a successful course of therapy and lowers the risk of life. Artificial 

intelligence and various optimization techniques are used to extract useful knowledge from the large medical 

image dataset in a way that medical practitioners will get help to diagnose the patients [2], [3]. The typical 

classification techniques presuppose that the dataset of medical images contains samples with a fair 

https://creativecommons.org/licenses/by-sa/4.0/
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distribution. The term “imbalanced dataset” refers to situations in which the distribution is not fair. This type 

of dataset will cause biased learning, which results in an ineffective model [4], [5]. The imbalanced dataset is 

nothing more than an uneven distribution of samples across classes [6]. In this, there are more samples of one 

class than another. In the end, the class with the most samples will be the major class, and the class with the 

fewest samples will be the secondary class. In many real-world applications, including detecting fraud, brain 

tumors, intrusion detection systems, and entity resolution, the imbalanced distribution problem is present [7], 

[8]. Effective feature extraction, feature selection, and feature classification approaches are required for 

computer-aided diagnosis employing multidimensional images.  

Due to the low number of important data instances, imbalanced data distribution problems arise when 

the majority class segment has a higher proportion than the minority class segment [9]. Numerous real-world 

applications, such as text classification, defect detection, fraud detection, oil spill detection in satellite pictures, 

toxicology, cultural modeling, and medical diagnostics, are plagued by the imbalanced data set problem [10]. 

The following factors contribute to the current classification algorithms' inadequate performance on 

imbalanced data sets: i) They are accuracy-driven, i.e., they strive to reduce the overall error, of which the 

minority class makes up a very small portion; ii) They make the supposition that the data is distributed equally 

across all classes; and iii) They likewise presume that errors originating from various categories have the same 

cost [11]. Both at the data and algorithmic levels, a variety of approaches to the imbalance dataset problem 

have already been put forth. These approaches include a variety of re-sampling techniques at the data level, 

including random oversampling with replacement, random under-sampling, directed oversampling, directed 

under-sampling, oversampling with informed generation of new samples, and combinations of the techniques. 

When working with decision trees, modifying the probability estimate at the tree leaf, adjusting the decision 

threshold, and recognition-based rather than discrimination-based learning are some algorithmic strategies that 

address the class imbalance [12]. Most classifiers, including decision trees and neural networks, perform well 

when the dataset's response variable distribution is balanced but it suffers from the problem of imbalance [13]. 

Input data sampling is regarded as a popular method of correcting data imbalance. It modifies the structure of 

the real data set to change its balancing ratio to the desired level by using both under-sampling and 

oversampling [14]. 

As mentioned in the introduction, unequal distribution of samples causes biased learning and directly 

affects the worthiness of the model. However, we could conclude that training on the imbalanced dataset has a 

significantly weak impact on the performance, so it is necessary to investigate new techniques for verifying the 

performance on the imbalanced dataset. Most of the techniques are analyzed using the balanced dataset i.e. more 

or less equal distribution of classes. So, an efficient performance on an imbalanced magnetic resonance image 

dataset is a very challenging task. Analysis of multivariate medical imaging is an important task, as was said in 

the introduction. Brain tumors cause most cancer-related fatalities. The likelihood that a patient would receive 

an effective therapy is significantly increased by early diagnosis of certain disorders. The proposed solution is 

“hybridization of particle rider mutual information and dendritic cell squirrel search algorithm with artificial 

immune classifier (AIC) for brain tumor classification for imbalanced magnetic resonance image dataset”.  

The goal of this research is to analyze particle rider mutual information (PRMI) and dendritic cell 

squirrel search algorithm (DCA-SSA) with an AIC [15] for brain tumor classification on an imbalanced 

magnetic resonance image dataset. Region of interest and Gaussian filters are used to eliminate noise and 

artifacts from the image. To acquire segments, sparse fuzzy C-means clustering (Sparse FCM) [16] has also 

been utilized. Each segment's statistical and texture data are combined to form a feature vector. The PRMI 

[17], which was created by fusing the particle swarm optimization (PSO) [18], rider optimization algorithm 

(ROA) [19], and mutual information (MI), is utilized for feature selection. AIC induces the chosen features to 

identify the tumorous regions [20]. The artificial immune classifier is trained using the DCA-SSA method [21], 

which combines the squirrel search technique (SSA) [22] and the dendritic cell algorithm (DCA) [23]. The 

recommended DCA-SSA method is used to improve the artificial immune classifier parameters [24]. 

 

 

2. METHOD  

As shown in Figure 1, this paper offers performance analysis for the brain tumor classification method 

named dendritic cell-squirrel search algorithm-based classifier on imbalanced medical image dataset. An 

experimental result shows that the proposed algorithm gives promising results on the imbalanced medical 

image dataset. Here, the preprocessing of the input MR image is carried out with the help of the region of 

interest and Gaussian filter. The preprocessed image is given towards the sparse fuzzy C-means for the 

segmentation task. Statistical features and local derivative patterns (LDP) are extracted from the segmented 

image. Following that, the feature selection process is accomplished by combining three algorithms: mutual 

information, rider optimization technique, and PSO. The integration of the squirrel search algorithm with 

dendritic cell algorithm completes the classification. 
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Figure 1. Block diagram of hybrid classification method 

 

 

2.1. Input brain MR image 

Suppose the imbalanced dataset 𝑀 with the total number of 𝑘 samples. The expression for the dataset 

with the quantity of images is shown (1). 

 

𝑀 = {𝑚1, 𝑚2, . . . 𝑚𝑖 , . . . 𝑚𝑘}  (1) 

 

Here, 𝑚𝑖 states the 𝑖𝑡ℎ MR image in the dataset and the total number of samples in the dataset is represented 

as 𝑚𝑘. 

 

2.2.  Pre-processing of MR image 

The removal of undesirable distortions from the image during pre-processing, which is a crucial step 

in classifying brain tumors, is performed using the region of interest and Gaussian filter. 

a. Region of interest  

By considering successive masking, the region of interest is frequently determined from the values of 

pixel intensities. The determination of continuous pixels having a value of 1 and excluding the value of 0 is a 

vital step in the region of interest extraction process. The values of the region of interest intensity are commonly 

referred to as density slices. 

b. Gaussian filter 

The Gaussian filter is frequently used to remove noise and it can provide a smooth transition. The 

Gaussian two-dimensional distribution is as (2). 

 

𝐺(𝑥, 𝑦) =
1

√2𝜋𝜎2
𝑒
−𝑥2+𝑦2

2𝜎2   (2) 

 

Here, 𝜎 states the standard deviation while 𝑥 and 𝑦 characterize the dimension of the kernel. The pre-processed 

output acquired after filtering the image is identified as 𝒬𝑖. 
 

2.3. Segmentation of preprocessed image 

The pre-processed output 𝒬𝑖  is given input to the segmentation process, which is performed using 

sparse fuzzy C-means clustering, and it is developed by the modification of typical fuzzy C-means clustering. 

Utilizing sparse fuzzy C-means clustering offers high dimensional data clustering, which is the main benefit. 

The following actions are taken when using sparse fuzzy C-means clustering: 

a. Initialization: Initially, the feature weights are stimulated and are represented as 𝜔 = 𝜔1
𝑟 = 𝜔2

𝑟 =. . . =

𝜔𝑏
𝑎 =

1

√𝑏
. The features attained from pixel position are assumed as 𝑏 = 2. 
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b. Updation of partition matrix: At first, the attribute weights 𝜔 and cluster center 𝐾 when 𝜀(ℵ) is minimized, 

 

𝐶𝑙𝑚 =

{
 
 

 
 

1

𝑁𝑚
; 𝑖𝑓𝑃𝑙𝑚 = 0𝑎𝑛𝑑𝑁𝑡 = 𝑐𝑎𝑟𝑑{1: 𝑃𝑙𝑚 = 0}

0; 𝑖𝑓𝑃𝑙𝑚 ≠ 0𝑏𝑢𝑡𝑃𝑙𝑔 = 0𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑔, 𝑔 ≠ 𝑚

1

∑ (
𝑃𝑙𝑚
𝑃𝑔𝑚

)
(
1

𝛼−1)𝑒
𝑔=1

; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

c. Update cluster center K: Let us assume that 𝜔 and 𝜂 be fixed and 𝜀(𝐾) is minimized if 

 

𝐵𝑘𝑡 = {

0; 𝑖𝑓𝜔𝑡 = 0
∑ 𝐶𝑙𝑚

𝛼 .𝐹𝑙𝑡
𝑔
𝑖𝑖=1

∑ 𝐶𝑙𝑚
𝛼𝑔

𝑙=1

; 𝑖𝑓𝜔𝑡 ≠ 0
 (4) 

 

Here, the weight component is represented as 𝑡 and 𝑘. 

d. Evaluate the class: The class value is evaluated with constant clusters 𝑆𝑒𝑔𝑖 = {𝑆𝑒𝑔1, 𝑆𝑒𝑔3, … , 𝑆𝑒𝑔𝑖𝑖 , … 𝑆𝑒𝑔𝑛} 
and membership 𝐵.  

e. Terminate: The steps are continued until it reaches the satisfied criterion. The outcome of sparse fuzzy  

C-means clustering depicted the segments received from the pre-processed image and it is shown (5). 

 

𝑆𝑒𝑔𝑖 = {𝑆𝑒𝑔1, 𝑆𝑒𝑔3, … , 𝑆𝑒𝑔𝑖𝑖 , … 𝑆𝑒𝑔𝑛} (5) 

 

2.4.  Feature extraction 

To refine the relevant features for subsequent processing, feature extraction is a crucial step. Here, 

statistical features mean (𝑓1), variance (𝑓2), standard deviation (𝑓3), kurtosis (𝑓4), skewness (𝑓5), and energy 

(𝑓6) successfully extracted along with this texture feature LDP (𝑓7) is also extracted. Formation of feature 

vector. 

 

𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7} (6)  

 

2.5. Feature selection 

The feature vector specified in (6) is subjected to the feature selection stage. Here, PRMI is used to 

select the most relevant feature. This algorithm is developed by the combination of PSO, ROA, and mutual 

information. The steps for the feature selection are as follows: 

a. Initialization: Initialization is carried out by four groups of riders, scattered over a dimensional space, and 

shown as (7). 

 

𝑠 = {𝑆1, 𝑆2, … , 𝑆𝑚, … 𝑆𝑛} (7) 

 

Here, 𝑆𝑛 indicates the total number of solutions and 𝑆𝑚 represents 𝑚𝑡ℎ solution. 

b. Establish the fitness function 

The recently developed objective function primarily relies on MI [16], which calculates the 

relationship between characteristics and class labels. The notion of "mutual information" is provided by 

𝑃(𝑋, 𝑌). The description of MI between two features and class label 𝑋 and 𝑌 whose joint distribution is 

described by 𝑃(𝑋, 𝑌)is expressed as (8). 

 

𝑅(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦) 𝑙𝑜𝑔
𝑃(𝑥,𝑦)

𝑃(𝑥).𝑃(𝑦)𝑦∈𝑌𝑥∈𝑋  (8) 

 

where, 𝑃(𝑋) and 𝑃(𝑌) indicate marginal distributions of 𝑋 and 𝑌 generated by the marginalization process. 

Here, the 𝑋 indicates the features and 𝑌 represent the class labels. 

c. Evaluation of weights 

According to the ROA, the attacker's location is updated to choose the best course of action. By 

assuming the actions of each rider, as defined below, the rider upgrades its location. The position of the 

follower's improvement depends on the leading rider's ability to reach the goal and is as (9). 

 

𝑆𝑡+1
𝑓𝑜𝑙𝑙𝑜𝑤

(𝑧, 𝑝) = 𝑆𝑌(𝑌, 𝑃) + [𝐶𝑜𝑠(𝐿𝑦,𝑝
𝑤 ∗ 𝑆𝑧(𝑌, 𝑃) ∗ 𝐷𝑧

𝑤)]  (9) 
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where, Φ is coordinate selector, 𝑆𝑌 denote the position of the leading rider, 𝑌 specifies the index of the 

leading rider, 𝐿𝑝,𝑤
𝑤  indicates the steering angle of 𝑧𝑡ℎ rider in 𝑤𝑡ℎ coordinate, and 𝐷𝑧

𝑤  is the distance.  

The updated position of the over taker is used in the update process for maximizing the success rate 

by determining the position of the over taker and is given by (10). 

 

𝑆𝑤+1
𝑜 (𝑧, 𝑝) = 𝑆𝑤(𝑧, 𝑝) + [𝛿𝑤

∗ (𝑝) ∗ 𝑆𝑍( 𝑌, 𝛷)] (10) 

 

where, 𝛿𝑤
∗ (𝑧) represent the direction indicator. 

The bypass riders follow a common path without tracking the leading rider. In this context, the update 

rule of the bypass riders is exhibited in which the standard bypass rider is given as (11). 

 

𝑆𝑤+1(𝑧, 𝑛) = 𝛽[𝑆𝑤(𝜇, 𝑛) × ∆(𝑛) + 𝑆𝑤(𝜂, 𝑛) ∗ [1 − ∆(𝑛)]] (11) 

 

The proposed PRMI's final upgrade equation is as (12). 

 

𝑆𝑤+1(𝑧, 𝑛) =
(𝑆𝑤(𝑧,𝑛)(𝐾1𝐻1+𝐾2𝐻2−1)−𝐽𝐹𝑤(𝑧,𝑛)−𝐾1𝐻1𝐸𝑤(𝑧,𝑛))(1+𝐶𝑜𝑠(𝐿𝑧,𝑛

𝑤 ))+𝐷𝑧
𝑤𝐾2𝐻2

𝐾2𝐻2−1−𝐶𝑜𝑠𝐿𝑧,𝑛
𝑤   (12) 

 

d. Terminate: The stages are repeated until the best solution is discovered. 

 

2.6.  Brain tumor classification using artificial immune classifier-dendritic squirrel search algorithm 

This section explains the classification of brain tumors, which is done using an AIC and dendritic 

squirrel search algorithm to fine-tune the classifier's weights. When dendritic cell algorithm and squirrel search 

algorithm are combined, the result is the produced dendritic-SSA. The result of this classification process is 

referred to as. The main idea behind this AIC is that it considers the immune system's background network 

when teaching the ideas of artificial intelligence system (AIS), which is defined as a machine learning 

mechanism. The main advantage of AIC is that no additional support is needed for parameter optimization. 

However, the main problem with conventional AICs is antibody population production. The steps are as 

follows, 

a. Initialization: The activation of weights and their associated parameters is the first stage. 

 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑧 , . . 𝑋𝑦}  (13) 

 

Here, 𝑋𝑥 is the location of 𝑧𝑡ℎ solution and 𝑦shows the overall solutions. 

b. Error determination: The mean squared error (MSE), displayed below, is the best solution discovered based 

on the fitness measure. 

 

𝑀𝑆𝐸 =
1

𝑖
∑ [𝑋𝑗 − 𝑂𝑗]

2𝑖
𝑗=1  (14) 

 

Here, the expected result and the outcome achieved employing AIC is signified as 𝑋𝑗and 𝑂𝑗, respectively. 

c. Estimation of the modified equation: Utilizing created dendritic-SSA, the parameters of AIC are properly 

set to identify the timorous region of the brain. Each antigen is appropriately detected in this algorithm by 

an antibody, and each connection of antibody-using agents is updated as (15). 

 

𝑋𝑧, 𝑦(𝑆 + 1) =
1−𝑃𝑡𝑄𝑤

𝛾−𝑃𝑡𝑄𝑤
[𝛾𝑥𝑧, 𝑦(𝑆 + 1) −

𝑃𝑡𝑄𝑤𝑋𝑧𝑦(𝑆)(1−𝛾)

1−𝑃𝑡𝑄𝑤
] (15) 

 

d. Re-evaluating the solution given the error: The error is calculated using (15) and the algorithm generates 

less error and is utilized for training AIC. 

e. End: Once the optimal biases have been found, the process is repeated until the required number of 

iterations has been reached. 

 

 

3. RESULTS AND DISCUSSION 

This section elaborates on the performance analysis of existing the PSO+NSA, PSO+CSA, 

ACO+NSA, ACO+ CSA, ABC+NSA, ABC+CSA techniques along with proposed ROA+dendritic-SSA AIC 

[9] and particle rider MI+dendritic cell-SSA-based AIC techniques utilizing an imbalanced dataset for learning 

and classification of brain tumors using accuracy, sensitivity, and specificity as performance measures along 

with time complexity analysis.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6339-6350 

6344 

The study is carried out using increasing sample size training data. Input data sampling is the common 

solution for the imbalanced image dataset, it adjusts the structure of the real data set to change its balance ratio 

to the desired level by both under and over-sampling [10]. Additionally, the efficiency of particle rider 

MI+dendritic cell-SSA-based AIC for imbalanced BRATS and SimBRATS datasets is also examined. As 

mentioned earlier, in the preliminary investigation, we have applied data sampling on implicitly generated 

imbalanced BRATS and SimBRATS MRI dataset. Sampling has been done in percentages from 40% to 90% 

while increasing the sample size by 10%. The imbalanced dataset generated is used for experimentation with 

sampling and without sampling. The detailed dataset description is given in the next section.  

 

3.1. Dataset description 

Using imbalanced BRATS and simulated BRATS datasets, the particle rider MI+dendritic cell-SSA-

based AIC is tested in terms of accuracy, sensitivity, and specificity. The datasets for BRATS and simulated 

BRATS were taken from BRATS 2015 [25], which presents images with varied degrees of severity. 30 patients' 

brain MRIs are taken into consideration from the BRATS database. Each patient's image is gathered here using 

four different modalities, including T1, T1C, T2, and FLAIR. For the study, 130–176 brain slices are produced 

by each modality. This dataset of MR images has been purposely imbalanced. A total of 1,728 brain MR images 

with various degrees of brain tumor severity were taken from the BRATS dataset for 30 patients, of which 

1,256 were tumorous and 472 were not. Like this, the SimBRATS dataset contains information on 50 patients, 

including 124 MR images with varied degrees of brain tumor severity, of which 96 are tumorous and 28 are 

non-tumorous. 

 

3.2. Evaluation metrics 

The performance of both existing and proposed techniques is thoroughly explored by utilizing 

accuracy, sensitivity, and specificity as significant performance measures. This evaluation is supervised 

explicitly on the imbalanced BRATS and SimBRATS datasets, which are confronting due to their fundamental 

class imbalances. By concentrating on these metrics, the evaluation specifies an inclusive identification of how 

effectively each method performs in handling the complexities of these datasets. 

 

3.3. Comparative analysis 

3.3.1. Experimentations using sampled data 

The comparative analysis of existing techniques namely PSO+NSA, PSO+CSA, ACO+NSA, 

ACO+CSA, ABC+NSA, ABC+CSA along with proposed ROA+dendritic SSA AIC and particle rider 

MI+dendritic cell-SSA-based AIC with accuracy, sensitivity, and specificity parameters is evaluated for the 

sampled imbalanced dataset which is mentioned earlier in the experimental results and discussion section.  

As shown in Table 1, proposed approaches, including PSO+DCA, ROA+dendritic-SSA based AIC, and 

PRMI+dendritic-SSA based AIC, get excellent accuracy scores (91.79% to 96.25%) towards the higher end of 

the training data percentages (70% to 90%), demonstrating their usefulness. The accuracy ratings of the four 

approaches, PSO+CSA and ACO+CSA, vary significantly when compared to various training data percentages. 

This shows that the amount of training data may have a greater impact on how well these strategies perform. 

As shown in Table 2, proposed approaches, notably PSO+DCA, ROA+dendritic-SSA based AIC, and 

PRMI+dendritic-SSA based AIC, produce high sensitivity values (89.95% to 94.33%) at the higher end of the 

training data percentages (70% to 90%). This suggests that these techniques are particularly effective for 

detecting positive cases in the BRATS dataset. PRMI and PSO with DCA and dendritic-SSA based on AIC, 

these two techniques consistently exhibit exceptional sensitivity over all training data proportions, making 

them contenders for more exploration or application in circumstances where sensitivity is crucial. 

 

 

Table 1. Accuracy analysis for brain tumor classification on the BRATS dataset using existing and proposed 

techniques with varying training data 
Imbalanced BRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Accuracy  

for 40% 

Accuracy  

for 50% 

Accuracy  

for 60% 

Accuracy  

for 70% 

Accuracy  

for 80% 

Accuracy  

for 90% 

PSO+NSA 73.31 74.45 75.21 76.43 79.92 81.32 

PSO+CSA 72.86 73.16 74.47 77.07 79.76 86.5 
ACO+NSA 73.38 78.5 80.42 82.12 85.46 88.99 

ACO+CSA 75.68 80.57 80.72 81.79 86.71 89.03 

ABC+NSA 77.62 81.75 84.52 85.45 88.09 91.35 
ABC+CSA 79.2 83.64 86.45 88.28 89.02 92.55 

PSO+DCA 82.41 84.53 90.66 91.79 92.92 94.06 

ROA+dendritic-SSA-based AIC 85.5 87.63 90.75 91.88 93.02 94.85 

PRMI+dendritic-SSA-based AIC 88.6 89.72 90.85 91.98 93.11 96.25 
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Table 2. Sensitivity analysis for brain tumor classification on the BRATS dataset using existing and proposed 

techniques with varying training data 
Imbalanced BRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Sensitivity  

for 40% 

Sensitivity  

for 50% 

Sensitivity  

for 60% 

Sensitivity  

for 70% 

Sensitivity  

for 80% 

Sensitivity  

for 90% 

PSO+NSA 71.84 72.96 73.71 74.9 78.32 79.69 

PSO+CSA 71.41 71.7 72.98 75.53 78.17 84.77 
ACO+NSA 71.91 76.93 78.81 80.48 83.75 87.21 

ACO+CSA 74.17 78.96 79.1 80.15 84.97 87.25 

ABC+NSA 76.07 80.11 82.83 83.74 86.33 89.53 
ABC+CSA 77.62 81.96 84.72 86.52 87.24 90.7 

PSO+DCA 80.76 82.84 88.85 89.95 91.06 92.17 

ROA+dendritic-SSA-based AIC 83.79 85.87 88.94 90.05 91.16 92.96 
PRMI+dendritic-SSA-based AIC 86.82 87.93 89.03 90.14 91.25 94.33 

 

 

As shown in Table 3, proposed approaches, notably PSO+DCA, ROA+dendritic-SSA based AIC, and 

PRMI+dendritic-SSA based AIC produce elevated specificity values (91.88% to 94.85%) at the higher end of 

the training data percentages (70% to 90%). These techniques are consistent for detecting true negative cases. 

PRMI and ROA and dendritic-SSA based AIC. These approaches consistently exhibit exceptional specificity 

in all training data proportions, according to AIC, making them suitable options for applications where 

specificity is important. 

 

 

Table 3. Specificity analysis for brain tumor classification on the BRATS dataset using existing and proposed 

techniques with varying training data 
Imbalanced BRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Specificity  

for 40% 

Specificity  

for 50% 

Specificity  

for 60% 

Specificity  

for 70% 

Specificity  

for 80% 

Specificity  

for 90% 

PSO+NSA 73.38 74.53 75.29 76.51 79.99 81.4 

PSO+CSA 72.94 73.24 74.54 77.15 79.84 86.58 

ACO+NSA 73.45 78.58 80.5 82.2 85.55 89.08 

ACO+CSA 75.76 80.65 80.8 81.87 86.79 89.12 

ABC+NSA 77.7 81.83 84.6 85.54 88.18 91.44 

ABC+CSA 79.28 83.72 86.53 88.37 89.11 92.64 
PSO+DCA 82.49 84.62 90.75 91.88 93.01 94.15 

ROA+dendritic-SSA-based AIC 85.59 87.71 90.84 91.98 93.11 94.95 

PRMI+dendritic-SSA-based AIC 88.68 89.81 90.94 92.37 93.13 94.85 

 

 

As shown in Table 4, the accuracy percentage for different methods applied to the imbalanced 

SimBRATS dataset with training data ranging from 40% to 90%. "PRMI+dendritic-SSA-based AIC" attains 

superior accuracy, attainment from 96.35% at 90% training data. "PSO+NSA" steadily has the lowermost 

accuracy, refining from 70.38% to 78.4% as training data increases. 

As shown in Table 5, the sensitivity percentage for methods on the imbalanced SimBRATS dataset 

with training data is from 40% to 90%. "PRMI+dendritic-SSA-based AIC" attains superior sensitivity, reaching 

94.42% with 90% training data. "ROA+dendritic-SSA-based AIC" also performs highly, with sensitivity rising 

from 82.88% to 92.05%. "ABC+CSA" and "ABC+NSA" exhibit robust sensitivity advances, reaching up to 

90.79% and 88.62%, correspondingly, at 90% training data. "PSO+DCA" and "ACO+CSA" also exhibit 

prominent sensitivity gains, realizing 92.27% and 87.34% at 90% training data. "PSO+NSA" continues as the 

least sensitive method, progressing from 69.97% to 79.83% with more training data. 

As shown in Table 6, the specificity percentage for different methods on the imbalanced SimBRATS 

dataset, with training data ranging from 40% to 90%. "PRMI+dendritic-SSA-based AIC" steadily attains 

superior specificity, reaching 95.44% at 90% training data. "ROA+dendritic-SSA-based AIC" comprehends 

intently, with specificity increasing from 85.67% to 94.04% as training data expands. "ABC+CSA" and 

"ABC+NSA" also show considerably strong performance, with specificity going up to 91.73% and 90.54%, 

correspondingly, at 90% training data. "PSO+DCA" exhibits substantial advancement, accomplishing 92.24% 

specificity at 90% training data. "ACO+CSA" and "ACO+NSA" reach up to 90.47% and 89.16% specificity, 

correspondingly. "PSO+NSA" has minimal specificity but still adjusts from 70.45% to 78.48% as training  

data increases. The results show a typical inclination of increasing specificity as the percentage of training  

data increases for all methods. This implies that each method is more precise in appropriately identifying 

negative instances with more training data. Methods especially integrating dendritic-SSA-based AIC, such  

as "PRMI+dendritic-SSA-based AIC" and "ROA+dendritic-SSA-based AIC," steadily outperform others, 

emphasizing their robustness in handling the imbalanced SimBRATS dataset. 
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Table 4. Accuracy analysis for brain tumor classification on the SimBRATS dataset using existing and 

proposed techniques with varying training data 
Imbalanced SimBRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Accuracy  
for 40% 

Accuracy  
for 50% 

Accuracy  
for 60% 

Accuracy  
for 70% 

Accuracy  
for 80% 

Accuracy  
for 90% 

PSO+NSA 70.38 71.53 72.29 73.5 76.99 78.4 

PSO+CSA 72.94 73.24 74.54 77.15 79.84 84.58 
ACO+NSA 73.45 78.58 80.5 82.2 85.55 89.08 

ACO+CSA 75.76 80.65 80.8 81.87 86.79 89.12 

ABC+NSA 77.7 81.83 84.6 85.54 88.18 91.45 
ABC+CSA 79.28 83.72 86.53 88.37 89.11 92.64 

PSO+DCA 82.49 84.62 90.75 91.88 93.01 94.15 

ROA+dendritic-SSA-based AIC 85.59 87.72 90.85 91.98 93.11 94.95 
PRMI+dendritic-SSA-based AIC 88.68 89.81 90.94 92.07 93.21 96.35 

 
 

Table 5. Sensitivity analysis for brain tumor classification on the SimBRATS dataset using existing and 

proposed techniques with varying training data 
Imbalanced SimBRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Sensitivity  

for 40% 

Sensitivity  

for 50% 

Sensitivity  

for 60% 

Sensitivity  

for 70% 

Sensitivity  

for 80% 

Sensitivity  

for 90% 

PSO+NSA 69.97 70.6 71.84 72.03 74.45 79.83 

PSO+CSA 70.48 71.77 72.05 74.61 77.25 83.89 

ACO+NSA 74.98 76.01 78.39 79.56 81.84 86.29 
ACO+CSA 74.24 79.04 79.18 80.23 85.06 87.34 

ABC+NSA 78.15 79.19 82.51 83.83 86.42 88.62 

ABC+CSA 77.69 82.05 84.8 86.6 87.33 90.79 
PSO+DCA 79.84 81.93 86.94 88.04 90.15 92.27 

ROA+dendritic-SSA-based AIC 82.88 84.96 88.03 89.14 90.25 92.05 

PRMI+dendritic-SSA-based AIC 86.91 87.01 88.12 90.23 91.34 94.42 

 

 

Table 6. Specificity analysis for brain tumor classification on the SimBRATS dataset using existing and 

proposed techniques with varying training data 
Imbalanced SimBRATS dataset training data in % 40% 50% 60% 70% 80% 90% 

Methods Specificity  
for 40% 

Specificity  
for 50% 

Specificity  
for 60% 

Specificity  
for 70% 

Specificity  
for 80% 

Specificity  
for 90% 

PSO+NSA 70.45 71.6 72.36 73.58 77.07 78.48 

PSO+CSA 73.01 73.31 74.62 77.23 79.92 84.66 

ACO+NSA 73.53 78.66 80.58 82.28 85.63 89.16 
ACO+CSA 75.84 80.73 80.88 81.95 86.88 90.47 

ABC+NSA 77.78 81.91 84.69 85.62 88.27 90.54 

ABC+CSA 79.36 83.8 86.62 88.46 89.2 91.73 
PSO+DCA 82.58 84.7 90.84 91.97 93.11 92.24 

ROA+dendritic-SSA-based AIC 85.67 87.8 90.94 92.07 93.2 94.04 

PRMI+dendritic-SSA-based AIC 88.77 89.9 91.03 92.16 93.3 95.44 

 

 

3.3.2. Experimentations using K–fold cross validation on imbalanced dataset  

Table 7 shows the outcomes of 10-fold analyses for different techniques on the BRATS and 

SimBRATS datasets. For each approach on both datasets, the accuracy (ACC), sensitivity (SEN), and specificity 

(SPE) percent are included in this analysis. The 10-fold analysis, outcomes reveal that the PRMI+dendritic-

SSA-based AIC method reliably outperforms others on both the imbalanced BRATS and imbalanced 

SimBRATS datasets, attaining the maximum accuracy (96.25% and 96.35%, respectively) along with 

admirable sensitivity and specificity (around 94-95%). Other methods like PSO+DCA and ROA+dendritic-

SSA-based AIC also demonstrate robust performance with accuracies over 94%, but they fall short compared 

to PRMI+dendritic-SSA. Methods such as ABC+CSA and ACO+CSA exhibit extensive enhancements over 

PSO+NSA and PSO+CSA, with accuracies varying from 89% to over 92%, indicating robust classification 

competencies. Overall, the PRMI+dendritic-SSA-based AIC method proves to be advanced, exhibiting 

superior classification accuracy and sensible sensitivity and specificity through both datasets. 

Here is a summary of the findings: The approaches regularly perform well in terms of accuracy, 

sensitivity, and specificity for the BRATS dataset. With a 96.25% accuracy rate, PRMI+dendritic-SSA-based 

AIC has the best accuracy. The maximum sensitivity is PRMI+dendritic-SSA-based AIC, with values ranging 

from 79.69% to 94.33%. The range of specificity values is 81.4% to 94.85%, with the highest specificity being 

PRMI+dendritic-SSA-based AIC. The methods on the SimBRATS dataset perform well regarding accuracy, 

sensitivity, and specificity, just as the BRATS dataset. On this dataset as well, PRMI+dendritic-SSA-based 
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AIC obtains an excellent accuracy of 96.25%. The maximum sensitivity is PRMI+dendritic-SSA-based AIC, 

with values ranging from 79.69% to 94.33%. The range of specificity values is 81.4% to 94.85%, with the 

highest specificity being PRMI+dendritic-SSA-based AIC. 

 

 

Table 7. K-fold analysis on imbalanced BRATS and SimBRATS dataset when K=10 for ACC (accuracy), 

SEN (sensitivity) and SPE (specificity) as performance measures 
10-Fold analysis/methods Imbalanced BRATS dataset Imbalanced SimBRATS dataset 

K=10 ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) 

PSO+NSA 81.32 79.69 81.4 78.40 79.83 78.48 

PSO+CSA 86.5 84.77 86.58 84.58 83.89 84.66 

ACO+NSA 88.99 87.21 89.08 89.08 86.29 89.16 
ACO+CSA 89.03 87.25 89.12 89.12 87.34 90.47 

ABC+NSA 91.35 89.53 91.44 91.45 88.62 90.54 

ABC+CSA 92.55 90.7 92.64 92.64 90.79 91.73 
PSO+DCA 94.06 92.17 94.15 94.15 92.27 92.24 

ROA+dendritic-SSA-based AIC 94.85 92.96 94.95 94.95 92.05 94.04 

PRMI+dendritic-SSA-based AIC 96.25 94.33 94.85 96.35 94.42 95.44 

 

 

3.3.3. Comparative discussion 

For this experimentation, the imbalanced dataset is generated from BRATS and SimBRATS. The 

imbalanced dataset generated is used for experimentation with sampling and without sampling. As a primary 

investigation on an imbalanced image data set; to validate whether training data size affects the classification 

performance, we have randomly sampled the images from the dataset into 40% samples to 100% samples while 

increasing the sample size by 10% at each step. The results are presented in Tables 1 to 6 and graphically 

represented in Figures 2 and 3. It is found that as the size of the data sample is increased the classification 

performance also increases. So, it is concluded that we need to use all available samples in an imbalanced 

image data set for classification.  

As a final investigation of our proposed method to handle an imbalanced image dataset, we have 

applied a completely imbalanced dataset (without sampling) to existing as well as proposed techniques. The 

results are shown in Table 7 with 10-fold cross-validation. Table 8 illustrates the results mainly using the 

proposed ROA+dendritic cell-SSA-based AIC and particle rider MI+dendritic cell-SSA-based AIC for 

imbalanced BRATS and SimBRATS dataset. The results using existing techniques namely PSO+NSA, 

PSO+CSA, ACO+NSA, ACO+ CSA, ABC+NSA, and ABC+CSA are also presented in Table 8. It is found that 

the performance of existing techniques namely PSO+NSA, PSO+CSA, ACO+NSA, ACO+ CSA, ABC+NSA, 

and ABC+CSA is lower on imbalanced dataset whereas the proposed methods ROA+dendritic SSA AIC [9] and 

particle rider MI+dendritic cell-SSA-based AIC the dendritic cell-SSA-AIC has the better performance in terms 

of accuracy, sensitivity, and specificity when used with MRI for brain tumor classification.  

 

 

 
 

Figure 2. Analysis of existing and proposed methods using imbalanced BRATS dataset 
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Figure 3. Analysis of existing and proposed methods using imbalanced SimBRATS dataset 

 

 

Table 8. Analysis of various performance measures using various methods for brain tumor image 

classification on imbalanced BRATS and SimBRATS datasets 
Methods Imbalanced BRATS dataset Imbalanced SimBRATS dataset 

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) 

ROA+dendritic-SSA-based AIC 94.85 92.96 94.95 94.95 92.05 94.04 
PRMI+dendritic-SSA-based AIC 96.25 94.33 94.85 96.35 94.42 95.44 

 

 

The most enhanced classification performance of around 96.25% accuracy is achieved due to training 

AIC classifiers with dendritic cell-SSA with particle rider MI, this method has a high convergence momentum 

and accuracy. Further, the computational complexity of segmentation based on sparse FCM is reduced. The 

particle rider MI's feature selection method selects the most informative features, resulting in the highest 

classification accuracy in almost all methods. Furthermore, the AIC classifier is self-organizing and 

necessitates good characteristics. As a result, the new strategy of taking the imbalanced dataset improves 

overall speed while reducing errors. Similarly, the second proposed method ROA+dendritic SSA AIC also 

gives similar results to particle rider MI+dendritic Cell-SSA with classification accuracy of around 94.85%. 

While the existing 7 methods provide a minimum of 81.32 to a maximum of 94.06 percent classification 

performance in terms of accuracy 

As shown in Table 8, on both imbalanced datasets, both methods PRMI+dendritic-SSA based AIC 

and ROA+dendritic-SSA based AIC demonstrate strong performance. While both techniques maintain high 

levels of sensitivity, PRMI+dendritic-SSA-based AIC tends to have a minor advantage in terms of accuracy 

and specificity. 

 

3.3.4. Analysis based on time 

The methods on the unbalanced BRATS dataset have a wide range of execution times. Execution 

times for PSO+NSA, ABC+NSA, and ABC+CSA range from about 9.36 seconds to 10.64 seconds, which is 

comparatively long. Execution times for PSO+CSA, ACO+NSA, and ACO+CSA are reasonable, ranging from 

5.64 to 6.50 seconds. The execution times of the algorithms PSO+DCA, ROA+dendritic-SSA based AIC, and 

PRMI+dendritic-SSA based AIC are all impressively fast—under 1 second. The algorithms' execution times 

on the imbalanced SimBRATS dataset vary as well. Execution times for PSO+NSA and ABC+NSA are 

relatively long, at about 8.21 and 7.19 seconds, respectively. The highest execution time of ABC+CSA is  

7.84 seconds. ACO+NSA executes in a respectable 7.02 seconds. Execution timings for PSO+CSA, 

ACO+CSA, PSO+DCA, and ROA+dendritic-SSA-based AIC range from 2.88 seconds to 5.00 seconds. The 

fastest execution time for this dataset's PRMI+dendritic-SSA-based AIC is 0.88 seconds. Table 9 illustrates 

the analysis based on the required time for the execution while using the imbalanced dataset. It is observed that 

the two proposed methods ROA dendritic cell-SSA based AIC and particle rider MI+dendritic cell-SSA based 

AIC give better results in terms of lower execution time when compared with existing methods. 
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Table 9. Analysis based on time 

Methods/Dataset 
Execution time in second 

Imbalanced BRATS dataset Imbalanced SimBRATS 

PSO+NSA 9.36 8.21 

PSO+CSA 5.64 7.83 

ACO+NSA 6.50 7.02 
ACO+CSA 6.48 5.00 

ABC+NSA 10.64 7.19 

ABC+CSA 10.59 7.84 
PSO+DCA 0.03 2.88 

ROA+ Dendritic-SSA-based AIC 0.03 3.74 

PRMI + Dendritic-SSA-based AIC 0.02 0.88 

 

 

4. CONCLUSION  

This study presents two proposed techniques for the classification of brain tumors on imbalanced 

datasets. The first one is ROA+dendritic cell-SSA based AIC and the second technique is particle rider MI+ 

dendritic cell-SSA based AIC on an imbalanced MR imaging dataset. The experimental finding demonstrates 

that the strategies are effective in terms of performance metrics for classifying brain tumors. In both proposed 

methods, the process begins with noise and artifact removal from the input brain MR images by applying 

Gaussian filters and a region of interest. Subsequently, the segmentation process is applied using sparse fuzzy 

C-means clustering. After this step, the feature extraction is done to extract statistical characteristics and 

textural features. The preprocessing steps up to this step are common for both methods. As a next step, in the 

first proposed method ROA is used for feature selection. Whereas, in the next step, in the second proposed 

method the PRMI is used for feature selection. The PRMI is developed by combining the mutual information, 

ROA, and PSO. Finally, the AIC is applied for the classification of brain tumors for both proposed methods. 

The AIC is trained using the dendritic cell-SSA algorithm. The dendritic cell-SSA algorithm is a hybridization 

of the dendritic cell method and the squirrel search algorithm. The experimental results show that the proposed 

particle rider mutual information-based dendritic squirrel search algorithm-based AIC outperformed other 

models for the imbalanced BRATS MR image dataset and provided an accuracy of 96.25%, sensitivity of 

94.33%, and specificity of 94.85%. Similarly, on the other hand, it also outperforms other models and provides 

an accuracy of 96.35%, sensitivity of 94.42%, and specificity of 95.44% for the imbalanced SimBRATS 

dataset. 
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