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 A remote laboratory utilizing field-programmable gate array (FPGA) 

technologies enhances students’ learning experience anywhere and anytime 

in embedded system design. Existing remote laboratories prioritize hardware 

access and visual feedback for observing board behavior after programming, 

neglecting comprehensive debugging tools to resolve errors that require 

internal signal acquisition. This paper proposes a novel remote embedded-

system design approach targeting FPGA technologies that are fully 

interactive via a web-based platform. Our solution provides FPGA board 

access and debugging capabilities beyond the visual feedback provided by 

existing remote laboratories. We implemented a lab module that allows users 

to seamlessly incorporate into their FPGA design. The module minimizes 

hardware resource utilization while enabling the acquisition of a large 

number of data samples from the signal during the experiments by 

adaptively compressing the signal prior to data transmission. The results 

demonstrate an average compression ratio of 2.90 across three benchmark 

signals, indicating efficient signal acquisition and effective debugging and 

analysis. This method allows users to acquire more data samples than 

conventional methods. The proposed lab allows students to remotely test and 

debug their designs, bridging the gap between theory and practice in 

embedded system design. 
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1. INTRODUCTION 

Embedded systems have become an integral part of our daily lives and profoundly affect our 

interactions with technology [1]. A critical component of embedded systems is the field-programmable gate 

array (FPGA), which allows complex digital designs to be implemented in hardware. FPGAs are used in 

consumer electronics [2], automobiles [3], medical devices [4], and the internet of things (IoT) [5], among 

others. Understanding how to use FPGA technology is essential for students and engineers in the field of 

embedded system design [6], [7] and requires users to interact physically with targeted FPGA boards. FPGA 

laboratories are indispensable learning assets that provide students and engineers with hands-on experience 

with FPGA technology. 

Remote FPGA laboratories have emerged as elegant solutions for students and engineers seeking to 

develop their skills in embedded system design [8], [9]. While traditional FPGA laboratories are confined to 

classrooms during class periods, remote FPGA laboratories allow users to program, debug, and test FPGA 
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boards remotely anytime and anywhere with internet access. Remote FPGA laboratories alleviate the 

drawbacks of traditional laboratories, such as limited accessibility, high operating costs, stringent time 

constraints [10], and forced closures during pandemics [11]–[13]. Given their advantages, remote FPGA 

laboratories have gained popularity, and can complement or replace traditional laboratories [14]. 

Previous studies have proposed and implemented remote FPGA laboratories [10]–[13], [15]–[23] 

with mixed success. The desirability and acceptability criteria of the remote laboratory design are placed on 

low resource utilization on the FPGA boards, the ability of remote users to debug the program conveniently, 

the ability of users to acquire a large amount of FPGA board’s data, and a simple user interface. The user 

interface designs of existing remote laboratories follow two common approaches to provide the FPGA 

board’s output to remote users: live stream and direct capture of the internal signals. In the first approach, the 

remote user views the results and evaluates their design through a live stream of the FPGA board by using an 

internet protocol camera (IP camera) or webcam. For example, existing remote FPGA laboratories [21]–[23] 

offer live streams and basic FPGA experiments that include controlling the status of light-emitting diodes 

(LEDs), seven-segment displays, and switches on the target FPGA board. These experiments were evaluated 

through a user interface that incorporated virtual inputs (switches) and outputs (LEDs, seven-segment) 

directly into the web application. In the second approach, the initial signals of an FPGA are captured and 

transmitted to remote users by either i) probing the FPGA’s output pin connected to an external logic 

analyzer (LA) or ii) using integrated logic analyzer (ILA) debug cores [24] within the FPGA board itself. For 

example, existing remote FPGA laboratories [12], [18] employ external logic analyzers to virtualize internal 

signals. However, the device configuration is performed locally and the display of the signal is constrained 

by the size of the logic analyzer window. Mohsen et al. [17] proposed a method that allows users to 

configure a sample size based on the ILA configuration and hence, more data to be acquired. In a remote lab, 

where the users cannot directly access the lab tools, acquiring more samples of data enriches the students’ 

learning experience and simplifies the debugging process at the expense of a large amount of data being 

transmitted over a network. 

To address the large amount of data, some existing studies chose to transmit uncompressed data, 

whereas others compressed the data before transmission. The benefits of not compressing the acquired data 

are a simple FPGA and low utilization of the FPGA board. The drawback is the limited amount of data that 

can be acquired by the end users at a given time. On the other hand, the benefit of data compression includes 

the acquisition of large samples, which allows FPGA experiments to become easier and faster for debugging 

and analysis. Common compression techniques that have been implemented in FPGA include the Huffman 

[25], [26], dictionary-based [27]–[31], and deflate-based [32], [33] encoders. However, these techniques 

require large amounts of hardware resources. Given the drawbacks and advantages, as well as the desirability 

and acceptability criteria, there is no clear distinction between no compression and compression. 

Compression is beneficial when the acquired data contains repetitions. However, when the acquired data are 

not repetitive, transmitting raw data without compression is preferred owing to the low FPGA utilization. 

Although much work has been done toward the implementation of remote FPGA laboratories for 

signal acquisition, state-of-the-art methods are fundamentally limited. The entire process of acquiring the 

internal signal from the FPGA is not entirely web-based and requires the installation of additional software 

tools on the client side to perform the experiments. However, this requirement may be inconvenient for 

certain users. Furthermore, existing studies either compressed FPGA-acquired data or did not. A better 

approach is for a remote laboratory component to automatically and adaptively decide whether the acquired 

data should be compressed before transmission or not. A remote laboratory that is entirely web-based and 

adaptively compresses the acquired data will enhance users’ learning experiences and extend a traditional 

laboratory beyond a physical classroom. 

In this paper, we present the architecture of a remote FPGA laboratory platform that allows the users 

to remotely program their FPGA boards, and offers various features to test their design entirely on a web-

based interface. To acquire a large internal signal, we adopt the concept of an add-on module [10], [21]–[23], 

[34] and implement a lab module with adaptive run-length-encoding data compression for users to 

incorporate into their design. Additionally, the concept of using a pre-built module allows users to build their 

FPGA design and connect the signal of their design that they want to capture to the module. The output of 

this module can be sent to the server using a standard communication protocol such as a universal 

asynchronous receiver transmitter (UART), inter-integrated circuit (I2C), or serial peripheral interface (SPI). 

The main contributions of this study are as follows: i) a remote laboratory architecture that enables users to 

remotely program an FPGA board and verify its design, ii) a method that is efficient for internal signal 

acquisition for FPGA remote laboratory, and iii) performance evaluation of the proposed laboratory in terms 

of available features, compression ratio, and hardware resource utilization. The proposed remote laboratory 

meets the desirability and acceptability design criteria that improve the distance-learning environment. 

The remainder of this paper is organized as follows. Section 2 presents the overall architectural 

design and the implementation of the proposed FPGA remote laboratory. Section 3 focuses on the hardware 
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implementation of the two proposed modules and the proposed data compression algorithm for efficient 

signal acquisition. The performance evaluation and discussion of the proposed work are presented in  

section 4, followed by conclusions and future research directions in section 5. 

 

 

2. ARCHITECTURE OF THE PROPOSED LAB 

The objective of this study was to provide a method for students and engineers to remotely program 

their own FPGA boards and explore various interactive features to test their designs. These features include 

receiving data from and transmitting data to the board as well as live streaming of the board itself. The 

management of the lab on load balancing, task queuing, and lab session management was previously 

discussed in [35]–[37] and falls outside the scope of this study. 

The proposed remote FPGA lab comprises a Linux-based PC server with medium specifications, 

several FPGA boards, and one webcam per board, as shown in Figure 1. A web-based interface is hosted on 

the server for users to conduct experiments without the need for additional software on client sites. Two 

modes of communication are available for users to connect with the proposed platform: those on the 

university campus can connect via the campus network, whereas off-campus users use the university’s virtual 

private network (VPN) to access the platform. Furthermore, communication between the laboratory server 

and FPGA board was accomplished through a universal serial bus (USB) to program the FPGA board and 

serial communication to transmit data to and receive data from the experimental board during the 

experiments. The proposed remote FPGA lab is scalable and can serve any user via an internet connection. 

The implementation of the laboratory server is the most crucial part of the proposed remote FPGA 

laboratory. The laboratory server comprises three sub-servers that include a web-based server, a core server, 

and a live-streaming server. The web-based server is designed to provide web-based applications to users, 

whereas the core server is responsible for executing every experiment-related task, such as moving the 

generated bitstream (.bit) file from the user to program the FPGA, real-time interaction with the programmed 

experimental board, and saving the data from the FPGA. The live-streaming server is responsible for 

capturing a live view of the experimental instance and displaying it on a web-based application. Next, we 

describe the design of the three sub-servers in detail. 

 

 

 
 

Figure 1. The architecture of the proposed FPGA remote laboratory consists of the laboratory server, 

experimental instances, and live-view camera system 

 

 

2.1.  Core server 

The server in this layer is built with ExpressJS, a popular web framework for building server-side 

applications with Node.js, and is capable of building a representational state transfer (RESTful) application 

programming interface (API). This method allows for standardized communication and data exchange over 

the internet in an efficient and structured manner. After building the APIs, users can make requests to the 

server through hypertext transfer protocol (HTTP) methods. These requests are then processed by the core 

server, which communicates with the FPGA board to perform the requested actions. 
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The connection between the experimental instance and the laboratory server consists of USB cables 

for programming the FPGA, and a serial communication interface for interacting with the board after it is 

programmed. To program the FPGA board, we utilized the tool command language (TCL) console of the 

Xilinx Vivado tool, which can load the design file in .bit format in the FPGA. After receiving the design file 

from the user, the core server generates a TCL script to program the FPGA. 

Regarding the serial communication interface for interacting with the FPGA board during the 

experiments, multiple communication protocols were available, but we chose UART for ease of 

development. Python code with various packages was used for the software aspect of the interaction. When a 

command is received by the web-based server on the server side, the script transmits input signals to the 

FPGA board if the command is to send input. Conversely, it will receive data from the FPGA if the command 

is to acquire a signal.  

 

2.2.  Web-based server 

 A web-based application built upon the ReactJS framework was used to serve users on tasks such as 

uploading a bitstream file, streaming a real-time video of the experimental instance, and providing a web 

console to show the status of the experiment. Currently, the system supports two types of remote FPGA 

laboratories, namely, basic FPGA laboratory and advanced FPGA laboratory.  

a. Basic FPGA laboratory refers to a remote laboratory that requires real-time visual feedback. These labs 

typically consist of experiments that use output hardware peripherals to display results. As shown in 

Figure 2, on the developed basic FPGA laboratory page of the web-based application, the user can upload 

the generated bitstream file after designing it in Vivado and programming the embedded device remotely. 

Subsequently, a live-stream view appears on the top-right side of the interface, and the status of the entire 

experimental process can be observed in the console.log terminal at the bottom of the interface. 

Additionally, an option is provided that allows the user to send an input signal to the embedded device. 

 

 

 
 

Figure 2. The interactive user interface of the proposed basic remote FPGA laboratory is web-based, enabling 

users to program the FPGA board with their bitstream file and observe the results through a live-view camera 

 

 

b. Advanced FPGA laboratory is a remote laboratory that involves experimenting with complex FPGA 

designs. In addition to the features provided in the basic FPGA laboratory, the advanced FPGA laboratory 

allows users to capture internal signals within the FPGA during the experiment. This feature provides 
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users with deep insight into the functioning of their designs. Additionally, users can interact with the 

programmed FPGA and modify the design behavior in real-time. The laboratory user interface is shown 

in Figure 3. 

 

 

 
 

Figure 3. The interactive user interface of the proposed advanced remote FPGA laboratory enables users to 

capture the internal signal during experiments 

 

 

2.3.  Live-streaming server 

 A live-streaming server was deployed in parallel with the web-based server and laboratory server to 

capture the live view of the experimental instance during the experiment. The goal of streaming is to provide 

a minimum delay in the captured image to the web-based application. To implement the live-streaming 

server, several technologies were utilized, including a steaming protocol, a specific transmission control 

protocol/internet protocol (TCP/IP) port, HTTP live streaming (HLS) conversion, and an HTTP server for 

streaming the file. With these components, it is possible to offer a high-quality live-streaming experience to 

users.  

Each experimental instance utilized a webcam to capture the visual feedback. The initial step 

involves streaming the webcam video to a TCP/IP port using a real-time streaming protocol (RTSP). 

Subsequently, the data stream was converted to a suitable format for HLS to enable playback on various web 

browsers. Once the stream is converted to the HLS format, an HTTP server is employed to host the generated 

file, allowing the web-based server to play the stream for users on the web-based application. 

 

 

3. THE PROPOSED METHOD FOR A REMOTE FPGA LABORATORY 

In this section, we present the hardware implementation of the two proposed modules that users can 

incorporate into their design to perform the basic FPGA laboratory and the advanced FPGA laboratory. In the 

proposed laboratory, users do not need to incorporate the lab module into their design if the design 

verification involves visual feedback but does not involve transmitting data to and receiving data from the 

FPGA. We then present an efficient data compression method for signal acquisition in a remote FPGA 

laboratory. 
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3.1.  Hardware implementation of the lab modules 

Users who wish to work on a project involving interaction with the FPGA board after programming 

are advised to incorporate their designs with our pre-made modules, namely, the Basic_Remote_Lab and 

Advanced_Remote_Lab modules. These modules were developed in very high-speed integrated circuit 

hardware description language (VHDL) and serve slightly different purposes. The Basic_Remote_Lab 

module enables the FPGA board to receive data transmitted from the server computer via UART, whereas 

the Advanced_Remote_Lab module allows both data transmission and reception via UART. 

 

3.1.1. The Basic_Remote_Lab module 

Figure 4 displays the Basic_Remote_Lab module designed at the register-transfer level (RTL). This 

block receives the input signal from the web server, and its output is an 8-bit hexadecimal representation of 

the American standard code for information interchange (ASCII) code corresponding to the input data 

provided by the user. Then, by incorporating this module into the user design, the output signal can be 

utilized to perform various configurations, such as displaying LED patterns and seven-segment numbers 

connected to the FPGA board. 

 

 

 
 

Figure 4. The RTL design schematic of the Basic_Remote_Lab module enables user-design 

integration for signal transmission to the FPGA during experiments 

 

 

A use case for this module is proposed to demonstrate its practical application. Figure 5(a) shows a 

scenario in which a student designs their own modules, namely DispScan and timer1us, which are 

incorporated with the Basic_Remote_Lab module to display the received input signal from the user on a 

seven-segment display. Figure 5(b) illustrates the entire process of conducting this experiment using a web-

based interface. The process begins by uploading the bitstream file, which is then loaded into the FPGA. The 

user can continuously send input data to the FPGA board and observe the corresponding display on the 

seven-segment display located on the right-hand side of the interface. 

 

3.1.2. The Advanced_Remote_Lab module 

 The Advanced_Remote_Lab module, which is also designed at the RTL, is proposed and illustrated 

in Figure 6. The designed module allows users to capture signals from their designs during experiments with 

high data throughput and allows their design to take the input data from the UART. Our current 

implementation allowed the user to capture four signals with a default data size of 16 bits. This module is 

provided for users who use the system to perform complex RTL designs and wish to acquire signals for 

further analysis or debugging purposes. 

The proposed hardware implementation of the Advanced_Remote_Lab can be implemented on 

various FPGA boards. The module consists of three sub-module designs, which include:  

− Signal capturing module (Signal_Capturing_x) allows users to input a signal that they want to capture 

during the remote experiment. The size of the desired signal can be configured in this block via the 

configuration of the first-in, first-out (FIFO) generator intellectual property (IP) [38]. 

− Control unit (CU) controls the data moments in this module. The decision-making process of the module 

is based on the configuration command provided by the user through the web-based application. It reads 

the configuration command sent from the user and performs a function based on the provided command. 

− UART module handles communication between the FPGA and the laboratory server. It receives 

configuration commands from the laboratory server for the CU to process and respond to by providing an 

internal signal when requested. 

To demonstrate the use of this module, a project involving the generation of a sinusoidal waveform 

was assigned to students during the course of the embedded system. The designed code required 1048 clock 

cycles to generate each data sample. The complete RTL design depicted in Figure 7(a) illustrates how the 

output of the signal generator module is connected to one of the inputs of the Advanced_Remote_Lab 
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module. The testing process for this design can be initiated once the bitstream file generation is completed. 

The user can then load the bitstream file into the web application and program the FPGA board. Once the 

FPGA board is successfully programmed, the user must send a configuration signal to the board to enable the 

Advanced_Remote_Lab module to capture the signal and transmit it to the core server. When the core server 

receives the data, the user can click on the download option to retrieve the signal connected to the 

Advanced_Remote_Lab module that can be seen in Figure 7(b). 

In this experiment, a sinusoidal waveform was captured using the Advanced_Remote_Lab module. 

Without pre-compressing the internal signal before storing it in a buffer, the total acquired data amount to 

16,384 samples, which is equivalent to the number of acquired samples using an ILA to capture the signal. 

Figure 8 shows a plot of the acquired data. The analysis of the acquired data indicated the presence of only 

16 unique signal levels. Consequently, the required buffer size was 32,768 bytes, with each data point 

represented in a 16-bit unsigned integer (uint16) format. Therefore, sending the entire data packet to the 

laboratory server is inefficient. 

To address this issue, we checked whether signal duplication had occurred in the acquired signal. If 

duplication occurred, run-length encoding was executed within the FPGA before transmitting data to the core 

server. This adaptive compression method significantly reduces the amount of duplicated data when 

performing FPGA design, thereby improving the overall transmission performance of the proposed remote 

laboratory. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Users can (a) incorporate their own modules into the existing one, for example, an RTL design that 

was incorporated into the Basic_Remote_Lab module, and (b) verify their designs experimentally using a 

web-based interface that displays the design verification process in the basic FPGA laboratory   
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Figure 6. The RTL design schematic of Advanced_Remote_Lab can capture up to four different internal 

signals and be integrated with user-designed modules. The module facilitates both data transmission and 

reception with the laboratory server 
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(a) 

 

 
(b) 

 

Figure 7. The RTL design was (a) incorporated into the Advanced_Remote_Lab to capture the internal signal 

of a sinusoidal waveform generator, and (b) validated using the proposed advanced FPGA laboratory  

 

 

 
 

Figure 8. The samples were correctly acquired from the ILA using Advanced_Remote_Lab module when the 

represented signal is a sine wave. The samples can be compressed significantly because of repetitions  

in the sample values 
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3.2.  Proposed data compression technique for remote FPGA laboratory 

The data compression technique required for the proposed remote lab should use few parameters and 

operations, thereby achieving low hardware resource utilization when deployed in hardware-embedded 

devices (in our case, FPGAs). As mentioned in the introduction, several lossless compression techniques can 

be implemented in FPGA devices, but run-length encoding (RLE) is the most suitable for our remote 

laboratory because of its efficiency when processing input data with long sequences of repeated symbols. 

Additionally, RLE meets the requirements for utilizing low hardware resources. Therefore, in this study, we 

propose an adaptive RLE data compression technique suitable for acquiring a large number of signal samples 

within a specific time frame or buffer size, thereby maximizing the data throughput. 

Algorithm 1 is a decision-making algorithm that determines whether the input data stream must 

be compressed using the adaptive run-length encoding data compression algorithm based on a threshold 

value. The function takes two parameters: the input data stream D and threshold th. It initializes the 

variable count to 0, isEncode to 0, and prev to null. The variable isEncode indicates the detection of 

consecutive runs of the input signal occurring for a defined threshold value. If isEncode is one, the data are 

encoded with the RLE before being sent to the laboratory server. Otherwise, the data are stored directly in 

a buffer and sent to the laboratory server. The algorithm then loops over the first th element of the input 

data stream and checks whether the current element is the same as the previous element. If it is, the 

algorithm increments the count variable; otherwise, it sets count to 1. Finally, the algorithm checks 

whether count is greater than or equal to the threshold th and sets isEncode to 1 if it is, and 0 otherwise. 

This function returns the value of isEncode. 

 

Algorithm 1. Decision maker for determining whether the input data stream needs to be encoded using the 

adaptive RLE data compression 
Require: input data stream D, threshold th 

  1:  function ENCODEDECISION(D, th) 

  2: count ← 0 

  3: isEncode ← 0 

  4: prev ← null 

  5: for i ← 0 to (length of D)-1 do 

  6:  s ← D[i] 

  7:  if s = prev then 

  8:   count ← count + 1 

  9:  else 

 10:   count ← 1 

 11:  end if 

 12:  if count ≥ th then 

 13:   isEncode ← 1 

 14:   return isEncode 

 15:  end if 

 16:  prev ← s 

 17: end for 

 18: isEncode ← 0 

 19: return isEncode  

 20:  end function 

 

After determining whether the input data stream should be encoded using RLE, Algorithm 2 applies 

adaptive RLE data compression to compress input data stream D based on the decision made by Algorithm 1. 

The function uses two parameters: the input data stream D and decision variable isEncode. It initializes the 

compressed data stream C to an empty set, the count variable to 0, and the prev variable to the first element 

of input data stream D. If the decision variable isEncode is 0, it appends a header to the compressed data 

stream, indicating that the data stream does not need to be encoded using RLE, and then appends the entire 

input data stream D to the compressed data stream C. If the decision variable isEncode is 1, it loops over each 

element of the input data stream D. For each element, the algorithm checks whether the current element is the 

same as the previous element. If it is, the algorithm increments the count variable; otherwise, the algorithm 

appends the previous element and its count to the compressed data stream C and sets count to 0. The 

algorithm returns data stream C. 

The performance of the proposed compression method is evaluated based on its compression ratio 

(CR) and throughput. CR is a measure of the reduction in the size of the data achieved by a compression 

algorithm. It is calculated by dividing the size in bytes Suc of the uncompressed data by the size in bytes Sc of 

the compressed data as (1): 

 

𝐶𝑅 =
𝑆uc

𝑆c
 (1) 
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A higher CR indicates a better compression algorithm. The throughput is the maximum number 

𝐷𝑎𝑡𝑎max of bytes transmitted in a given duration, where 

 

𝐷𝑎𝑡𝑎max = 𝐶𝑅 × 𝑆uc (2) 

 

Since 𝐶𝑅 ≤ 1, the maximum number 𝐷𝑎𝑡𝑎max of bytes is at most 𝑆uc. The CR and throughput are 

appropriate performance measures. 

The adaptive RLE scheme ensures that the data are only compressed when it is beneficial to do so, 

thereby reducing the overhead associated with unnecessary compression and decompression of data. 

Simultaneously, the hardware implementation of the proposed algorithm was embedded in the 

Signal_Capturing_x block of the Advanced_Remote_Lab module. Additionally, the decompression process 

that occurs at the server computer involves checking the header of the data to determine whether the data are 

compressed using the RLE. 

 

Algorithm 2. Adaptive RLE for advance remote lab module 
Require: input data stream D, decision variable isEncode 

  1:  function ADAPTIVERLE(D, isEncode) 

  2: C ← ∅ 
  3: count ← 0 

  4: prev ← D[0] 
  5: if isEncode = 0 then 

  6:  append isEncode to C ⊳ add header 

  7:  append D to C ⊳ append the data stream to the compressed data stream 
  8: else 

  9:  append isEncode to C ⊳ add header 
 10:  for i ← 0 to (length of D)-1 do 

 11:   s ← D[i] 

 12:   if s = prev then 

 13:    count ← count + 1 

 14:   else 

 15:    append prev to C 

 16:    append count to C 

 17:    count ← 1 

 18:   end if 

 19:   prev ← s 

 20:  end for 

 21:  append prev to C 

 22:  append count to C 

 23: end if 

 24: return C 

 25:  end function 

 

 

4. RESULT AND DISCUSSION 

The proposed approach is evaluated in three aspects: i) Flexibility of designing an embedded system 

remotely using the proposed platform; ii) Throughput of the proposed adaptive RLE algorithm; and  

iii) Utilization of hardware resources of the proposed modules. 

 

4.1.  Flexibility of the proposed remote lab 

Table 1 presents a comparative evaluation of the existing features in currently operated remote 

FPGA labs. The table presents a comparison of the features of the nine remote laboratory solutions with those 

of the solutions presented in this study. The desired features include: i) remote FPGA configuration, ii) real-

time interaction, iii) ability to capture internal signals from the FPGA during the experiment, iv) timing 

diagram display, v) local view, vi) fully integrated web-based application, and vii) ability to freely program 

the FPGA with the users’ own design instead of using the default experiment provided by the lab host. The 

more features a remote lab has, the better the user experience. 

The results show that several related studies have proposed similar remote FPGA labs that utilize 

web-based interfaces to interact remotely with the FPGA. However, some of these proposed laboratories 

have drawbacks such as limited functionality, lack of flexibility, and dependency on the laboratory host’s 

designed experiments. The proposed remote FPGA lab overcomes these limitations by providing users with 

the ability to freely program an FPGA board remotely using a standard web browser, making it easily 

accessible to a wide range of users, and offering various features to their design. 

Additionally, the primary focus of most developers of remote FPGA lab platforms is to provide 

users with access to the FPGA board through a laboratory infrastructure. A less important feature for 
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developers is providing users with debugging capabilities to troubleshoot their programs. The existing 

methods for debugging a program capture the internal signals from the FPGA board and timing diagram 

display during experiments. The existing remote FPGA that provides these features does not allow users to 

perform the experiment in a single web-based application; hence, additional software must run in parallel 

during the experimentation process. Running additional software in parallel may introduce complexity for 

users on a remote lab platform, potentially causing difficulties in fully accessing the lab and leading to 

increased problems. Furthermore, the acquired data throughput was lower than that of the proposed remote 

FPGA lab because the proposed remote FPGA lab performs adaptive data compression before sending the 

data to the user. Our proposed FPGA remote lab fully integrates the entire testing process of the users’ design 

into a web-based application, ensuring a seamless experience. 

 

 

Table 1. The proposed remote FPGA laboratory supports more features than the existing remote FPGA 

laboratories support (✓=supports, =does not support) 
Reference Desired features 

(1) (2) (3) (4) (5) (6) (7) 

Winzker and Schwandt [16] ✓ ✓    ✓ ✓ 

Valencia et al. [11]  ✓   ✓  ✓ 

Monzo et al. [20]  ✓   ✓   

Blochwitz et al. [21]  ✓   ✓   

Oballe-Peinado et al. [22]  ✓   ✓ ✓  

Mohsen et al. [17] ✓ ✓ ✓ ✓ ✓   

Melosik et al. [12] ✓   ✓ ✓  ✓ 

Magyari and Chen [23]  ✓    ✓ ✓ 

Touhafi et al. [18] ✓  ✓ ✓  ✓ ✓ 

Proposed Remote FPGA Lab ✓ ✓ ✓  ✓ ✓ ✓ 

 

 

According to Table 1, a feature was missing from the proposed laboratory. Feature 4 is related to the 

timing diagram. The proposed laboratory did not provide a timing-diagram display in the web-based 

interface. However, user can still plot the timing diagram by downloading the data acquired from the FPGA 

and using an external tool to plot the timing diagram. Including a timing diagram in the web-based interface 

is a future research direction. 

 

4.2.  Data throughput 

The throughput of the internal signals sent during the experiment was evaluated in two steps. First, 

we measured the average data size of the signal. Second, we measured the average compressed size achieved 

by utilizing the existing and proposed data compression techniques. Three types of benchmark signals with 

distinct characteristics were used for the evaluation. Signal 1 represents the data acquired from a  

micro-electrical-mechanical system (MEMS) microphone sensor with an input pulse density modulation 

(PDM) clock of 3.072 MHz and is deserialized to 16 bits. Signal 2 is 16-bit counter data generated at every 

clock cycle. Signal 3 is a sinusoidal waveform that requires 1,048 clock cycles to produce one sample. The 

timing diagram of these signals is shown in Figure 9. The three benchmark signals represent the typical 

signals found in the embedded system design and form a fair test dataset. 

Table 2 compares the compression performance when different compression algorithms were 

applied to the test signals. Although the proposed method may occasionally result in larger signal sizes 

compared with existing methods, it achieves an average reduction of approximately 65.63% compared with 

the total average signal size, with a calculated CR of 2.90. The proposed adaptive RLE is significantly better 

than the next best compression method, Huffman, which has an average compressed size of 14,491 bytes 

equivalent to a 51.09% reduction from the total average signal size. Therefore, the proposed method is 

effective in compressing the data while the user wishes to acquire the internal signal during the experiment. 

Furthermore, the proposed method is particularly effective when the signal contains duplicate data for a 

certain period, as shown by the results obtained from signals 1 and 3. 

 

 

 
 

Figure 9. Timing diagrams of the three benchmark signals were acquired from the FPGA 
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Table 2. On average, the proposed adaptive RLE can compress more data than the existing methods can 
Type of signal Signal size Compressed size (bytes) 

(bytes) RLE Huffman LZW Proposed adaptive RLE 

Signal 1 32,768 504 8,229 2,872 505 

Signal 2 32,768 65,536 27,109 42,668 32,769 

Signal 3 32,768 512 8,225 2,878 513 
Average size 32,768 22,184 14,491 16,139 11,262 

 

 

4.3.  Hardware utilization 

In this section, we evaluate the hardware resource utilization of the proposed advanced remote lab 

module. The FPGA was implemented on a Zynq 7000 FPGA fabric using the Vivado version 2018.3. For 

resource utilization analysis, the designs were coded in VHDL and synthesized using the Xilinx Synthesis 

Tool, which is included in the Vivado version 2018.3. First, we compare the utilization of the proposed 

compression method with that of the existing method. Second, we determined the total resources required for 

the operation of the advanced remote lab module. The evaluation provides insight into the effectiveness of 

the proposed compression method, which aims to use the least amount of hardware resources on the 

experimental board while preserving more resources for students to perform their own design. 

For comparison, we evaluated the resource utilization of existing compression methods, namely, 

entropy-based, dictionary-based, and deflate-based compression methods, which have been previously 

proposed and implemented on FPGA devices. The comparison presented in Table 3 shows that the proposed 

algorithm does not require any block random access memory (BRAM) because the implementation of RLE 

discussed in section 4 only uses look-up tables (LUTs) and flip-flops (FFs) when implemented in an FPGA. 

Additionally, the proposed method has a lower count of LUTs, FFs, and Slices compared with existing 

compression methods that have been implemented on an FPGA. Therefore, the proposed adaptive RLE is the 

most suitable data compression method for implementation in the proposed Advanced_Remote_Lab module 

and offers a high CR in certain cases. 

 

 

Table 3. The proposed method stands out for its low hardware utilization 
Method Resource Utilization Device 

BRAM 36k LUT FF Slice 

Entropy-based [25] - 624 - - Zynq 7035 

Entropy-based [26] 62 - - 1,836 Zynq 7020 
Dictionary-based [27] 8 - - 3,216 FPGA XC4VLX15-10 

Dictionary-based [28] 3 1,323 1,379 - Altera Stratix IV 

Deflate-based [32] 131 69,114 49,779 - Xilinx XCVU3P-FFVC1517 
Deflate-based [33] 2 7,965 2,342 - Altera DE2 board 

Proposed algorithm 0 95 164 47 Zynq 7000 

 

 

The Advanced_Remote_Lab module has been implemented on various FPGA devices, such as  

Cora-Z7, PYNQ-Z1, Basys3, and Zybo Z7-10. Figure 10 illustrates resource utilization, which varies 

across different devices. Despite these minor variations, the design process of the student model is 

unaffected. As a result, the proposed module is well-suited for implementation on different types of FPGA 

devices. 

Table 4 lists the number of BRAMs required to acquire signals of different lengths. Based on this 

table, the number of BRAMs utilized in the FIFO generator varies depending on the length of the signal that 

the user wishes to acquire. Hence, users must be cautious in selecting the signal length they want to acquire 

because of the limitations of the BRAM unit in the targeted FPGA board. For instance, capturing a signal 

with a length of 131,072 samples requires 128 BRAMs of 36K. However, the Cora-Z7 board has only 50 

available 36K BRAM. Therefore, users are advised to choose the appropriate signal length they want to 

acquire in their design to match the available BRAM of the targeted FPGA device. 

Using the proposed adaptive RLE method to compress the signal before storing it in BRAM, more 

data can be acquired while utilizing a small amount of BRAM. As shown in Figure 8, without the use of 

adaptive RLE, 16 BRAMs were used to capture 16,384 samples. By contrast, utilizing the adaptive RLE 

allows the same usage of BRAMs to capture a maximum data sample (𝐷𝑎𝑡𝑎max) of up to 8,388,608 

samples, as depicted in Figure 11 (with only 1,000,000 samples plotted for simplicity). Given the large 

amount of data acquired, the process of debugging and analysis becomes more convenient. For instance, 

the data illustrated in Figure 8 alone does not allow the user to determine whether it represents a sinusoidal 

waveform. However, Figure 11 demonstrates that when using the proposed compression method, the 
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acquired data clearly exhibit a sinusoidal waveform, verifying the correctness of the user’s design. 

Moreover, if the user wishes to capture only 16,384 samples, the utilized BRAM will cost only 0.5 of the 

36K BRAM or 1 of the 18K BRAM, which demonstrates the efficiency and potential resource utilization 

savings of the proposed method. 

 

 

 
 

Figure 10. The total hardware resource utilization of Advanced_Remote_Lab varies across FPGA devices 

 

 

Table 4. The number of available BRAMs in an FPGA board constrains the length of signal  

that users can acquire 
Signal length (sample)  36k BRAM usage Signal length (sample)  36k BRAM usage 

16 0.5 2048 2 
32 0.5 4096 4 

64 0.5 8192 8 

128 0.5 16384 16 
256 0.5 32769 32 

512 1 65536 64 

1024 1 131072 128 

 

 

 
 

Figure 11. The proposed adaptive RLE is utilized with 16 BRAMs to compress the internal signal. The plot 

shows increased sample acquisition and representation of multiple cycles of a sine wave 

 

 

5. CONCLUSION 

In this study, we designed and evaluated a remote FPGA laboratory that aims to enhance the 

learning experience of students in the field of electronic engineering, particularly in FPGA design at RTL. 

The proposed remote laboratory offers flexibility to students by providing them with a fully integrated web-

based application to conduct remote experiments. This platform enables students to program an FPGA board 
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from any location and offers a range of options for testing their design. To facilitate these features, we 

implemented two modules, Basic_Remote_Lab and Advanced_Remote_Lab, that students can choose and 

incorporate into their designs. One of the novel options is the ability to acquire high-throughput data from an 

FPGA board during experiments. This novel option has been proven to be an effective approach for 

conducting experiments on embedded systems. To optimize the data transmission, we incorporated a 

hardware-based adaptive data compression technique into the proposed module to compress the acquired data 

before sending them to the server. Furthermore, the total utilization of hardware resources remains below 5% 

of the targeted FPGA board, demonstrating that the use of additional lab modules does not significantly 

impact student designs. 

There are several directions for extending the scope of this study. The primary direction is to 

implement the remaining feature, which enables users to access the graphical timing diagrams of the acquired 

signal. This feature is essential because it enhances the usability of our remote FPGA lab and makes it easier 

for users to comprehend and analyze the graphical timing diagrams of the acquired signal, thereby improving 

their overall experience and productivity. Other potential future research directions include enabling each 

user to program multiple FPGA boards. This capability is particularly valuable for experiments that involve 

device-to-device communication and parallel processing. Furthermore, we are seeking an architecture design 

for a remote FPGA lab that enables flexibility in moving experimental instances. This architecture is 

particularly advantageous for experiments involving signal acquisition from the sensor devices. This design 

should allow the seamless relocation of the experimental setup, allow users to gather data from different 

sensor locations, and facilitate experiments that require dynamic sensor placement. Future research directions 

will extend the current remote laboratory to include more use cases. 
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