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 Airports are vital for global connectivity. However, the increasing volume of 

air travel has presented significant challenges in airport managing. Accurate 

predictions of taxi-out times (TXOT) offer potential to enhance airport 

performance, minimize delays, optimize airline schedules, and enhance 

customer satisfaction. This paper focuses on developing a machine learning 

model to forecast taxi-out times at Mohammed V Airport. Historical taxiing 

data from various airports will be analyzed to predict taxi-out times based on 

diverse runway-stand combinations and congestion levels. we used neural 

network (NN), support vector machines (SVM), and regression tree (RT) in 

order to create a real-time model that forecasts TXOT and congestion levels 

for different runway-stand combinations. The result showed that the NN 

model outperformed other forecasting models when their performances are 

compared using the mean absolute percentage error, root mean square error 

as accuracy measures. 
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1. INTRODUCTION 

Airports play a pivotal role in the global transportation network, connecting people and goods to 

destinations worldwide. They serve as gateways to the world, facilitating international and domestic travel 

and trade. However, with the increasing volume of air travel and the growth of the aviation industry, 

managing congestion and ensuring safety have become major challenges for airport operators because the 

congestion can lead to delays, frustrated passengers, and even safety hazards, while safety concerns can put 

people and property at risk [1], [2]. 

The taxi-out times (TXOT) is the time that an aircraft spends on the ground from pushback to take-

off, is a critical factor in airport operations. Predicting taxi-out times accurately can have a significant impact 

on airport efficiency, reducing delays, and improving overall performance. Precise forecasting not only aids 

airlines in fine-tuning their schedules but also in minimizing fuel usage and enhancing customer satisfaction. 

Numerous airports and airline operators have adopted taxi-out time prediction systems, leveraging real-time 

data and predictive analytics to gauge the duration required for an aircraft to taxi from the gate to the runway. 

The importance of taxi-out time predictions is only likely to increase as air traffic continues to grow, making 

efficient and safe airport operations even more critical [3]. 

The aims of this study are to develop an accurate machine learning model to predict taxi-out times at 

Mohammed V (MED V) International Airports. TXOT refers to the time between an aircraft off block time 

and start taking off from the runway to do this, we will first analyze and examine historical taxiing data in 

many international airports to better understand and predict TXOT for different runway-stand combinations 

and levels of congestion. Next, we will pinpoint crucial processes that stand to gain from predictions driven 
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by data-driven machine learning. Third, we will determine the most effective machine learning method based 

on performance measures in order to propose a model that will allow us to identify the key factors that 

impact TXOT. 

 

 

2. LITERATURE REVIEW  

Previous studies reported in the literature have tried to predict the actual TXOT. We divided the 

previous studies in two dataset, the first one concerns statistical detection methods such as queuing models 

[4], statistical regression approaches [5], fuzzy rule-based systems [6]. The second one focus on feasible 

machine learning methods to deliver available time to fly, eliminate collision, to predict aircraft performance 

on taxiway and predict TXOT. Such as neural networks (NNs), multiple linear regression, stochastic gradient 

boosting and principal component regression [7]. Table 1 is a presentation of methods applied to several 

international airports worldwide.  

 

 

Table 1. Take-off and taxi-out variables 
Variable Designation 

Date Flight date 

Aircraft type There are three types of aircraft 
1: super heavy, 2: medium, 3: heavy 

AOBT Actual off block time 

START_ROUL Start Rolling 
JOINHP Waiting point P before runway 

CL_ALIGN Alignment Order 

START_ALIGN Start alignment 
END_ALIGN End alignment 

CL_DECOLL Take-off order 

ATOT Actual take off time 
DEPASSQ1 Time when the aircraft pass the waiting point Q1 of the runway 

DEPASSM1 Time when the aircraft pass the waiting point M1 of the runway 

DRWYT End take-off time 
QFU Runway orientation (waiting point before runway) 

1: S1, 2: R1 

DSTND Departure stand 

 

 

In Boston Logan Airport the researches proposed a model performance evaluation using the surface 

detection of the equipment, and also with comparing real data with predictions to improve the accuracy of 

TXOT estimation by detecting the main cause that influences rolling time, and it was about the queue length 

[8], [9]. Shumsky tried the construction of a probability model to predict taxi-out congestion during take-off 

in the first part. In the second part they tried the construction of a queueing management model using the 

services provided on runways [10]. Jordan et al. [11] used simple linear and log-linear functional forms in 

regression to determine the factors effect on taxi time. The predictive capacity of the models was verified on 

an independent dataset in order to identify and validate the relation between airport efficiency and aggregated 

factors related to traffic movement surfaces in Dallas/Fort Worth International Airport [11], [12]. Levy and 

Legge [13] proposes a statistical basic approach to predict TXOT at Atlanta Hartsfield Jackson Airport  

using airport surface detection equipment, model X (ASDE-X) in the model construction [13], [14]. 

Khanmohammadi et al. [15] exploit an artificial neural network (ANN) to predict TXOT at the airport, using 

independent variables such as weather conditions, runway configuration, and passenger numbers. The main 

challenge of this approach is managing nominal variables [15]. Zhang and Wang descript of predicting 

TXOT method based on unimpeded TXOT variable calculating, and then simulating the data using 

supervised learning methods [16], [17]. Chatterji and Zheng [18] used an artificial neural network to predict 

TXOT with surface management system absence that allows the scheduled take off times prediction in 

Dallas/Fort Worth Airport. They created a linear model with the same set of metrics as independent variables 

and the aircraft's time depart from the terminal as dependent variable [18]. Other research proposed a 

reinforcement learning model for predicting TXOT with an estimation based on a probabilistic workspace. 

The performance of predicting taxi time before take-off was examined on data available on aviation system 

performance measures for Detroit International, Washington Reagan National, Tampa International Airport 

(TPA), and John F. Kennedy International Airports [19]–[22]. In order to identify the factors affecting the 

variability of taxi times for arrivals and departures. Other work has proposed a model that combines layout 

and historical information on airport taxi times using multiple linear regression analysis, [5], [23]. Yin et al. 

[24], [25] proposed a model that use three regression methods (linear regression, support vector machine, and 

random forest) for predicting taxi-out time, compare the methods using performance indicators mean squared 
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error (MSE) and change the types of variables from a one-day simulation to a month-long dataset. To predict 

the delay (defined as the waiting time at the parking area or runway) of each departure, Atkin et al. [26] sed 

two steps. The feasibility of departure time assignment must be taken into account in the departure sequence. 

The characteristics of the real-world problem and the differences between it and similar problems are 

analyzed in depth. The differences include a nonlinear objective function with a non-convex component; the 

integration of two sequence-dependent separation problems; a separation that vary over time; and slot 

extension. Each of these factors contributed to the design of the resolution algorithm [26]. Herrema et al. [27] 

introduced three methods for predicting taxi times: lasso, multilayer perceptron, and neural networks. They 

proposed a novel machine learning approach that integrates viable machine learning techniques to forecast 

abnormal runway occupancy times using distinct radar data [27].  

 

 

3. METHOD  

3.1.  Aerodrome operation steps  

The paragraph describes a model that simulates aircraft traffic within an airport, specifically 

focusing on the movement of planes from the departure airport's pre-departure queue until they reach the 

designated parking area at the arrival airport. The model takes into account the various stages of queuing that 

occur during this process [28]. Figure 1 and Figure 2, which are referenced in the paragraph, provide visual 

representations of these queuing processes, offering a clearer understanding of how aircraft flow through the 

system: 

a. At the departure stand (pre-departure queuing to optimize network performance).  

b. At the departure runway (take-off queuing). 

c. In the arrival terminal airspace (arrival queuing in the arrival sequencing and metering area). 

 

 

 
 

Figure 1. Landing process steps 

 

 

 
 

Figure 2. Take-off process steps 

 

 

The landing and taxi-in processes are a discrete event model. They constitute various intervals of 

time, called events in systems modelling. As shown in the Figure 1, the aircraft arrival is anticipated with a 

queue arrival then it uses the runway to ensure landing. Afterwards, the aircraft needs to join the stand 

through the taxi-in process.  
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Figure 2 present that the taxi-out and take-off processes are also a discrete event model. The first 

one consists of taking a place in the departure queue, starting to roll after the off-block order and then 

standing at the runway, and finally rolling. The second process consists of respecting the take-off queue 

and then taking-off.  

 

3.2.  TXOT variables  

In order to utilize machine learning (ML) techniques, the TXOT response must first be obtained. 

The TXOT indicator serves the purpose of accurately predicting the average waiting time for outgoing flights 

during congested periods at the airport. Taking into account the provided timestamp data, TXOT is 

characterized as the time interval between the actual off-block time (AOBT) at a designated stand and the 

actual take-off time (ATOT) on a specific runway. 

Operational taxi data for aircraft are derived from recorded runway scheduler data supplied by MED 

V Airport. The dataset utilized in our simulation comprises taxi-in and taxi-out information collected over a 

period of 20 days, encompassing peak hours. Table 1 present the data related to take-off and taxi-out 

operations and Table 2 lists the input (potential) prediction variables related to the target variable AcTXOT 

that have been identified [17]. 

 

 

Table 2. Calculated prediction variables 
Variable Designation 

AcTXOT Actual taxi out time 

Unimpeded TXOT Unimpeded taxi out time 

Add TXOT/vol Additional taxi out time per flight 
Add TXOT/airport Additional taxi out time per airport 

Congestion level The level off traffic encountered by a departing flight Throughout the aircraft taxi-out stage 

Saturation level The maximum traffic level served under non-congested traffic conditions. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Data preparation  

The data preparation phase is composed of various tasks which are able to transform the initial raw 

aircraft operational taxi data into a final dataset. This includes merging and cleaning the taxi data. 

Additionally, the process involves selecting the relevant features that are crucial for accurately describing the 

variability in the dataset. The goal of feature selection can be categorized into three main areas: enhancing 

the prediction accuracy of the predictors, enabling faster computational performance and more efficient 

predictors, and gaining a deeper insight into the underlying process that produced the data. 

The source of the datasets utilized in this study is the Network Management Directorate 

Operations/Airports (NMDO) of the Civil Aviation Administration of Morocco (CMN), which were 

collected during August 2019. The data pertains to taxi-out records from a span of 20 days. However, certain 

flights lacked information regarding actual out or off times, leading to the absence of taxi time values. 

Consequently, these flights were omitted from the departure flight data analysis. Following this filtration 

process, a total of 340 departures were included in the study. Table 1 demonstrates the various variables that 

were assessed for every departure in order to make predictions regarding taxi time. Therefore, it is crucial to 

identify which features should be chosen from the vast amount of traffic data using methods for feature 

selection [29]. 

To enhance the predictive ability of the predictors, feature selection algorithms are utilized, which 

lead to more efficient and economical predictors, as well as a deeper comprehension of the underlying data-

generating process [30]. Typically, the Relief method is employed as a feature selection technique, which is 

applied during a pre-processing step prior to the learning of the model [31]. In order to identify the 

appropriate features to be chosen from the vast amount of traffic data, we employed a certain method, the 

results of which are presented in Figure 3. This figure illustrates the four crucial features that impact the 

TXOT prediction, namely congestion level, UTXOT, saturation level, and aircraft type. 

 

4.2.  Experimental setup  

We introduce three distinct algorithms to predict taxi-out time: neural network (NN), support vector 

machines (SVM), and regression tree (RT). In our work, the cross-validation method was used to train our 

models. Specifically, 85% of the data was allocated as input for SVM, ANN and RT models (training data) 

while the remaining 15% are intended to test the model (testing data). To ensure optimal accuracy in 

predicting the TXOT problem, we ran the SVM, ANN, and LR methods with specific parameters. 

a. For SVM method we employed the RBF kernel function and set the parameters to C=10, =0 and =0. To 

estimate these parameters, we followed the practical method proposed in [32] and [33]. 
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b. For ANN method, we trained a one feedforward network using the One Step Secant algorithm with four 

hidden layers consisting of 20 neurons each and set the number of epochs to 1,000. 

c. For RT method, we established the minimum number of leaf node observations at 1 and expanded the 

maximum depth of the tree until all leaves were pure.  

Finally, the algorithms are evaluated using various performance metrics, including R-squared, root mean 

square error (RMSE), MSE, mean absolute error (MAE), mean difference (MD), and standard deviation (Sd). 

 

 

 
 

Figure 3. Normalized feature selection evaluation of feasibility 

 

 

4.2.  Prediction methods performance 

Various methods could be used to predict future scenarios, such as linear regression or machine 

learning. In our paper we use the tree methods independently, the NN the SVR and the RT. We confirmed the 

significance of the database size, considering that we had only 340 observations. The results shown in  

Table 3 reveled that the NN model outperformed the two ML models, displaying an unexpectedly high level 

of accuracy. This tool can prove valuable in limited data situation, particularly in the airports sector. 

Furthermore, the integration of additional parameters or input factors can enhance the performance and 

accuracy of the results. 

 

 

Table 3. Prediction methods performance 
 SVM NN RT 

RMSE 2.9012 2.6798 3.0318 

MSE 8.4984 7.3100 9.2858 

MAE 2.3020 2.1456 2.4252 
MD -0.2689 -0.0111 -0.0386 

SD 2.8545 2.6423 2.9967 

Time execution 0.0423 1.3629 4.69 

 

 

Figures 4 to 6 exclusively present the distribution of data predicted and observed values of the SVM, 

NN and RT models. Figures 4(a), Figure5(a), and Figure 6(a) demonstrate that the NN and SVM models 

exhibit notably superior training performance than the RT model.  

Figures 4(b), Figure 5(b), and Figure 6(b) reveals that the points are scattered around the y=x line, 

indicating that the errors, characterized by positive and negative fluctuations, tend to counterbalance each 

other. This observation is further supported by the values in Table 3, which indicate that the mean differences 

in the taxi-out times between predicted and observed values are almost zero. 
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(a) (b) 

 

Figure 4. Distribution of data predicted and observed values of the SVM model (a) TXOT mean square error 

and (b) TXOT predicted/observed values 

 

 

  
(a) (b) 

 

Figure 5. Distribution of data predicted and observed values of the NN model (a) TXOT mean square error 

and (b) TXOT predicted/observed values 

 

 

  
(a) (b) 

 

Figure 6. Distribution of data predicted and observed values of the RT model (a) TXOT mean square error 

and (b) TXOT predicted/observed values 
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5. CONCLUSION 

This article focuses on utilizing machine learning techniques to predict the taxi-out time of 

Mohammed V air-port ft based on NN, RT, and SVM. The suggested methodology is integral to modeling 

and predicting airport surface operations, thereby facilitating the evaluation of airport efficiency. By 

employing advanced taxi performance indicators, optimal scheduling of take-off, landing, off-block, and in-

block times can be achieved, leading to increased airport capacity and efficiency, along with reduced fuel 

consumption and emissions. 

An exploration of historical data at ZSPD (ZS: airport country code; PD: Shanghai Pudong Airport) 

reveals interesting statistical characteristics of factors that influence the taxi-out time. The paper begins by 

introducing ML model for arrival and departure taxi operations. Furthermore, a set of indicators is formulated 

to serve as predictors in the machine learning algorithms. These indicators take into account how prediction 

variables influence taxi-out times. Subsequently, training experiments are conducted using one-day and one-

month samples to develop three machine learning models: NN, SVM and RT. Based on these trained models, 

validation experiments are performed to compare the prediction performance of all machine learning models. 

The computational results demonstrate that the NN model trained with a one-month sample outperforms the 

other models in terms of prediction accuracy. Surprisingly, the paper demonstrates that a machine learning 

model with lower training performance can still demonstrate superior prediction performance. 

This paper centers on the efficient machine learning method proposed for predicting the departure 

time of aircraft, taking into account the interactions between arrivals and departures. This method provides 

substantial benefits in airport ground movement performance analysis and has the potential to support 

airport decision-making processes, improving the overall efficiency and predictability of airport 

operations. 
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