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 Multipath channels continue to present challenges in wireless 
communication for both 5G and 6G networks. A multipath channel is a 
phenomenon in wireless communications where signals traverse from the 
sender to the receiver along various paths. This end occurs due to the 

reflection, diffraction, and refraction of signals of various objects and 
structures in the environment. Such pathways can cause symbol interference 
in the transmitted signal, leading to communication issues. To this end, our 
paper proposes the integration of three algorithms: teaching-learning-based 
optimization (TLBO), particle swarm optimization (PSO), and artificial 
neural networks (ANN). This combination effectively analyzes and 
stabilizes the transmission channel, minimizing symbol interference. We 
have developed, simulated, and evaluated this hybrid approach for multipath 
fading channels. We apply it to various coding schemes, including tail-biting 

convolutional code, turbo codes, low-density parity-check, and polar code. 
Additionally, we have explored various decoding methods such as Viterbi, 
maximum logarithmic maximum a posteriori, minimum sum, and cyclic 
redundancy check soft cancellation list. Our study encompasses new channel 
equalization schemes and coding gains derived from simulations and 
mathematical analysis. Our proposed method significantly enhances channel 
equalization, reducing interference and improving error correction in 
wireless communication systems. 
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1. INTRODUCTION 

As we delve into the ever-evolving landscape of wireless communication networks, pursuing higher 

data rates, enhanced reliability, and the ability to support an increasing number of services has led us beyond the 

realms of 5G and 6G networks [1]. This relentless march toward more advanced communication technologies 

has unearthed numerous opportunities and challenges, and one of the core challenges lies in dealing with 

multipath channels. Multipath channels are a ubiquitous feature of wireless communication, arising from the 

complex interplay of signals as they bounce off, diffract, and refract through various environmental obstacles 

and structures. The consequence of this phenomenon is the existence of multiple signal paths, each taking a 

distinct route from the transmitter to the receiver. This multipath propagation engenders interference between 

the symbols in the transmitted signal, leading to a phenomenon known as inter-symbol interference (ISI). ISI 

poses a significant obstacle to achieving high data transmission rates, especially in scenarios where signals are 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Advanced hybrid algorithms for precise multipath channel estimation in … (Kahina Rekkal) 

1655 

subject to severe multipath propagation, such as in urban or indoor environments. Navigating the intricacies of 

multipath channels and mitigating the challenges posed by ISI require innovative solutions that extend beyond 

the capabilities of 5G and 6G networks. 

Researchers and technology suppliers have been motivated to discover innovative methods to tackle 

these challenges, as they substantially impact wireless communication quality and the radio spectrum's effective 

utilization. The related works of researchers, including Sattiraju et al. [2], examined the performance of deep 
learning (DL) architectures compared to the existing least-square (LS) channel estimation used in C-V2X. The 

results of these studies show that the suggested DL architecture works better than the old C-V2X channel 

estimation methods, especially when mobile speeds are high. Other researchers, including Mohammed et al. [3], 

conducted studies evaluating the effectiveness of deep learning-based channel estimation (CE) in comparison to 

conventional techniques such as least-square (LS) and minimal mean-square error (MMSE) estimators. Vidhya 

and Kumar [4] proposed a hybrid methodology that integrates particle swarm optimization (PSO) and genetic 

algorithms (GA) to address the challenge of channel estimation in multiple-input, multiple-output orthogonal 

frequency division multiplexing (MIMO-OFDM) systems. Kadhim and Sallomi [5] proposed methodology 

utilizes the sparsity of RIS channels to reduce the training complexity of the CNN model. Additionally, the 

study employs PSO to optimize the hyperparameters of the CNN model. The simulation results indicate that the 

suggested method achieves accurate channel estimation at a significantly reduced computational cost compared 

to earlier methods. 
Nahar et al. [6] introduced a new method for channel estimation (CE) in multi-carrier wireless 

communication systems, specifically in orthogonal frequency division multiplexing (OFDM) systems and code 

division multiple access (CDMA). The proposed approach combines the local search (LS) technique with the 

particle swarm optimization algorithm. The simulation showed that the proposed CE of the MIMO-OFDM 

system can significantly result in better BER performance compared with other techniques. Arora and Chawla 

[7] combined two optimization techniques, the PSO and moth flame optimization (MFO) method, used to 

optimize the performance rate in the same field. Sohail et al. [8] researched the precise and prompt collection of 

extensive channel state information (CSI). They addressed an optimization challenge that can be tackled using 

heuristic optimization methods such as genetic algorithms, particle swarm optimization, and differential 

evolution. 

Rahhal [9] utilized the PSO algorithm to identify the most optimal cluster members in a wireless 
sensor network (WSN) based on a fitness function generated from the channel condition. This method 

demonstrates the ability to rapidly and expeditiously achieve optimal cluster formation. Gondela et al. [10] 

proposed a method for multiuser detection (MUD) in direct sequence-code division multiple access  

(DS-CDMA) systems operating over generalized-K (GK) fading channels. The strategy utilizes the teaching-

learning-based optimization algorithm (TLBO) with a two-stage initialization (TSI) approach. This approach 

demonstrates notable improvements in performance as the signal-to-noise ratio (SNR) and diversity order grow, 

particularly in the presence of heavy-tailed impulsive noise. Ouali et al. [11] introduced a filter that consists of 

two layers: a type2-fuzzy autoregressive filter and the training of membership function parameters. This filter 

operates as a feedback mechanism. The second layer employs a teaching learning-based optimization algorithm 

to adjust the settings of the type2-fuzzy adaptive filter. This adjustment aims to minimize the criterion function 

and achieve signal reconstruction. The method surpasses denoising in terms of noise power levels and standards 
views. 

In this paper, we introduce an advanced hybrid algorithm that synergizes the capabilities of teaching-

learning-based optimization (TLBO), particle swarm optimization (PSO), and artificial neural networks (ANN) 

for the precise estimation of multipath fading channel characteristics in wireless communication systems. This 

novel methodology aims to optimize the parameter estimation of channel filters, significantly enhancing the 

equalization process and effectively mitigating symbol interference in data transmission. Our method uses the 

strong optimization abilities of TLBO and PSO to fine-tune the weights and biases of ANNs. This proposition 

makes finding and fixing problems in wireless transmission signals easier. We rigorously evaluate the efficacy 

of this hybrid algorithm using diverse datasets featuring signals encoded with various error-correcting codes, 

such as turbo codes, low-density parity checks (LDPC), and polar encoders. These tests are conducted under 

various channel conditions to ensure a comprehensive analysis. 

The empirical results demonstrate that our method performs better than several contemporary 
techniques, particularly precision and operational efficiency. This result is significant for new 5G and 6G 

networks. Our study shows that hybrid optimization strategies can help a lot with the complex problems of 

interference and symbol distortion in wireless signal transmission. This innovative approach opens new avenues 

for enhancing communication reliability and quality in advanced telecommunication systems. The subsequent 

sections of the paper are organized in the following manner: section 2 introduces sophisticated channel-coding 

methods. Section 3 outlines the research methodology employed in this study. Section 4 shows the simulation 

and results, comparing various situations. Finally, section 5 provides the conclusion. 
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2. ADVANCED CHANNEL CODING SCHEMES 

Advanced channel coding is a pivotal strategy for ensuring reliable and efficient data transmission 

across the air interface in 5G and 6G networks. This technique plays a crucial role in mitigating the impact of 

noise, interference, and other forms of impairment that may compromise the integrity of transmitted data. By 

integrating redundant information into the data stream, channel coding significantly reduces the likelihood of 

data corruption. Implementing sophisticated channel coding methodologies is indispensable to augment the air 

interface performance in 5G and 6G networks. Notably, high-tech error-correction codes like Polar codes and 
low-density parity-check (LDPC) codes have shown to be very useful in modern communication systems. 

These coding strategies facilitate the high-speed, low-latency connectivity essential for supporting emerging 

applications and use cases within 5G and 6G network environments. Enhancing data transfer reliability and 

efficiency through these methods is critical in advancing next-generation network technologies. 

 

2.1.  TBCC codes 

In this study, we investigate using a specific error-correcting code within digital communication 

systems: the tail-biting convolutional code (TBCC). TBCC is a subset of convolutional codes, which are 

pivotal in adding redundancy to transmitted data by encoding the information into a sequence of symbols 

[12]. Decoding these codes can be executed through several methods, with the Viterbi algorithm being a 

prominent one. A trellis diagram is used in this algorithm to figure out the path metric value, which makes 

decoding convolutional codes easier. 
Adiono et al. [13] proposed a VLSI architecture for the reversed-trellis TBCC (RT-TBCC) method, 

highlighting further advancements in this field. This innovative approach revises the traditional direct-

terminating maximum-likelihood decoding procedure to enhance the correction rate. The proposed 

architecture is more computationally efficient and resource-effective than existing direct-terminating 

maximum likelihood (ML) decoders. This architecture is evaluated through simulations, system-on-chip 

implementations, and field programmable gate array (FPGA) synthesis. The focal point of this research is a 

comparison of convolutional codes, specifically the TBCC, with a memory order of 𝑚 = 16, which adheres 

to the LTE standards. 

 

2.2.  Turbo codes 
In 1993, Claude Berrou and his colleagues introduced turbo codes, a revolutionary class of error 

correction codes. These codes are notable for their capability to approach Shannon's theoretical channel 

capacity limit with an unprecedented proximity of just 0.5 decibels (dB). This groundbreaking development 

in information theory marked a significant step forward in achieving efficient data transmission with minimal 

error rates. Turbo codes employ a dual structure of convolutional encoders, which is pivotal in forming these 

codes. The decoding process of turbo codes is accomplished iteratively, utilizing the maximum a posteriori 

probability (MAP) algorithm. These codes stand out for their recursive nature, allowing prior outputs and the 

current input sequence to influence the output. This recursive output mechanism enhances the robustness and 

efficiency of the codes, particularly in scenarios involving longer block lengths. 

The exceptional performance of turbo codes has led to their widespread adoption in various 

communication sectors. Their application ranges from deep space exploration missions, where reliable long-

distance communication is paramount, to terrestrial mobile communications, including 3G and 4G networks. 
Turbo codes' high efficiency and low error rates make them an indispensable tool in these areas [14]. Recent 

research has focused on developing and implementing turbo-coding in 5G technology. A notable project 

involved designing and configuring a Turbo coder tailored explicitly for 5G networks [15]. This project 

utilized advanced hardware description and verification tools such as Tanner, Verilog HDL (Xilinx), and 

ModelSim for the individual configuration of the encoder and decoder. Implementing turbo coding is pivotal 

in developing 5G technology, which demands high-speed, low-latency communication with minimal error 

rates. The researchers' success in significantly enhancing data transmission reliability plays a crucial role in 

the evolution of 5G networks, promising to revolutionize how we communicate and access information. 

 

2.3.  LDPC code 

LDPC codes, introduced in the 1960s [16], represent a class of linear error-correcting codes 
characterized by low encoding and decoding complexity. These codes are fundamentally based on sparse 

matrices, allowing for efficient error correction in various communication channels, including wireless and 

optical networks. The efficiency of LDPC codes has been instrumental in their integration into the 5G 

network infrastructure. Notably, the 5G LDPC code, categorized as a quasi-cyclic LDPC (QC-LDPC) code, 

is defined by two base graphs and is anticipated to play a significant role in the technological framework of 

6G networks [17]. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Advanced hybrid algorithms for precise multipath channel estimation in … (Kahina Rekkal) 

1657 

Another variant, the rate-compatible raptor-like quasi-cyclic low-density parity-check (RL-QC-

LDPC) codes, offers remarkable performance and flexibility. Due to their enhanced error correction 

capabilities, these codes have been widely accepted in 5G new radio (5G-NR) technical specifications [18]. 

The research by Zenkouar et al. [19] used the Group Shuffled Belief Propagation (GSBP) method to make 

the GF(q) LDPC encoder and decoder work on an FPGA. These non-binary LDPC codes work exceptionally 

well with short block lengths and have error correction rates close to the Shannon limit over GF (16). They 
were modeled using VHSIC hardware description language and ModelSim 6.5. 

The study of Ouakili et al. [20] introduced a new LDPC decoding algorithm combining normalized 

min-sum and modified-weighted bit-flipping (NMSMWBF), exhibiting superior performance over traditional 

NMS by 0.25 dB in bit error rate (BER) over AWGN channels. Razi et al. [21] also came up with two better 

hard-decision algorithms: Adaptive gradient descent bit-flipping (AGDBF) and adaptive reliability ratio 

weighted GDBF (ARRWGDBF). When implemented in real-time on digital signal processors, these work 

better than soft-decision algorithms, achieving faster convergence and less processing time and memory 

usage. For comparative purposes, this work examined an LDPC code based on 5G requirements [22]. The 

decoding process employs the Min-Sum algorithm, highlighting its efficiency in terms of error correction 

within the 5G network framework. 

 

2.4.  Polar codes 
Polar codes, introduced by Arikan [23], represent a class of linear block codes that utilize a unique 

coding scheme. This scheme involves transforming a set of independent and identically distributed (iid) bit 

channels into channels with varying error rates, leveraging their polarizing properties. Due to their high-

performance capabilities, these codes are increasingly recognized as promising candidates for data 

transmission in emerging 6G networks [24], [25]. 

The systematic turbo-polar code (STPC) with an early termination (ET) mechanism that Hamad  

et al. [26] proposed is a notable development in the field of polar codes. This mechanism employs an ideal 

scaling factor (SF) estimation technique, which has been shown to enhance the BER performance of STPC. 

The SF estimation leads to a 1 dB improvement in BER over the traditional systematic polar code and a 0.3 

dB improvement with a 64-bit code. The novel strategy involves using the estimated SF value at the second 

component decoder and the decoded frozen bits as a criterion for stopping each decoding iteration. This 
approach reduces the average number of iterations by half without increasing the system's complexity and 

achieves BER results comparable to codes with a fixed number of iterations. The cyclic redundancy check 

successive cancellation list (CRC-SCL) decoding method for Polar codes [27]–[29] was used for 

comparisons of the CRC-SCL method, with a list size of 𝐿 =16 and a 16-bit CRC. 

 

 

3. SYSTEM MODEL 

Suggesting a hybrid method that integrates TLBO, PSO, and ANN to estimate the parameters of 

channel filters. This approach aims to enhance equalization and minimize inter-symbol interference in 

multipath fading channels. This technique seeks to exploit the advantages of each method: TLBO for 

producing a robust initial estimate, PSO for optimizing the solution using a simulated social behavior model, 
and ANN for refining the parameters with its adaptive learning capabilities. Our model consists of multiple 

components, each playing a distinct role in addressing the challenges posed by multipath fading channels, 

thereby improving the system's overall performance. 

 

3.1.  Multipath fading channel model 

The multipath fading channel can be modeled as:  

 

𝑦(𝑡) = ∑ ℎ𝑖 . 𝑥(𝑡 − 𝜏𝑖) + 𝑛(𝑡)𝑁
𝑖=1   (1) 

 

where 𝑦(𝑡) is the received signal, 𝑥(𝑡) is the transmitted signal, ℎ𝑖 are the channel coefficients for the 𝑖−𝑡ℎ 

path, 𝑛(𝑡) is the noise in the channel, and 𝑁 is the number of paths. 

 

3.2.  ANN model for parameter estimation 

The ANN is used to estimate the channel parameters like: 

 

ℎ(𝑡) =  ∑ 𝑎𝑖
𝑁
𝑖=1 𝛿(𝑡 − 𝜏𝑖)  (2) 

 

Based on the received signal: 
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𝑦(𝑡) = (𝑥(𝑡) ∗ ℎ(𝑡)) + 𝑛(𝑡) (3) 

 
The ANN might be structured as follows: 

 Input layer: Takes in features derived from 𝑦(𝑡). These features could be various statistical properties or 

transformations of the received signal, such as its power spectral density, autocorrelation, or any other 

feature that captures the essence of the fading channel. Let's denote the input features as a vector 𝑥 ∈  𝑅𝑛 

and 𝑛 is the number of input features. 

 Hidden layers: Multiple layers, each with a nonlinear activation function (like rectified linear unit (ReLU) 

or sigmoid) denoted by 𝜎, is then applied: 

 

𝑎(𝑙) = 𝜎(𝑍(𝑙))   (4) 

 

Consider a network with 𝐿 hidden layers. Each layer 𝑙 applies a linear transformation followed by a 

nonlinear activation function to its input. The linear transformation in layer 𝑙 can be represented as:  

 

z(l) =  W(l)a(l−1) + b(l)   (5) 

 

where 𝑊(𝑙) and 𝑏(𝑙) are the weights and biases of layer 𝑙 and 𝑎(𝑙−1) is the output from the previous layer 

(or the input 𝑥 for 𝑙 = 1). 

 Output layer: Provides estimates of the channel parameters. 

 

3.3.  PSO-TLBO hybrid optimization 

The TLBO-PSO hybrid algorithm optimizes the weights and biases of the ANN. This process can be 
abstracted as: 

a. Initialize a population of candidate solutions (both teachers in TLBO and particles in PSO). 

b. Evaluate the fitness of each candidate (how well the ANN with those weights or biases estimates the 

channel parameters). 

c. Apply TLBO and PSO operators to update candidates: 

 TLBO: Based on the teaching phase and learning phase. 

 PSO: Update the velocity and position of particles based on personal and global best positions. 

d. Iterate until a stopping criterion is met (like a maximum number of iterations or a desired error threshold). 

 

3.4.  Equalization model 
Once the channel parameters are estimated, they can be used in an equalization algorithm to mitigate 

the effects of multipath fading. A new, widely linear equalizer has been proposed by Petitpied et al. [30]. A 

common approach is using a linear or decision feedback equalizer. For example, a linear equalizer could be 

modeled as (6): 

 

𝑥(t) = ∑ 𝑤𝑗
𝑀
𝑗=1 . 𝑦(𝑡 − 𝑗)   (6) 

 

where 𝑥(t) is the estimated transmitted signal, 𝑤𝑗 are the equalizer coefficients, and 𝑀 is the number of 

coefficients in the equalizer. 

 
The hybrid PSO-TLBO-ANN pseudo-code has been applied in the manner shown as follows: 
Input: Channel characteristics, SNR, Population size, Max Iterations, ANN architecture 

Output: Optimized ANN weights, Performance metric 

(*Initialization*) 

Initialize the ANN with a given architecture and random weights 

Initialize the population of particles (weights) and their velocities 

Define PSO parameters: cognitive coefficient (c1), social coefficient (c2), and inertia 

weight (w) 

(*Optimization Loop*) 

While (generation count < Max Iterations) do: 

    (*PSO Phase*) 

    For each particle do: 

        Calculate the particle's fitness using the ANN and channel model 

        Update the particle's personal best if the current fitness is better 

        Update the global best if the current fitness is better than the global best 

    End For 

    For each particle do: 

        Update the particle's velocity based on its personal best, global best, and current 
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velocity 

        Update the particle's position based on the new velocity 

        Apply the new weights to the ANN 

        Calculate the new fitness using the ANN and channel model 

        Update the personal and global bests if the new fitness is better 

    End For 

 (*Teacher Phase (TLBO)*)  

    For each particle (as a learner) do: 

        If (particle's performance is better than the mean performance of the population) 

then: 

            Update the particle's position towards the best solution (teacher) 

        EndIf 

    End For 

    (*Learner Phase (TLBO)*) 

    For each particle do: 

        Select another particle randomly 

        If (selected particle's performance is better) then: 

            Move the particle towards the selected particle 

        Else 

            Move the particle away from the selected particle 

        EndIf 

    End For 

    (*ANN Training Phase*) 

    Train the ANN using the best weights found by the hybrid PSO-TLBO 

    Evaluate the ANN's performance on a validation set 

    (*Update PSO parameters based on feedback*)  

    Adjust the PSO parameters (c1, c2, w) if necessary, based on the performance 

    (*Increment the generation count*)  

    generation count = generation count + 1 

End While 

(*Output the best solution*) 

Return the best set of weights and the corresponding performance metric 

 

The transmission chain in a multipath channel is described in several steps, as follows: 

The transmission mechanism in the multipath channel depicted in Figure 1 can be decomposed into 

numerous sequential steps: 

 Data source: This is the starting point where the data to be transmitted is generated. 

 Channel encoding: Techniques like LDPC or Polar coding encode the data for error correction 

capabilities. 

 Modulator: The encoded data is then modulated using a scheme such as quadrature phase shift keying 

(QPSK) or quadrature amplitude modulation (QAM) to prepare it for transmission over the channel. 

 Multipath channel: The modulated signal travels through a channel with multiple paths due to reflections 

and scattering, which is typical in wireless communication environments. 

 Channel estimation: Techniques PSO-TLBO-ANN are used to estimate the channel characteristics, which 

is critical for the correct data reception. 

 QPSK demodulator: The signal is then demodulated from the QPSK scheme back to a form that can be 

decoded. 

 Channel decoding: The demodulated data goes through channel decoding using techniques like Viterbi, 

max-log-MAP, min-sum, SC, or CRC-SCL to correct any errors from the transmission process. 

 Equalization: This stage makes up for the interference and signal distortion that the multipath channel 

causes. 

 Data sink: The data is received and processed at the destination. 
The block diagram in Figure 2 involves a sophisticated hybrid algorithm combining particle swarm 

optimization, teaching-learning-based optimization, and artificial neural networks to enhance the 

performance of filters in addressing multipath fading channel issues in wireless transmission. The description 
of this process is as follows: 

a. Initialization 

The process begins by generating an initial population of particles, each representing a potential 

solution, and placing them randomly within the solution space. Initial settings of the algorithm are defined, 

including the size of the population, the number of iterations, and parameters specific to the PSO, TLBO 

methods, and the ANN configuration. 

b. Performance assessment using TLBO 

Each particle's performance is then evaluated. This end uses the TLBO method, which enhances the 

particle's position in the solution space based on a teaching-learning paradigm. Concurrently, the ANN 

method predicts potential damage locations in the wireless transmission signal. 
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c. Selection of the best particles 

Based on their assessed performances, the best-performing particles are selected for participation in 

the subsequent iteration. 

d. Position update using PSO and performance reassessment 

The chosen particles then undergo a position update using the PSO technique. This step optimizes 

their placement in the solution space, aiming for a better approximation. After updating their positions, their 

performances are reassessed using the TLBO and ANN methods. This reassessment focuses again on 
predicting potential damage locations in the signal. 

e. Iterative optimization 

These steps are iteratively repeated for a predetermined number of iterations. The algorithm refines 

the solutions during each iteration, gradually converging towards an optimal state. 

f. Final outcome 

Upon reaching the optimal state, the algorithm yields the most favorable positions for identifying 

damage in the wireless transmission signal. It also provides insights into its overall performance, mainly 

focusing on the speed and accuracy with which it can identify damages caused by the noisy channel. 

 

 

 
 

Figure 1. Transmission chain in a multipath channel 

 

 

 
 

Figure 2. Block diagram of PSO-TLBO-ANN proposed 

 

 

The hybrid PSO-TLBO-ANN method synergistically integrates the key strengths of each approach 

PSO's efficient optimization capability, TLBO's learning-based enhancement, and ANN's accurate prediction 

ability to enhance the reliability and efficacy of signal transmission in a noisy, multipath fading channel. 

Incorporating particle swarm optimization facilitates a flexible and responsive optimization procedure, 

enhancing the system's ability to traverse intricate solution domains efficiently. Additionally, the integration 

Generate an initial population of particles. 

Evaluation of particles using the TLBO and ANN. 

Selection of the best particles  

(Intermediate generation). 

Update the positions of particles by PSO. Evaluation of particles using the TLBO and ANN. 

Positions of 

particles >= Max 

Result: the optimal position of damage in the wireless 

transmission signal: 5G, 6G.  

No 
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of TLBO strengthens the learning component, guaranteeing continual improvement of the system over time 

and utilizing ANN to aid in generating exact predictions, which is crucial for dependable signal processing in 

demanding conditions. These combined qualities make the hybrid technique particularly suited for handling 

the subtleties of multipath fading channels, where traditional methods might fall short. 

 

 

4. RESULTS AND DISCUSSION  

This study evaluates the Polar, Turbo, LDPC, and TBCC codes using multipath fading and additive 

white Gaussian noise (AWGN) channels, together with the eight-phase shift keying (8PSK) modulation 

scheme, as described in Section 2. This evaluation aims to determine each coding scheme's efficacy in 

preserving signal integrity in difficult channel conditions. Table 1 presents a comprehensive list of the 

parameters utilized, offering a clear overview of the experimental configuration and facilitating a thorough 

comparison of the various coding schemes. The evaluation findings will provide valuable insights into 

communication scenarios' most effective coding approach, particularly problems such as AWGN and 

multipath fading. 

 

 

Table 1. Simulation parameters 
Parameters Specifications 

Channel AWGN + Multipath 

Modulation 8PSK, 

Information block length (bits) 1024 bits 

Code rate 2/3 

Coding schemes TBCC Turbo LDPC POLAR 

Decoding algorithm Viterbi Max-log-MAP 

(20 iteration) 

min-sum 

(50 iterations) 

CRC-SCL 16 

Channel estimation PSO-TLBO-ANN 

Channel equalizer ANN-TLBO-PSO 

 

 

The results of our comprehensive simulation study are meticulously presented in Figures 3 

through Figure 8, illustrating the bit error rate (BER) as a fun ction of the signal to noise ratio (SNR). This 

study demonstrates a significant enhancement in the performance of various coding methods, notably 

polar, turbo, low-density parity-check (LDPC), and tail-biting convolutional codes (TBCC) when they are 
integrated with a sophisticated hybrid algorithm combining particle swarm optimization, teaching-

learning-based optimization, and artificial neural networks. This hybrid approach, specifically designed to 

estimate multipath channel effects, showcases an exceptional improvement in coding efficiency, 

surpassing other traditional coding methods by approximately 0.5 decibels (dB), as detailed in Figure 4 to 

Figure 8. 

In particular, Figure 3 highlights the superior efficacy of polar codes when combined with cyclic 

redundancy check successive cancellation list (CRC-SCL) decoders for a block length of K=1024 bits. This 

setup outperforms almost all other coding schemes, achieving gains of 0.3 dB over turbo codes, 0.4 dB over 

LDPC codes, and a remarkable 0.7 dB over TBCC. The graph also reveals that turbo codes have a slight edge 

over TBCC, and they marginally surpass LDPC codes by about 0.1 dB.  

Figure 4 through Figure 8 focus on the innovative hybrid PSO-TLBO-ANN algorithms employed to 
predict the behavior of additive white gaussian noise (AWGN) channels affected by multipath fading. These 

algorithms were tested using signals encoded with error-correcting codes, including TBCC, Turbo codes, 

LDPC, and Polar encoders. According to Figure 4, when applied to polar codes, the hybrid algorithm 

demonstrates superior performance over the turbo, LDPC, and TBCC codes, with gains of 0.3 dB, 0.4 dB, 

and 0.8 dB, respectively. The simulations reveal a marginal yet noteworthy improvement in the performance 

of turbo codes compared to LDPC codes, with a gain of 0.7 dB over TBCC. The enhanced performance can 

be attributed to the TLBO and PSO strategies, which optimize the positioning of particles within the solution 

space, coupled with using ANNs to accurately predict potential signal impairments, such as damages or 

distortions, in wireless transmissions. Our findings suggest that employing robust encoding methods like 

Polar, TLBC, and Turbo codes can be highly effective for 5G and 6G communication technologies, 

particularly in mitigating issues related to noisy channels.  

The hybrid PSO-TLBO-ANN algorithm, as evidenced by our simulations, demonstrates superior 
capability in detecting and compensating for various transmission impairments, including intersymbol 

interference, typically induced by noisy communication channels. This advancement marks a significant 

step forward in enhancing the reliability and efficiency of next-generation wireless communication 

systems. 
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Figure 3. Comparison of Polar codes, Turbo codes, 

LDPC, and TBCC in multipath fading channels at a 

rate of 2/3 

 

 

 

Figure 4. Comparison of error-correcting codes 

using hybrid PSO-TLBO-ANN estimation in 

multipath fading environments 

  
 

Figure 5. Comparison of Polar codes and Polar codes 

with hybrid PSO-TLBO-ANN estimation in 

multipath fading environments 

 

 

 
Figure 6. Comparison of Turbo codes and Turbo 

codes with hybrid PSO-TLBO-ANN estimation in 

multipath fading environments 

  
 

Figure 7. Comparison of LDPC codes and LDPC 

codes with hybrid PSO-TLBO-ANN estimation in 

multipath fading environments 

 

Figure 8. Comparison of TBCC codes and TBCC 

codes with hybrid PSO-TLBO-ANN estimation in 

multipath fading environments 
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5. CONCLUSION 

This study presents the outcomes of a novel hybrid methodology that synergistically integrates the 

strengths of teaching-learning-based optimization, particle swarm optimization, and artificial neural network 

techniques. This innovative hybrid approach adeptly compensates for the limitations of each method by 

leveraging their collective advantages. ANNs excel in discerning complex patterns and delivering precise 

predictions. In contrast, TLBO and PSO are renowned for their efficiency in swiftly identifying optimal 
solutions within a given solution space. This amalgamation enhances the accuracy in detecting transmission 

signal impairments. The algorithm’s adaptability is further demonstrated by its successful application to 

signals encoded with various error-correcting codes, including TBCC, turbo codes, LDPC codes, and Polar 

encoders. This versatility suggests that the algorithm is not confined to a single signal type. In practical 

terms, the hybrid PSO-TLBO-ANN approach significantly boosts the performance of Polar, Turbo, LDPC, 

and TBCC codes in multipath channel estimations. It surpasses other coding techniques by approximately  

0.5 dB. More specifically, the hybrid model yields a performance enhancement of 0.3 dB for Polar codes,  

0.4 dB for LDPC codes, and 0.8 dB for TBCC compared to the Turbo codes. Conclusively, this research 

paves the way for more reliable and precise communication in 5G and 6G wireless networks. The proposed 

algorithm effectively mitigates the detrimental effects of noisy channels, marking a significant stride in 

advancing wireless communication technologies. 
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