
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 2, April 2024, pp. 1720~1729

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i2.pp1720-1729 1720

Journal homepage: http://ijece.iaescore.com

A systematic review of in-memory database over multi-tenancy

Arpita Shah, Nikita Bhatt
Chandubhai S. Patel Institute of Technology, Faculty of Technology and Engineering, Charotar University of Science and Technology,

Gujarat, India

Article Info ABSTRACT

Article history:

Received Aug 12, 2023

Revised Oct 17, 2023

Accepted Oct 20, 2023

 The significant cost and time are essential to obtain a comprehensive

response, the response time to a query across a peer-to-peer database is one

of the most challenging issues. This is particularly exact when dealing with

large-scale data processing, where the traditional approach of processing

data on a single machine may not be sufficient. The need for a scalable,

reliable, and secure data processing system is becoming increasingly

important. Managing a single in-memory database instance for multiple

tenants is often easier than managing separate databases for each tenant. The

research work is focused on scalability with multi-tenancy and more

efficiency with a faster querying performance using in-memory database

approach. We compare the performance of a row-oriented approach and

column-oriented approach on our benchmark human resources (HR) schema

using Oracle TimesTen in-memory database. Also, we captured some of the

key advantages on optimization dimension(s) are the traditional approach,

late-materialization, compression and invisible join on column-store

(c-store) and row-base. When compression and late materialization are

enabled in a query set; it improves the overall performance of query sets. In

particular, the paper aims to elucidate the motivations behind multi-tenant

application requirements concerning the database engine and highlight major

designs over in-memory database for the tenancy approach on cloud.

Keywords:

Cloud computing

Column-store

In-memory database

Multi-tenancy

Relational database query

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arpita Shah

Chandubhai S. Patel Institute of Technology, Faculty of Technology and Engineering, Charotar University

of Science and Technology

Changa, Gujarat 388421, India

Email: arpitashah.ce@charusat.ac.in

1. INTRODUCTION

Traditional enterprise applications are now running towards the host-based and on-demand model

instead of on-premise deployment. On the other hand, service providers can automate tasks by consolidating

tenants onto a single machine referred to as multi-tenant. On the database level, numbers of read and write

queries are balanced to perform placement over various in-memory platforms to support row and column-

oriented database(s) [1]. On other hands a dictionary-based compression, which support the architecture of

multiple users. Also, multi-tenancy can be a core of cloud computing which could be solved with the same

resources or other software applications. Multi-tenancy also added a component of security in which, to

guarantee the isolation of data from multiple users. Magalhaes et al. [2] have analyzed log data distribution in a

hosted multi-tenant application environment like Microsoft Azure. There is a challenge to consolidate data of

multiple tenants over the same database management system (DBMS) to reduce the cost of operation for profit

maximization. As a response to advancements in computer main memory technology and its affordability, the

exploration of in-memory databases (IMDB) commenced early 80s [3]. The central focus of this research is to

analyses on the capabilities of computer main memory by hosting the entire database, aiming to achieve rapid

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 A systematic review of in-memory database over multi-tenancy … (Arpita Shah)

1721

access and facilitate real-time analysis. This work explores the significance of integrity in the area of in-memory

databases for tenant placement [4]; which can be used as public and private cloud services in the future. Within

the database layer, multi-tenancy can be leveraged to enable multiple customers, or tenants, to utilize a single

database. Multi-tenancy can materialize primarily at the database layer within the software as a service

(SaaS) application [5]. This implies that customers leverage a singular shared application and database

instance, thereby efficiently utilizing the same hardware resources. Simultaneously, the tenant remains

completely isolated from one another.

Following major schemas [6]–[8] are highlighted multi-tenancies that are applicable for database

sharing among tenants are concerned. Separate databases, application code and computing resources are

distributed among all the tenants that are sharing a server. Figure 1 shows the multi-tenancy database

architecture. In Figure 1(a) each tenant/user consists of its own set of data which is sensibly inaccessible from

all other tenants’ data. The DBMS ensures security measures that prevent any undefined or deliberate access

by one tenant to the data of other tenant.

Shared database, separate schemas-an alternative depicted in Figure 1(b) involves consolidating

multiple tenants within a single database. Each tenant holds a distinct collection of tables, organized into a

schema exclusively for that tenant's needs. Shared database, shared schema-a third method shown in

Figure 1(c) uses a shared database along with a set of tables to accommodate huge amounts of data from

several tenants. A table aggregates records from multiple tenants and is stored in any order. The TenantID

column is used to associate each record with the appropriate tenant. In multi-tenant design, there are many

approaches to designing multi-tenancy database models. Table 1 shows the suitable pattern for designing a

multi-tenancy database.

(a) (b) (c)

Figure 1. Multi-tenancy database architecture (a) separate databases (with the tenant) (b) shared databases,

separate schemas and (c) shared database, shared schema

Table 1. Pattern for designing multi-tenancy database
Approach Security pattern Configurable pattern Scalability pattern

Separate databases, separate
schema

Protected database tables
Renter data encryption

Reliable database connections

Customized
columns

Single tenant scale-out

Shared database, shared
schema

Reliable database connections
Occupant view filter

Renter data encryption

Pre-assigned fields
Name-value pairs

Tenant-based parallel
Partitioning

Shared database, isolated
schemas

Reliable database connections
Protected database tables

Renter data encryption

Customized
columns

Tenant-based parallel
partitioning

To development tenancy model is also to be analyzed. The following criteria are used to assess the

general tenancy model [9]–[11]. In a single-tenant system, each customer (tenant) manages a dedicated

database instance hosted on a dedicated physical server. In such a system, the service provider's maintenance

expenses can be substantial, even when tenants do not use their systems continuously or at full capacity.

Conversely, the multi-tenancy model allows multiple customers to share resources on a single machine. This

approach, facilitated by an integrated administration framework, enhances system management efficiency

and maximizes resource utilization. The technique was initially embraced on a significant scale by the SaaS

provider Salesforce.com [12], [13]. Multi-tenancy can be accomplished through three distinct methods, each

varying in granularity: shared machine, shared database instance, and shared table. The choice of approach

depends on the nature of the extensive application [14], [15]. Table 2 depicts that in the context of an in-

memory computing engine, the important parameters are relevant to the tenant type.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1720-1729

1722

Table 2. Tenant types
Type Table Content Meta Data

Tenant-
Independent

Data residing within the tenant's
system; Accessible for reading by

other tenants

Stored within the tenant; Accessible for read by other tenants

Tenant-
Dependent

Distinct copies of the table are present
in individual tenants; tenant-specific

data

Tenant-specific enhancements, such as additional columns, remain
stored as confidential metadata; the definition of the table is centrally

stored within the system tenant, accessible for reading by other tenants

Tenant-Private Exclusive tenant data with restricted
access from other tenants

Maintained as tenant-specific confidential metadata.

Contribution of proposed study as, i) analyze different in-memory tendency for effective query

execution, ii) proposed cloud integrated in-memory based model for column and row-oriented database, and

iii) authors have simulated proposed integrated architecture for benchmark dataset. Rest of the paper as

section 2 contain background study for different in memory database and also demonstrates comparative

analysis with state-of-the-art (SOTA). Section 3 represent result analysis for various in-memory database

schema.

2. LITERATURE SURVEY

The research presented in reference [16] offers an extensive survey on service-level agreement

(SLA) based cloud studies, aiming to assess the current research areas with unresolved challenges. The

primary focus of this study revolves around the resource provisioning stage within the SLA lifecycle.

However, it also highlighted on its impact and implications on other phases of the lifecycle. Through this

research, significant contributions are made towards the initial features of cloud SLAs and their autonomic

management. These valuable insights serve as a strong motivation for future research endeavors and the

development of industry-oriented solutions. In Pythia [17] classification of database tenants is done with a

complex set of features and for establishing the configuration of tenant categories that may lead to

performance violations. Many studies considered only a minimal number of SLA parameters. Resource

allocation is mostly attempted using heuristics, policies, and optimization techniques. Liu [18] addresses

placing a tenant aiming to optimize performance objectives while minimizing costs. They developed an

algorithm associated with distributed replicated block device (DRBD), whereas we utilize a distinct

methodology that is estimated using a multi-tenancy workload with in-memory database engine. Lang et al.

[19] present a study that looks at the same time tenant placement concurrently with server setup. As a

workload benchmark using transaction processing performance council (TPC-C), the outcomes are measured.

Their research on finding arrangements that can handle the real-world inconstancy in the Microsoft

generation traces. To enhance the performance of in-memory databases can be achieved by caching [20]. For

faster access, caching involves the mechanism by which on-disk databases store frequently accessed records

in memory. In any case, caching helps to speed up the recovery of data or to perform database read

operations faster.

2.1. Data management strategies–in-memory database

Table 3 depicts a summarization of in-memory information management frameworks represented

through their data models, supported workloads, index mechanisms, and strategies for controlling memory

overflow. After conducting a comparison, our recommendation is to opt for Oracle's relational database

system to effectively handle both online transaction processing (OLTP) and online analytical processing

(OLAP) workloads [21]. Smart memory management is to be required for minimizing the number of servers

are required to accommodate a fixed number of tenants. We have integrated Oracle's in-memory structured

query language (SQL) into our work as a prerequisite for multi-tenancy [22], [23].

In a particular application, a crucial requirement for the database system is seamless resource-

sharing transparency. The application needs to work on a tenant database, providing the illusion that each

tenant has its dedicated database instance. For example, the application should have the capability to

establish a database connection for a particular tenant. Subsequently, all queries made through this

connection should be confined to the tenant's data. This approach eliminates the need for the application to

incorporate "special logic" to handle queries for tenant-specific information. Ensuring transparency of

resource sharing also requires isolating each tenant from the impact of other coexisting tenants. For instance,

if one tenant experiences a crash, it should not affect or interrupt other tenants. Additionally, in scenarios

where a tenant demands peak database performance, other tenants sharing the same resources must still fulfill

their respective service level agreements (SLA) without compromise [24], [25].

Int J Elec & Comp Eng ISSN: 2088-8708

 A systematic review of in-memory database over multi-tenancy … (Arpita Shah)

1723

Table 3. Comparison of in-memory databases
 System Data model Workload Indexes Memory

Relational
databases

H-store relational OLTP hashing, B+
tree, Binary tree

anti-caching

Hekaton relational

(row)

OLTP latch-free,

hashing

project Siberia

SAP HANA

(High-performance

Analytic Appliance)

relational, graph, text OLTP/

OLAP

Timeline index,

B+ tree

Table/partition-

level swapping

Oracle relational

(row/column)

OLTP/

OLAP

B+ tree, Bitmap

index

table partition,

compression

NoSQL
databases

MongoDB document object operation
analytics

B-tree N/A

Radis key-value object operation hashing compression

Cassandra column-based object operation
analytics

CF-based index N/A

RAM

Cloud

key-value object operation hashing N/A

Graph Database

Bitsy graph OLTP N/A N/A

Trinity graph graph operation N/A N/A

Big Data
Analytics Systems

Talend key-value analytics N/A N/A

Spark

Resilient distributed

datasets (RDD)

analytics N/A block-level

swapping

3. METHOD

Proposed study used in-memory DBMS based architecture to improve query process with multi-

tendency database. Authors have demonstrated some notational conventions, and that helps to understand a

few basic principles and formulas. A Cartesian product or a cross product which takes combining two

relationships, R1 and R2, results in a new relationship R1×R2. Each of these relationships has nR1 and nR2

attributes, with respective cardinalities of |R1| and |R2|. By utilizing the × operator, a collection of ordered

pairs (r1, r2) is generated, where r1 is drawn from R1 and r2 from R2. This operation culminates in the

creation of a novel relation, R3, characterized by nR3 attributes equivalent to the sum of nR1 and nR2 and

|R3|=|R1|. |R2| tuples are returned. Projection works to filter or rearrange the attributes within its input

relation. It is expressible as 𝜋 𝑗1 … 𝑗𝑛(𝑅), where 𝑗1 through jn form a sorted sequence that represents the

attributes belonging to the relation R which consists projected result. The selection of an attribute gives how

the selection is projected on a specific column is:

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑦𝑝 =
𝜎𝑝(𝑅)

|𝑅|
 (1)

In general, the SELECT command is commonly used. The “SQL SELECT” is defined as (2).

𝑠𝑒𝑙𝑒𝑐𝑡 𝜋𝑗1,…,𝑗𝑛(𝑅) 𝐹𝑟𝑜𝑚 𝑅 𝑤ℎ𝑒𝑟𝑒 𝜎𝑎𝜃𝑏(𝑅) (2)

From a data management standpoint, adopting a well-structured framework can significantly enhance

efficiency. When dealing with a row layout, the central processing unit (CPU) fetches a portion of data from

the specific tuple into the cache. This necessitates the retrieval of bytes from the main memory with

consideration of the processing core's speed, as indicated by (3).

Response time =
 𝑏𝑦𝑒𝑠 (𝑡𝑜 𝑟𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑚𝑎𝑖𝑛−𝑚𝑒𝑚𝑜𝑟𝑦)

𝑠𝑝𝑒𝑒𝑑 (𝑏𝑦𝑡𝑒𝑠 /𝑚𝑠/𝑐𝑜𝑟𝑒)
 microseconds (3)

In the case of column layout, the CPU will transfer certain attributes of the provided object into the cache.

So, using (3) reading bytes from main-memory (attribute values) with consideration of the speed of

processing core, using (3). Equation (4) and (5) will be used to calculate ate memory consumption of the

index structure.

𝐼𝑚 = 𝐷𝑙 ⌈log 2(𝐼𝑃𝑙)⌉ +AVl ⌈log 2(𝐴𝑉𝑙)⌉ bits (4)

𝐼𝑚 = (𝐷𝑙 + 𝐴𝑉𝑙) (⌈𝑙𝑜𝑔2(𝐴𝑉𝑙)⌉) bits (5)

where Im index memory consumption, Dl length of the dictionary, 𝐼𝑃𝑙 length of the position of the index, 𝐴𝑉𝑙

length of attribute vector. The number of entries to be retrieved from the index position (6) depends upon the

specific column (with the distribution of values). For the read more frequently usage attribute, requisite to

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1720-1729

1724

read additional entries, and for the less frequently usage attribute needs less reading. So, to read 𝐴𝑉𝑙 ÷Dl

entries, with the width of ⌈log 2(𝐴𝑉𝑙)⌉ bits.

𝐼𝑛𝑑𝑒𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =
𝐴𝑉𝑙 ∙ ⌈log 2(𝐴𝑉𝑙)⌉

𝐷𝑙
 (6)

The database cost with tenancy model per selected time frame is:

𝐶𝑜𝑠𝑡𝑑,𝑦 = 𝑏𝑎𝑠𝑒𝑑,𝑦 + 𝜆 𝑎(𝑤𝑑 , 𝑦) (7)

Consist of the base cost, 𝑏𝑎𝑠𝑒𝑑,𝑌:

𝑏𝑎𝑠𝑒𝑑,𝑦 =
1

𝑁𝑑,𝑦
∑ (𝐶𝑃𝑈𝑡,𝑡𝑖

𝑁𝑑,𝑦

𝑡𝑖=1
) (8)

where, 𝐶𝑜𝑠𝑡𝑑,𝑦 cost of database d during each training period y, 𝑏𝑎𝑠𝑒𝑑,𝑦 base cost of database d,a(wd, y)

finding additional cost, 𝑁𝑑,𝑦 database d exists in training period y during a number of given slices.

4. RESULTS AND DISCUSSION

The query accessing approach is very important over the in-memory database. There are two storage

approaches: row-oriented and column-oriented [26], [27]. From a database application perspective serving

RDBMS with an in-memory approach over multi-tenant support scalability, simple deployment, and customer

isolation. Table 4 shows a comparison of IMDB features of Oracle TimesTen, SAP high-performance analytic

appliance (SAP Hana), and GridGain.

Table 4. IMDBs features comparison
Feature Oracle TimesTen SAP HANA GridGain

In-Memory Data Storage Yes Yes Yes
Data Persistence Optional Yes Yes

Key-Value Data Model No No Yes

SQL Support Yes Yes Yes
Atomicity, Consistency, Isolation, and Durability (ACID) Transactions Yes Yes Yes

Horizontal Scaling Yes Yes Yes

Secondary Indexing Yes Yes Yes
Data Partitioning Yes Yes Yes

Data Replication Yes Yes Yes

In-Memory Caching No No Yes
Work with relational database management system (RDBMS)s Yes No No

Organize data with a column-based storage strategy Yes Yes Yes

Organize data with a row-based storage strategy Yes Yes No

4.1. Row format v/s column format–experiment

In a column-oriented approach Table 5, the database maintains each attribute within its distinct column

structure. Table 6 indicates a row-oriented format database from the sample data set shown in Table 7, every

new record or transaction stored in the database is regarded as a new row in a table. A row format allows fast

access to all of the columns in a row because all the data for a given row are kept together in memory and

storage. Therefore, it is ideal for applications that require online transaction processing [28].

Table 5. Column-oriented data
Column-based Tuples

1, 2, 3;

Joe, Lara, Bill;

Finance, IT;
$500, $700, $500;

Table 6. Row-oriented data
Row-based Tuples

1, Joe, Finance, $500;

2, Lara, Finance, $700;

3, Bill, IT, $500;

Int J Elec & Comp Eng ISSN: 2088-8708

 A systematic review of in-memory database over multi-tenancy … (Arpita Shah)

1725

Table 7. IMDB-sample data
ID Name Dept Salary

1 Joe Finance $500
2 Lara Finance $700

3 Bill IT $500

A column-oriented approach which is ideal for analytical and transaction processing. It facilitates

summarized data retrieval when a query accesses a significant portion of the dataset but selects only a limited

number of columns (e.g. 𝐼𝐷 = 3, 𝐷𝑒𝑝𝑡 = information technology (IT)) from the sample data set shown in

Table 7. Typically, row-oriented database management systems often permit data definition operations,

whereas in a column-oriented database, individual columns are stored separately from one another, each

residing within its own distinct block. Using the human resources (HR) schema dataset [26] shown in

Figure 2, we have tested the performance of row-oriented and column-oriented approaches.

Figure 2. HR-schema benchmark

According to the relational database application most queries are executed for analytical purpose

and more projected on the data attribute(s). To check the performance of row and column-oriented

approaches; we have deployed Oracle in-memory product to check the output of sample queries based on

HR-schema. Based on the sample benchmark we have evaluated sample queries which are divided into three

categories according to the star-schema dimension attribute(s) sets to check the performance of row-oriented

and column-oriented. A fundamental 'scale factor' is available for adjusting the benchmark's size. The

proportions of the tables are determined in relation to this scale factor, with a value of 10 chosen for

selectivity. The size by which we make the larger is described by its scale factor. For example, the size of the

employee's table is 4,000,000 which represents a scale factor × 4,00,000. Selectivity primarily refers to the

characterization of a predicate. Selectivity can be calculated based on a table as "[No. of rows filter based on

predicate value/No. of rows in the table]". Table 8 demonstrate execution remarks for the HR-schema

consists into ten queries divided into three categories.

Runtime for any selectivity (similar to the given sample example) based on CT-1, CT-2, and CT-3,

the query execution and comparing the performance of a “column store” called C-store and Row-store on

HR-schema shown in Figure 3. C-store performs better than the best case of Row-store, though even they

access the same amount of I/O is similar. So, based on the experimental we have chosen the storage

technique as C-store.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1720-1729

1726

Table 8. Category wise query analysis for HR-schema
Category Solution Remark

CT-1: Contain three queries, consists
restriction with one-dimension

attribute, salary and department_id

(employees table).

SELECT first_name FROM employees WHERE department_id
< 40 AND salary between 20000 and 60000 ORDER BY

department_id.

The employee’s selectivity
for the three queries are

0.6×10-2, 2.3×10-3 and

3.5×10-4.
CT-2: Contains three queries,

consisting of restriction on two-

dimension attributes are min_salary,
max_salary for each group of rows

with the same job code in the

employee’s table.

SELECT e.last_name, m.last_name manager, m.salary,

j.job_title FROM employees e, employees m, jobs j WHERE

e.manager_id = m.employee_id AND m.salary BETWEEN
j.min_salary AND j.max_salary AND m.salary > 15000.

The employee’s selectivity

for the three queries are

5.0×10-3, 1.2×10-3 and
1.8×10-4

.

CT-3: Contain four queries, consists

restriction on three-dimension

attributes are departments,
employees, and locations.

SELECT l.city, d.department_name, e.job_id, SUM(e.salary)

FROM locations l, employees e, departments d WHERE

d.location_id = l.location_id AND e.department_id =
d.department_id AND e.department_id > 80

GROUP BY CUBE (l.city, d.department_name, e.job_id)

The employee’s selectivity

for the four queries is

2.5×10-2, 1.1×10-3, 3.5×10-4
and 5.7×10-6.

Figure 3. Performances of c-store (column-store) and row-store

4.2. Execution of column-oriented approach

Now, we further tested datasets with different optimization dimension(s) are traditional approach,

late-materialization, compression and invisible join on C-store and Row-based (HR-schema). These

experiment(s) are carried out on same set of queries (mentioned as CT-1, CT-2, and CT-3). Applying C-store

approach, we have demonstrated the impact on the performance of an expansion of column-oriented

execution strategies, along with vectored query processing, compression, and a join. Column-oriented

approach produces some critical system improvements with primary attributes, decreased tuple overhead,

rapid merge joins of looked after records, run-duration encoding over multiple tuples.

In traditional approach tuple representation interface to extract the selected attributes from dataset

resulting tuple-at-a-time processing; in which one or more function calls are to be required for extracting the

data set during each tuple operation. In the case of C-store approach, blocks values of the same column are

return to an interface using single function call. In addition, necessity exists for attribute extraction, and when

dealing with a fixed-width column, these values can be sequentially accessed as an array. Late

materialization is more suitable for column-oriented approach. Therefore, in most query dataset with multiple

attributes jointly forms a “row” of information for that entity. Thus, such kind of join based materialization of

tuple is common for column storage operation.

Figure 4(a) and (b) show different optimization dimension(s): traditional (T), late materialization

(LM), compression (c), and invisible join (IJ) are processed on query set CT-1 and CT-2. When compression

and late materialization are enabled in a query set; it improves the overall performance. Invisible join

improves the performance at some extent and compression with late materialization improved the

performance by 60-75%. In conclusion, the most beneficial optimization dimensions are “compression” and

“late materialization” on similar benchmark schema with identical scale factor.

Int J Elec & Comp Eng ISSN: 2088-8708

 A systematic review of in-memory database over multi-tenancy … (Arpita Shah)

1727

(a)

(b)

Figure 4. Optimization dimension on the query set (a) with one-dimension attribute(s) (b) with two-

dimension attribute(s)

4.3. Predicting performance of in-memory over tenancy

To maintain effective data separation between tenants, every query or transaction have to carry

tenant-specific information. This can be accomplished by including explicit tenant identifiers directly within

SQL queries, or alternatively, by utilizing an intermediary middleware layer responsible for managing and

enforcing tenant context. So, an important key factor to access SQL queries [C-Store] in optimized time

which supports as per our recommended in-memory product with tenancy model. Based on (9), defines the

workload incurred by a tenant as a function of its request rate and size; where m and n can be estimated using

least-squares method.

𝑤(𝑡𝑟, 𝑡𝑠) ∶=
𝑡𝑟 𝑡𝑠

−𝑚

10𝑛 (9)

The predicated workload is calculated using (10). Typically, sizes and request rated of tenant are different on

a server. So, total workload T on server as the sum of the workloads over the set of all tenants.

𝑤(𝑇) ∶= ∑
 𝑡𝑟 𝑡𝑠

−𝑚

10𝑛𝑡∈𝑇 (10)

To investigate in-memory database performance, an examination is conducted on the relationship between

workload and response time within a relational context. Tests are performed using varying dataset sizes,

ranging from 1 to 2.5 GB, employing a single database instance. As depicted in Figure 5, the projected

workload is computed. The graph exhibits a linear increase up to a workload of 0.8, beyond which it

transitions into exponential growth.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1720-1729

1728

Figure 5. Single instance capacity

5. CONCLUSION

Multi-tenancy represents an innovative software architectural approach in which a singular

application instance (or customized data and configuration) operates within the infrastructure of a service

provider. In this analysis, we have conducted a comprehensive review of research studies pertaining to the

multi-tenancy approach on cloud platforms and in-memory databases. The results demonstrate the most

suitable storage approach is column-oriented for the given query sets which is the most suitable approach for

the relational model. Based on our study, the selection of record storage is also a challenging task. Combined

with multi-tenancy and database solutions, gives better performance. Multi-tenancy approach for column-

based dataset has faster execution compare to row-based dataset. Applications that utilize a relational

database with column storage should consider employing compression and late materialization based on

simulated result(s). Future work of proposed study, evaluate hybrid storage models where allowing data

processing model to choose between row-oriented or column-oriented per query or table. Additional study is

required for dynamic approach to optimize data storage based on specific use cases.

REFERENCES
[1] J. Krueger, F. Huebner, J. Wust, M. Boissier, A. Zeier, and H. Plattner, “Main memory databases for enterprise applications,” in

2011 {IEEE} 18th International Conference on Industrial Engineering and Engineering Management, Sep. 2011, pp. 547–557,
doi: 10.1109/icieem.2011.6035219.

[2] A. Magalhaes, J. M. Monteiro, and A. Brayner, “Main memory database recovery: A survey,” ACM Computing Surveys, vol. 54,

no. 2, pp. 1–36, Mar. 2021, doi: 10.1145/3442197.
[3] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood, “Implementation techniques for main

memory database systems,” ACM SIGMOD Record, vol. 14, no. 2, pp. 1–8, Jun. 1984, doi: 10.1145/971697.602261.

[4] J. Ru, J. Grundy, Y. Yang, J. Keung, and L. Hao, “Providing fairer resource allocation for multi-tenant cloud-based systems,”
in Proceedings - IEEE 7th International Conference on Cloud Computing Technology and Science, CloudCom 2015, Nov. 2016,

pp. 306–313, doi: 10.1109/CloudCom.2015.30.

[5] S. Aulbach, M. Seibold, D. Jacobs, and A. Kemper, “Extensibility and data sharing in evolving multi-tenant databases,” in
Proceedings - International Conference on Data Engineering, Apr. 2011, pp. 99–110, doi: 10.1109/ICDE.2011.5767872.

[6] G. Karataş, F. Can, G. Doǧan, C. Konca, and A. Akbulut, “Multi-tenant architectures in the cloud: A systematic mapping study,”

Sep. 2017, doi: 10.1109/IDAP.2017.8090268.
[7] H. Yaish and M. Goyal, “A multi-tenant database architecture design for software applications,” in Proceedings - 16th IEEE

International Conference on Computational Science and Engineering, CSE 2013, Dec. 2013, pp. 933–940, doi:

10.1109/CSE.2013.139.
[8] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang, “Native support of multi-tenancy in RDBMS for Software as a Service,” in

ACM International Conference Proceeding Series, Mar. 2011, pp. 117–128, doi: 10.1145/1951365.1951382.

[9] A. F. Pakpahan and I. S. Hwang, “Flexible access network multi-tenancy using NFV/SDN in TWDM-PON,” IEEE Access,
vol. 11, pp. 42937–42948, 2023, doi: 10.1109/ACCESS.2023.3271142.

[10] H. Aljahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu, “Multi-tenancy in cloud computing,” in Proceedings -

IEEE 8th International Symposium on Service Oriented System Engineering, SOSE 2014, Apr. 2014, pp. 344–351, doi:
10.1109/SOSE.2014.50.

[11] M. Kumar, A. Kishor, J. Abawajy, P. Agarwal, A. Singh, and A. Y. Zomaya, “ARPS: An autonomic resource provisioning and
scheduling framework for cloud platforms,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp. 386–399, Apr. 2022,

doi: 10.1109/TSUSC.2021.3110245.

[12] T. Kwok and A. Mohindra, “Resource calculations with constraints, and placement of tenants and instances for multi-tenant SaaS

applications,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Int J Elec & Comp Eng ISSN: 2088-8708

 A systematic review of in-memory database over multi-tenancy … (Arpita Shah)

1729

Notes in Bioinformatics), vol. 5364 LNCS, Springer Berlin Heidelberg, 2008, pp. 633–648, doi: 10.1007/978-3-540-89652-4_57.
[13] S. Fisher, “The architecture of the apex platform, salesforce.com’s platform for building on-demand applications,” in Proceedings

- International Conference on Software Engineering, May 2007, p. 3, doi: 10.1109/ICSECOMPANION.2007.76.

[14] A. R. Arunarani, D. Manjula, and V. Sugumaran, “Task scheduling techniques in cloud computing: A literature survey,” Future
Generation Computer Systems, vol. 91, pp. 407–415, Feb. 2019, doi: 10.1016/j.future.2018.09.014.

[15] M. Kumar, K. Dubey, S. Singh, J. K. Samriya, and S. S. Gill, “Experimental performance analysis of cloud resource allocation

framework using spider monkey optimization algorithm,” Concurrency and Computation: Practice and Experience, vol. 35,
no. 2, Nov. 2023, doi: 10.1002/cpe.7469.

[16] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden, “HYRISE-A main memory hybrid storage

engine,” Proceedings of the VLDB Endowment, vol. 4, no. 2, pp. 105–116, Nov. 2010, doi: 10.14778/1921071.1921077.
[17] A. J. Elmore, D. Agrawal, S. Das, A. El Abbadi, A. Pucher, and X. Yan, “Characterizing tenant behavior for placement and crisis

mitigation in multitenant DBMSs,” in Proceedings of the ACM SIGMOD International Conference on Management of Data, Jun.

2013, pp. 517–528, doi: 10.1145/2463676.2465308.
[18] Z. Liu, H. Hacigümüş, H. J. Moon, Y. Chi, and W. P. Hsiung, “PMAX: Tenant placement in multitenant databases for profit

maximization,” in ACM International Conference Proceeding Series, Mar. 2013, pp. 442–453, doi: 10.1145/2452376.2452428.

[19] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Towards multi-tenant performance SLOs,” in Proceedings - International
Conference on Data Engineering, Apr. 2012, pp. 702–713, doi: 10.1109/ICDE.2012.101.

[20] R. Kallman et al., “H-Store: A high-performance, distributed main memory transaction processing system,” Proceedings of the

VLDB Endowment, vol. 1, no. 2, pp. 1496–1499, Aug. 2008, doi: 10.14778/1454159.1454211.
[21] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory

snapshots,” in Proceedings - International Conference on Data Engineering, Apr. 2011, pp. 195–206, doi:

10.1109/ICDE.2011.5767867.
[22] V. Narasayya and S. Chaudhuri, “Multi-tenant cloud data services: state-of-the-art, challenges and opportunities,” in Proceedings

of the ACM SIGMOD International Conference on Management of Data, Jun. 2022, pp. 2465–2473, doi:

10.1145/3514221.3522566.
[23] C. P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications: Maintenance dream or nightmare?,” in ACM International

Conference Proceeding Series, Sep. 2010, pp. 88–92, doi: 10.1145/1862372.1862393.

[24] F. Chen, A. Lu, H. Wu, and M. Li, “Compensation and pricing strategies in cloud service SLAs: Considering participants’ risk
attitudes and consumer quality perception,” Electronic Commerce Research and Applications, vol. 56, Art. no. 101215, Nov.

2022, doi: 10.1016/j.elerap.2022.101215.

[25] R. Engel, S. Rajamoni, B. Chen, H. Ludwig, and A. Keller, “Ysla: Reusable and configurable SLAs for large-scale SLA
management,” in Proceedings - 4th IEEE International Conference on Collaboration and Internet Computing, CIC 2018, Oct.

2018, pp. 317–325, doi: 10.1109/CIC.2018.00050.

[26] A. Shah and N. Patel, “Efficient and scalable multitenant placement approach for in-memory database over supple architecture,”
Computer Science and Information Technologies, vol. 1, no. 2, pp. 39–46, Jul. 2020, doi: 10.11591/csit.v1i2.p39-46.

[27] F. Z. Belkadi and R. Esbai, “Model-driven engineering: from SQL relational database to column—oriented database in big data

context,” in Smart Innovation, Systems and Technologies, vol. 237, Springer Singapore, 2022, pp. 667–678, doi: 10.1007/978-
981-16-3637-0_47.

[28] M. Kumar and S. C. Sharma, “PSO-based novel resource scheduling technique to improve QoS parameters in cloud computing,”

Neural Computing and Applications, vol. 32, no. 16, pp. 12103–12126, Jun. 2020, doi: 10.1007/s00521-019-04266-x.

BIOGRAPHIES OF AUTHORS

Arpita Shah is a PhD student in the field of computer engineering at Charotar

University of Science and Technology (CHARUSAT), Anand, Gujarat, India. She has

received her master’s degree in the field computer engineering from Sardar Patel University in

2009. Her major area of research includes cloud computing, database, distributed commuting

and operating system. She can be contacted at email: arpitashah.ce@charusat.ac.in.

Nikita Bhatt obtained his PhD degree in the area of machine learning from

Charotar University of Science and Technology (CHARUSAT), Gujarat, India in 2021 and

master’s degree in computer engineering in 2012 Gujarat, India. She is a professor at

Department of Computer Engineering, Charotar University of Science and Technology

(CHARUSAT), Anand, Gujarat, India. Her research interest includes data mining, machine

learning, deep learning, information retrieval, meta learning, and active meta learning. She can

be contacted at email: nikitabhatt.ce@charusat.ac.in.

https://orcid.org/0000-0003-1877-0997
https://scholar.google.co.in/citations?user=EPi3DjcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57190184203
https://www.webofscience.com/wos/author/record/2068650
https://orcid.org/0000-0002-3243-5901
https://scholar.google.co.in/citations?user=9PPA-6oAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205487135
https://www.webofscience.com/wos/author/record/870675

