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 A new swarm-based metaheuristic that is also enriched with the crossover 

technique called swarm flip-crossover algorithm (SFCA) is introduced in 

this work. SFCA uses swarm intelligence as its primary technique and the 

crossover as its secondary one. It consists of three searches in every 

iteration. The swarm member walks toward the best member as the first 

search. The central point of the swarm becomes the target in the second 

search. There are two walks in the second search. The first walk is getting 

closer to the target, while the second is avoiding the target. The better result 

between these two walks becomes the candidate for the replacement. In the 

third search, the swarm member performs balance arithmetic crossover with 

the central point of the space or jumps to the opposite location within the 

area (flipping). The assessment is taken by confronting SFCA with five new 

metaheuristics: slime mold algorithm (SMA), golden search optimization 

(GSO), osprey optimization algorithm (OOA), coati optimization algorithm 

(COA), and walrus optimization algorithm (WaOA) in handling the set of 

23 functions. The result shows that SFCA performs consecutively better than 

SMA, GSO, OOA, COA, and WaOA in 20, 23, 17, 17, and 17 functions. 
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1. INTRODUCTION 

In recent years, many optimization studies utilized metaheuristics as the primary tool for 

optimization. Metaheuristic algorithms have also been combined with other techniques to solve various 

problems, especially in engineering. For example, grey wolf optimization (GWO) was combined with deep 

hybrid learning to classify lung cancer [1]. GWO was also utilized to solve the task allocation problem for 

multiple unmanned aerial vehicles (UAV) [2]. Harris hawk optimization (HHO) has been used to improve the 

quality of the kernel type in the support vector machine (SVM) technique [3]. Seagull optimization (SO) has 

been utilized to search the global maximum power point in the photovoltaic system [4]. The Archimedes 

optimizer algorithm (AOA) was used in the optimal power flow system by minimizing the emission, power 

loss, and fuel cost while maximizing the voltage profile [5].  

Many metaheuristics developed in recent years were constructed based on swarm intelligence. Many 

of these metaheuristics use animal behavior as metaphors, such as walrus optimization algorithm (WaOA) 

[6], coati optimization algorithm (COA) [7], osprey optimization algorithm (OOA) [8], slime mold algorithm 

(SMA) [9], komodo mlipir algorithm (KMA) [10], zebra optimization algorithm (ZOA) [11], pelican 

optimization algorithm (POA) [12], golden jackal optimization (GJO) [13], clouded leopard optimization 

(CLO) [14], Siberian tiger optimization (STO) [15], marine predator algorithm (MPA) [16], Tasmanian devil 

https://creativecommons.org/licenses/by-sa/4.0/
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optimization (TDO) [17], northern goshawk optimization (NGO) [18], and so on. Some metaheuristics 

utilized their member as metaphors, such as three influential member-based optimizations (TIMBO) [19], 

multileader optimization (MLO) [20], mixed leader-based optimization (MLBO) [21], hybrid leader-based 

optimization (HLBO) [22], and so on. Some metaheuristics do not use any metaphor for their name, such as 

total interaction algorithm (TIA) [23], golden search optimization (GSO) [24], three-on-three optimizer 

(TOTO) [25], multiple interaction optimizer (MIO) [26], attack leave optimization (ALO) [27], average 

subtraction-based optimization (ASBO) [28], particle swarm optimization (PSO) [29], and so on.  

On the other hand, the crossover mechanism has become less popular. The coronavirus optimization 

algorithm (COVIDOA) is an example of a new metaheuristic that uses crossover as its primary search [30]. 

In COVIDOA, the parents are selected based on the roulette wheel regarding the quality of the current 

solution. In COVIDOA, the crossover technique is enriched with a frameshifting mechanism. The other 

example of a new crossover-based metaheuristic is the flower pollination algorithm (FPA) [31]. In FPA, the 

parents are selected randomly. 

Despite the rapid development of metaheuristics, several issues accompany this trend. First, the 

extensive use of metaphors in these studies poses a challenge. Many metaheuristics employ metaphors to 

showcase their novelty, yet this approach hinders the investigation of their actual originality. Second, 

locating swarm-based metaheuristics that effectively incorporate crossover strategies proves difficult. Most 

of them utilize neighborhood searches with reduced search spaces as supplementary exploration. Last, the 

assessment of individual search methods within multi-strategy embracing metaheuristics needs to be revised. 

This circumstance makes it challenging to accurately gauge the contributions of each strategy in shaping the 

metaheuristic framework. 

Based on this problem, the main objective of this work is to construct a new metaphor-free 

metaheuristic based on the swarm intelligence approach but also accommodates the flip and crossover 

mechanism. This objective is then translated into the scientific contributions provided by this work as 

follows: i) A new metaphor-free metaheuristic called swarm flip-crossover algorithm (SFCA) is introduced 

based on swarm intelligence as a core approach but enriched with flip and crossover mechanisms, ii) The 

comparative test is taken to assess the performance of SFCA as a whole package by confronting SFCA with 

five new swarm-based metaheuristics, and iii) The individual search test is taken to assess the performance of 

each search performed in SFCA. 

The structure of this paper is arranged as follows. The background, problem statement, research 

objective, and contribution of this work are declared in section one. The studies regarding the metaheuristic, 

especially swarm intelligence, including several newest swarm-based metaheuristics, are reviewed in section 

two. The methodology, including the model and assessment scenario presentation, can be seen in section 

three. The assessment result and the discussion regarding the findings, complexity, and limitation are 

performed in section four. In the end, the conclusion of this work and the proposal for future studies are 

presented in section five. 

 

 

2. RELATED WORKS 

Swarm intelligence is a branch of the metaheuristic, especially the population-based one, with the 

uniqueness of constructing a collective of autonomous agents. Each agent works independently based on its 

understanding of its condition and environment. Rather than using centralized mechanisms like genetic 

algorithms and other evolution-based metaheuristics, decentralized behavior, i.e., autonomy, becomes the 

main distinction between swarm intelligence and other population-based metaheuristics. This strategy makes 

the members of the swarm become active entities. Besides the decentralized and self-organized system, 

swarm intelligence exploits the interaction among the swarm members to boost its performance. 

The interaction among members becomes the backbone of the search process in swarm-based 

metaheuristics. Some swarm-based metaheuristics perform single-stage interaction, while others perform 

multiple-stage interaction. The fundamental concept of this interaction is determining the member or 

members chosen for each member to interact with. The global best member or the best member within the 

swarm is often used as a reference, such as in KMA [10], COA [7], ZOA [11], and so on. In some 

metaheuristics, such as TIA [23] and ZOA [11], each swarm member interacts with other members within the 

swarm. The interaction of the mixture between the global best member and the local best member can be 

found in PSO [29] and GSO [24]. Meanwhile, a member may interact with two randomly selected members, 

like in MPA [16], and SMA [9]. A randomly generated member around the space can also be utilized as a 

partner for interaction, like in POA [12] and COA. 

The random search is also the secondary search in the swarm-based metaheuristic. Many recent 

swarm-based metaheuristics are enriched with the neighborhood search with reduced space during iteration. 

MPA becomes the early adaptor of this strategy [16]. Then some others also utilize this strategy, like ZOA 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Swarm flip-crossover algorithm: a new swarm-based metaheuristic enriched … (Purba Daru Kusuma) 

2147 

[11], COA [7], OOA [8], POA [12], and so on. Full random search is also utilized in some metaheuristics, 

such as in KMA during parthenogenesis [10], in SMA when a specific circumstance occurs [9], or in ALO 

when stagnation occurs [27]. 

Even so, the crossover process is less popular as a secondary or complementary process in 

developing a swarm-based metaheuristic. Meanwhile, evolution-based metaheuristics, such as genetic 

algorithm (GA), where the crossover becomes its backbone, are still widely utilized, and hybridized, such as 

in robotic navigation [32], food distribution [33], logistics and distribution centers for agricultural products 

[34], and so on. KMA is an example of a few swarm-based metaheuristics enriched with crossover. In KMA, 

the arithmetic crossover occurs between the moderate-quality swarm members with the highest-quality. 

Based on this review, the opportunity to develop a new metaheuristic is still open. First, many 

interactions can be explored to become the strategy of the swarm-based metaheuristic. Second, there is a 

challenge to examine and promote crossover as a complement for the interaction-based search in the swarm-

based metaheuristic due to its rarity rather than the neighborhood search, which is commonly utilized. 

 

 

3. METHOD 

3.1.   Model 

The conceptual design of SFCA can be perceived from its name, as it is a metaphor-free 

metaheuristic. SFCA contains three key terms: swarm, flip, and crossover. As a swarm intelligence, SFCA is 

constructed of a collection of autonomous agents called a swarm. These independent agents are then called 

swarm members. They move autonomously without any central command but with a certain degree of 

interaction among the swarm members, so their movement is not entirely random. The flip can be seen as a 

mirroring mechanism so that the swarm member will bounce to a new location within the space where this 

new location is the opposite of the current site. The crossover can be interpreted as the swarm member 

mixing with a reference to generate a unique solution. 

This conceptual design is subsequently translated into a concrete strategy, wherein each swarm 

member conducts three sequential walks, termed "searches", during each iteration. In the first walk, each 

swarm member walks toward the best swarm member. In the second walk, each swarm member walks 

relative to the center of the swarm in two opposite directions. In the first direction, it walks towards the 

center of the swarm. In the second direction, it avoids the center of the swarm. The more favorable outcome 

between these two walks is then selected to replace the current solution. The third walk phase involves each 

swarm member deciding between executing a flip or crossover, determined stochastically with equal 

probabilities. Here, the center of the search space serves as a reference: a 'flip' results in a jump to the 

opposite space region, while a 'crossover' involves performing a balanced arithmetic crossover with the 

center. Figure 1 provides a visual representation of these walks. SFCA employs a stringent acceptance rule 

for swarm members to avert undesirable shifts towards inferior solutions. Figure 1(a) visualizes the walking 

of the swarm member toward the best swarm member in the first search. Figure 1(b) visualizes the walking 

toward and away from the center of the swarm as performed in the second search. Figures 1(c) and 1(d) 

visualize the third search where Figure 1(c) represents the flipping-based search while Figure 1(d) represents 

the crossover-based search. 

 

 

    
(a) (b) (c) (d) 

 

Figure 1. Visualization of the swarm, flip, and crossover: (a) walk toward the best swarm member, (b) walk 

relative to the center of the swarm, (c) flip, and (d) balance arithmetic crossover 

 

 

The reasoning behind the strategy chosen for SFCA is as follows. The walk toward the best swam 

member is designed to improve the solution fast, especially in handling unimodal problems. In this case, 

walking toward and surpassing the best swarm member increases the probability of improvement. The walk 

relative to the swarm’s center provides exploitation and exploration. The walk toward the center of the 

swarm intensifies the search within the region of the swarm, especially around the center. On the other hand, 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2145-2155 

2148 

the walk away from the swarm’s center provides an effort to expand the swarm size to explore a new location 

beyond the region of the swarm. The flip mechanism is designed to jump to another part of space. This walk 

can be seen as an exploration, especially when the current location is far from the center of space. On the 

other hand, the crossover can be perceived as exploitation because this walk pushes the swarm member to get 

closer to the center of space. The flip is designed to handle the optimization problem where the global 

optimal solution is far from the center of space. In contrast, the crossover is designed to handle the 

optimization problem where the global optimal solution is near the center of space.  

The formalization of SFCA is presented by using pseudocode to figure out the whole process, while 

the mathematical formulation describes the more detailed presentation of the process. Meanwhile, the 

annotations used in this formalization are presented in Table 1. In Algorithm 1, the initialization phase is 

presented from lines 2 to 5. On the other hand, the iteration phase is presented from lines 6 to 15. The 

algorithm’s output, i.e., the final solution, is the best swarm member. 

 

 

Table 1. List of annotations 
Notation Description 

cc Center of space 

cl The lower boundary of space 

cu The upper boundary of space 
d Dimension 

f Objective function 

s Swarm member 
S Swarm 

sb The best swarm member 

sc Center of the swarm 
ss Swarm seed 

t Iteration 

tm Maximum iteration 
Uc Continuous uniform random 

Ud Discrete uniform random 

 

 

Algorithm 1. Swarm flip-crossover algorithm 
1 begin 

2   for all s in S 

3     initialize si using (1)  

4     update sb using (2) 

5   end for 

6   for t=1 to tm 

7     generate sc using (3) 

8     for all s in S 

9       perform the first walk using (4) and (5) 

10       perform the second walk using (6) to (8), (5) 

11       perform the third walk using (8) and (5) 

12       update sb using (2) 

13     end for 

14   end for 

15 end 

16 return sb 

 

There are two processes performed during the initialization phase. The first one is generating the 

initial swarm member uniformly within the space, as stated in (1). Then, the updating process of the best 

swarm member is taken using (2) which represents the stringent acceptance procedure. 

 

𝑠𝑖,𝑗 = 𝑐𝑙,𝑗 + 𝑈𝑐(0,1)(𝑐𝑢,𝑗 − 𝑐𝑙,𝑗)  (1) 

 

𝑠𝑏
′ = {

𝑠𝑖 , 𝑓(𝑠𝑖) < 𝑓(𝑠𝑏)
𝑠𝑏 , 𝑒𝑙𝑠𝑒

  (2) 

 

The first step in every iteration is finding the center point of the swarm. As a solution consists of 

multi-dimension parameters, the central issue is determined for every dimension. This center point is 

calculated using (3), representing the average of a certain extent for all swarm members. Equation (3) 

highlights that this center point needs to be weighted, which means that the quality of the swarm members 

needs to be considered. 
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𝑠𝑐,𝑗 =
∑ 𝑠𝑖,𝑗𝑆

𝑛(𝑆)
  (3) 

 

The first walk consists of two processes. The first process is generating the seed based on the walk 

toward the best swam member. This process is stated in (4). The discrete uniform random in (4) means that 

the seed may be generated between the corresponding swarm member and the best swam member and can 

surpass the best swarm member. The second process is updating the corresponding member based on the 

quality of its seed, as stated in (5). This second process is also performed in the second and third walks. 

 

𝑠𝑠,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑐(0,1). (𝑠𝑏,𝑗 − 𝑈𝑑(1,2). 𝑠𝑖,𝑗)  (4) 

 

𝑠𝑖
′ = {

𝑠𝑠,𝑖 , 𝑓(𝑠𝑠,𝑖) < 𝑓(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
  (5) 

 

The second walk is the guided search relative to the swarm’s center. As mentioned previously, there 

are two sub-walks. The first sub-walk is walking toward the swarm’s center, as stated in (6). The second  

sub-walk is walking away from the swarm’s center, as stated in (7). Then the better among both sub-walks 

become the seed, as stated in (8). 

 

𝑠𝑠1,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑐(0,1). (𝑠𝑐,𝑗 − 𝑈𝑑(1,2). 𝑠𝑖,𝑗)  (6) 

 

𝑠𝑠1,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑐(0,1). (𝑠𝑖,𝑗 − 𝑈𝑑(1,2). 𝑠𝑐,𝑗)  (7) 

 

𝑠𝑠,𝑖 = {
𝑠𝑠1,𝑖 , 𝑓(𝑠𝑠1,𝑖) < 𝑓(𝑠𝑠2,𝑖)

𝑠𝑠2,𝑖,𝑒𝑙𝑠𝑒
  (8) 

 

The third walk reflects the flip and crossover. The decision between flip and crossover is determined 

uniformly and equally, as stated in (9). If the flip is chosen, the seed is generated in the left region of the 

space if the swarm member is in the right area. Otherwise, the source is generated in the right part of the 

space. Equation (9) also states that the seed is generated right in the middle between the swarm member and 

the center of space if the crossover is chosen. 

 

𝑠𝑠,𝑖,𝑗 = {

𝑐𝑐,𝑗 − |𝑠𝑖,𝑗 − 𝑐𝑐,𝑗|, 𝑈𝑐(0,1) < 0.5 ∧ 𝑠𝑖,𝑗 ≥ 𝑐𝑐,𝑗

𝑐𝑐,𝑗 − |𝑠𝑖,𝑗 − 𝑐𝑐,𝑗|, 𝑈𝑐(0,1) < 0.5 ∧ 𝑠𝑖,𝑗 < 𝑐𝑐,𝑗
𝑐𝑐,𝑗+𝑠𝑖,𝑗

2
, 𝑈𝑐(0,1) ≥ 0.5

  (9) 

 

3.2.  Assessment scenario 

The assessment of swarm flip-crossover algorithm is performed by challenging it to tackle a wide 

range of optimization problems. In this work, two assessments are performed based on their objectives. The 

first assessment is a comparative assessment. SFCA, as the proposed metaheuristic, is confronted with other 

metaheuristics in this assessment. Its objective is to observe the comparative advantages, strengths, and 

weaknesses of SFCA. The second assessment is the individual search assessment. In this assessment, the 

performance of each search of SFCA is tested. Its objective is to evaluate the performance of each search 

constructed in SFCA. 

In the comparative assessment, SFCA faces five new swarm-based metaheuristics: SMA, GSO, 

OOA, COA, and WaOA. All these metaheuristics are pure swarm-based metaheuristics. The reasoning for 

selecting these five metaheuristics as the confronters is as follows. First, all these metaheuristics are new. 

Second, these five metaheuristics represent a wide range of strategies. GSO represents the metaheuristic that 

performs guided search only with the mixture of the global best swarm member and the local best member 

becoming the reference. SMA represents metaheuristics that perform a guided search, full random search, 

and neighborhood search based on the circumstance faced by the swarm member. OOA, COA, and WaOA, 

are metaheuristics that perform both guided search and neighborhood search. Meanwhile, there is a 

difference in the references used during the guided search in these three metaheuristics. SMA is the only 

confronter with another adjusted parameter besides the swarm size and maximum iteration. In this 

assessment, the 𝑧 parameter for SMA is set to 0.1. Meanwhile, for SFCA and all its confronters, the swarm 

size is set to 5 while the maximum iteration is set to 10. It means that this assessment represents the 

optimization process with low computational expense. 
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In the individual search assessment, each search is assessed individually. When a search is assessed, 

the other searches in SFCA are set to inactive. Unlike the comparative assessment, there is no confrontation 

with other metaheuristics in this assessment. Same as the comparative assessment, in this assessment, the 

swarm size is set to 5 while the maximum iteration is set to 10.  

In both assessments, the use case is the set of 23 functions. This use case is commonly used in many 

studies proposing new metaheuristics. It covers various circumstances in optimization problems. It contains 

seven unimodal functions with only one optimal solution and 16 multimodal functions with multiple optimal 

solutions but only one global optimal one. All these unimodal functions have high problem dimensions. 

Meanwhile, the multimodal functions can be split into two groups. The first group consists of six functions 

with high problem dimensions, while the dimensions of the other ten functions are fixed. A detailed 

description of these functions is shown in Table 2. 
 

 

Table 2. A detailed description of the set of 23 functions 
No Function Dim Space range Optimal score 

F1 Sphere 60 [-100, 100] 0 

F2 Schwefel 2.22 60 [-100, 100] 0 
F3 Schwefel 1.2 60 [-100, 100] 0 

F4 Schwefel 2.21 60 [-100, 100] 0 

F5 Rosenbrock 60 [-30, 30] 0 
F6 Step 60 [-100, 100] 0 

F7 Quartic 60 [-1.28, 1.28] 0 

F8 Schwefel 60 [-500, 500] -418.9×dim 
F9 Ratsrigin 60 [-5.12, 5.12] 0 

F10 Ackley 60 [-32, 32] 0 

F11 Griewank 60 [-600, 600] 0 
F12 Penalized 60 [-50, 50] 0 

F13 Penalized 2 60 [-50, 50] 0 

F14 Shekel Foxholes 2 [-65, 65] 1 
F15 Kowalik 4 [-5, 5] 0.0003 

F16 Six Hump Camel 2 [-5, 5] -1.0316 

F17 Branin 2 [-5, 5] 0.398 
F18 Goldstein-Price 2 [-2, 2] 3 

F19 Hartman 3 3 [1, 3] -3.86 
F20 Hartman 6 6 [0, 1] -3.32 

F21 Shekel 5 4 [0, 10] -10.1532 

F22 Shekel 7 4 [0, 10] -10.4028 
F23 Shekel 10 4 [0, 10] -10.5363 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Assessment result 

The result of the first assessment is presented in Tables 3 to 5. Table 3 presents the comparative 

result for the seven high dimension unimodal functions. Table 4 presents the comparative result for the six 

high-dimension multimodal functions. Table 5 presents the comparative result for the ten fixed-dimension 

multimodal functions. Three parameters are presented in Tables 3 to 5: the mean or average score, standard 

deviation, and mean rank.  

Table 3 shows that SFCA is superior in overcoming the high-dimension unimodal functions. Among 

these six functions, SFCA performs as the best metaheuristic of the seven functions (Sphere, Schwefel 2.22, 

Schwefel 1.2, Schwefel 2.21, Rosenbrock, Step, and Quartic). Meanwhile, four confronters also become the 

best performer in solving Schwefel 2.22. These confronters are SMA, OOA, COA, and WaOA. Moreover, 

SFCA also can find the global optimal solution in handling Sphere and Schwefel 2.22. Although most 

metaheuristics can find the global optimal solution of Schwefel 2.22, the exceptionally high consequence is 

faced by GSO as the only metaheuristic that fails to find the global optimal solution of this function. GSO is 

the worst performer in this first group of functions, as it has been in sixth place six times and fifth place once. 

Meanwhile, SMA is the second worst performer due to its position in fifth place five times and sixth place 

once. The performance gap between SFCA, GSO, and SMA in solving functions in the first group is wide. 

Table 4 shows that SFCA is still superior in five functions but inferior in one function in solving the 

high-dimension multimodal functions. The five functions where SFCA becomes the best performer are 

Rastrigin, Ackley, Griewank, Penalized, and Penalized 2. Meanwhile, the function where SFCA becomes the 

second worst performer is Schwefel. The performance gap between SFCA and the second-best performer is 

wide in solving Rastrigin, Ackley, and Griewank, while this gap is narrow in solving Penalized and  

Penalized 2. Meanwhile, the performance gap between SFCA as the best performer and worst performer are 

wide in solving Rastrigin, Ackley, Griewank, Penalized, and Penalized 2. 
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Table 3. Comparison results on solving seven high dimension unimodal functions  
F Parameter SMA GSO OOA COA WaOA SFCA 

1 mean 9.7176×103 6.1191×104 2.8849×102 1.1297×103 8.0190 0.0001 
 std deviation 1.1115×104 1.0431×104 1.3270×102 4.3646×102 6.1864 0.0000 

 mean rank 5 6 3 4 2 1 

2 mean 0.0000 4.9391×1079 0.0000 0.0000 0.0000 0.0000 
 std deviation 0.0000 1.7586×1080 0.0000 0.0000 0.0000 0.0000 

 mean rank 1 6 1 1 1 1 

3 mean 1.2468×105 1.8998×105 3.3150×104 4.6116×104 5.5093×103 1.4939×103 
 std deviation 1.4286×105 9.5568×104 1.8788×104 1.7374×104 5.5602×103 2.9010×103 

 mean rank 5 6 3 4 2 1 

4 mean 3.9991×101 6.5303×101 1.4708×101 2.7755×101 4.0494 0.0254 
 std deviation 2.6575×101 9.3254 3.7040 9.0652 1.6855 0.0160 

 mean rank 5 6 3 4 2 1 

5 mean 2.9292×107 1.1202×108 1.3455×104 1.4552×105 2.1437×102 5.8939×101 
 std deviation 3.8990×107 4.8137×107 8.8386×103 9.3098×104 2.2047×102 0.0293 

 mean rank 5 6 1 2 4 1 

6 mean 1.0031×104 5.3961×104 2.6091×102 1.0383×103 2.3016×101 1.3198×101 

 std deviation 1.0705×104 1.0267×104 1.2494×102 6.5590×102 1.1422×101 0.3443 

 mean rank 5 6 3 4 2 1 

7 mean 4.3465×102 1.3625×102 0.1862 0.5627 0.0638 0.0173 
 std deviation 4.0570×102 5.2474×101 0.1030 0.2697 0.0371 0.0166 

 mean rank 6 5 3 4 2 1 
 

 

 

Table 4. Comparison results on solving six high-dimension multimodal functions  
F Parameter SMA GSO OOA COA WaOA SFCA 

8 mean -4.5652×103 -2.7963×103 -3.5439×103 -4.3278×103 -3.7470×103 -3.3106×103 
 std deviation 1.3233×103 9.5385×102 5.1313×102 7.2595×102 5.7246×102 4.3474×102 

 mean rank 1 6 4 2 3 5 

9 mean 1.1687×102 6.2795×102 1.7180×102 1.8141×102 1.8793×101 0.0001 
 std deviation 7.3826×101 6.4445×101 7.1581×101 4.6234×101 1.9264×101 0.0002 

 mean rank 3 6 4 5 2 1 

10 mean 8.0391 1.8867×101 4.2468 6.3539 0.8635 0.0012 
 std deviation 3.8934 0.6352 0.5269 1.0980 0.4314 0.0004 

 mean rank 5 6 3 4 2 1 

11 mean 8.3380×101 5.7091×102 3.6909 1.1803×101 0.7367 0.0004 
 std deviation 9.0354×101 1.2257×102 0.8468 3.4572 0.3899 0.0012 

 mean rank 5 6 3 4 2 1 

12 mean 4.3747×107 1.8014×108 3.0479 7.1408×103 1.2132 1.0212 
 std deviation 6.1472×107 1.0941×108 0.6906 3.4572 0.1665 0.1060 

 mean rank 5 6 3 4 2 1 

13 mean 1.0905×108 4.8723×108 1.1491×102 6.1818×104 4.3027 3.1849 
 std deviation 1.6513×108 2.0981×108 4.3842×102 9.5186×104 0.4336 0.0716 

 mean rank 5 6 3 4 2 1 

 

 

Table 5 indicates very tight competition in the third cluster of functions. In this cluster, the 

performance gap between the best and worst performers is generally narrow. The widest performance gap 

takes place in solving Goldstein Price. In this cluster, SFCA is in the first rank in six functions (Shekel 

Foxholes, Six Hump Camel, Hartman 3, Shekel 5, Shekel 7, and Shekel 10), second rank in one function 

(Kowalik), third rank in one function (Goldstein Price), and fourth rank in two functions (Branin and 

Goldstein-Price). 
The result from Tables 3 to 5 is then transformed into the cluster-based superiority result. This 

summary is presented in Table 6. The data in Table 6 represents the number of functions in each cluster 

where swarm flip-crossover algorithm (SFCA) is better than its related confronter. Table 6 shows that, in 

general, SFCA is better than its confronters by outperforming SMA, GSO, OOA, COA, and WaOA in 20, 

23, 17, 17, 17 functions consecutively. This distribution makes GSO the easiest confronter to outperform 

due to its inferiority to SFCA in all functions. The superiority of SFCA occurs in all three groups of 

functions. 

The individual search result is presented in Table 7. Table 7 presents the best result for every 

function in bold font. The result shows that the walk relative to the center of the swarm becomes the primary 

contributor by producing distinct finest result in 13 functions. Most of these functions are fixed dimension 

multimodal functions. On the other hand, the walk toward the best swarm member becomes the best 

performer by achieving the best result in 8 functions. Most of them have high dimension functions. 

The contribution of the third walk is minimal. 
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Table 5. Comparison results on solving ten fixed-dimension multimodal functions  
F Parameter SMA GSO OOA COA WaOA SFCA 

14 mean 1.1118×101 1.9176×101 1.1979×101 8.4474 1.0090×101 7.2195 
 std deviation 4.5153 3.1879×101 5.5551 4.9013 3.8637 3.4174 

 mean rank 4 6 5 2 3 1 

15 mean 0.0805 0.0877 0.0126 0.0105 0.0025 0.0028 
 std deviation 0.0675 0.1396 0.0171 0.0112 0.0021 0.0064 

 mean rank 5 6 4 3 1 2 

16 mean -0.4764 0.4417 -1.0177 -1.0164 -1.0220 -1.0290 
 std deviation 0.5079 4.9891 0.0136 0.0176 0.0101 0.0041 

 mean rank 5 6 3 4 2 1 

17 mean 1.5162 5.8448 0.4429 0.5030 0.4156 0.5663 
 std deviation 2.3003 7.7717 0.0998 0.1934 0.0288 0.2735 

 mean rank 5 6 2 3 1 4 

18 mean 4.7935×101 6.9103×101 4.0553 7.9342 2.6964×101 1.3157×101 
 std deviation 9.5125×101 1.3696×102 4.0079 9.5046 3.2071×101 1.4102×101 

 mean rank 5 6 1 2 4 3 

19 mean -0.0495 -0.0043 -0.0495 -0.0495 -0.0495 -0.0495 
 std deviation 0.0000 0.0070 0.0000 0.0000 0.0000 0.0000 

 mean rank 1 6 1 1 1 1 

20 mean -1.8302 -1.8642 -2.8461 -2.7989 -2.8490 -2.6478 
 std deviation 1.1560 0.6568 0.3028 0.3781 0.2101 0.3422 

 mean rank 6 5 2 3 1 4 

21 mean -1.9561 -1.3389 -1.9334 -2.5711 -1.8204 -3.0673 
 std deviation 2.3059 0.8458 1.5489 1.2333 0.7647 1.1105 

 mean rank 3 6 4 2 5 1 

22 mean -1.6622 -1.5209 -1.4523 -2.3632 -1.9250 -3.3423 
 std deviation 1.7844 0.6889 0.4693 0.9066 0.8939 1.6772 

 mean rank 4 5 6 2 3 1 

23 mean -1.6778 -1.6927 -1.8564 -2.2863 -2.1163 -3.6338 
 std deviation 0.9929 0.8594 0.4571 0.5919 0.7380 1.5299 

 mean rank 6 5 4 2 3 1 

 

 

Table 6. Cluster-based superiority result 
Cluster SMA GSO OOA COA WaOA 

1 6 7 6 6 6 

2 5 6 5 5 5 

3 9 10 6 6 6 
Total 20 23 17 17 17 

 

 

Table 7. Result of the individual search assessment 
Function Average fitness score 

1st Search 2nd Search 3rd Search 

1 1.7507×102 3.3165×102 7.3780×102 

2 0.0000 0.0000 0.0000 

3 1.4562×104 1.1847×104 5.6749×104 
4 1.3206×101 7.8667 3.3500×101 

5 4.8892×103 1.4919×104 7.3647×104 

6 1.5484×102 3.5648×102 6.3803×102 
7 0.1073 0.1482 0.3469 

8 -3.1101×103 -3.2406×103 -2.3645×103 

9 1.2831×102 2.2271×102 1.8134×102 
10 3.3775 4.3751 5.4326 

11 2.3422 4.0022 6.4419 

12 2.2938 3.0169×101 2.7584×101 
13 1.1063×101 1.0955×101 1.4321×104 

14 1.2043×101 1.0381×101 7.0548×101 

15 0.0360 0.0188 0.0566 
16 -0.9491 -0.9769 -0.7707 

17 6.3957 1.8074 4.3450 

18 4.9072×101 2.2309×101 4.2329×101 
19 -0.0495 -0.0495 0.0000 

20 -1.9025 -2.1336 -1.5071 

21 -0.9193 -1.8271 -1.3047 
22 -1.2594 -1.7844 -1.3865 

23 -1.7217 -1.8431 -1.6642 
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4.2.  Discussion 

In general, the superiority of SFCA proves this work's contribution to improving the performance of 

existing metaheuristics. This superiority also shows that SFCA has good exploitation and exploration 

capabilities. The exploitation capability, commonly known as finding the better solution near the current 

solution, can be seen in the superiority of SFCA in solving the unimodal functions. Meanwhile, the 

exploration capability, commonly known as diversifying the possibility of search within space, can be seen in 

the superiority of SFCA in solving the multimodal functions with multiple optimal solutions but only one 

global optimal one. Moreover, by comparing the results in Table 6, it is shown that the exploitation capability 

of SFCA is as good as its exploration capability.  

The result of the comparative assessment indicates that the stringent acceptance procedure is 

essential in the current development of metaheuristics. In general, the performance of SMA and GSO is 

worse than SFCA, OOA, COA, and WaOA. Moreover, the performance gap between these two 

metaheuristics is far worse than the four ones, especially in solving the high-dimension functions. 

Meanwhile, the competitiveness of OOA, COA, and WaOA relative to SFCA in the third cluster of functions 

indicates the contribution of the local search with narrowing space during the iteration. Among all 

metaheuristics used in this assessment, these three metaheuristics deploy the local search with narrowing 

space in a dedicated manner after the guided search. 

The first and second assessments indicate the necessity of adopting multiple searches in multiple 

phases. SFCA, OOA, COA, and WaOA implement multiple searches in multiple phases. SMA implements 

multiple searches in a single phase using specific criteria to perform certain strategies. Meanwhile, GSO 

implements only one strategy: guided search without local search. Table 7 shows that although the walk 

toward the best swam member is superior to the other two walks, the performance of the whole package of 

SFCA, as shown in Table 3 to 5, is much better than the first walk when implemented individually. 

By investigating the shape of the functions, such as in KMA, it is shown that the superiority of 

SFCA is found in all functions whether their global optimal solution is nearby or far from the central point of 

the space. This circumstance can be linked to all walks in SFCA. Through the first search, the swarm 

members tend to move toward the best swarm member. Through the second search, the movement of the 

swarm is pushed toward the center of the swarm. Meanwhile, regarding the uniformity during the 

initialization phase, the center of the swarm will be near the center of the space. The balance arithmetic 

crossover in the third phase also affects this circumstance. This walk makes the swarm member tend to get 

closer to the center of the space because the crossover takes place between the swarm member and the center 

of the space. This strategy poses the strength of SFCA in solving optimization problems if the global optimal 

solution is near the center of the space. Besides, SFCA is also competitive in solving problems where the 

global optimal solution is far from the center of the space, especially if it is compared with metaheuristics 

that deploy a single search without implementing the stringent acceptance approach. 

The result of the individual search assessment exposes that both motion toward the best swarm 

member and the motion relative to the center of the swarm are complementary to each other. The motion 

toward the best swarm member provides superior exploration and exploitation capabilities as the first search 

contributes mainly to solving high dimension functions, whether they are unimodal or multimodal. On the 

other hand, the motion relative to the center of the swarm contributes mainly to balancing the exploitation 

and exploration capabilities as this search contributes dominantly to solving the fixed dimension multimodal 

functions. 

The result of the individual search assessment also exposes the less contribution of the flipping 

and crossover methods than the directed search. The performance of the third search is behind the first and 

second searches. This result strengthens the circumstance that the directed search becomes more powerful 

than the crossover-based search as more swarm-based metaheuristics is introduced in the recent year rather 

than the crossover-based search. This circumstance can be used as motivation for further development of 

the crossover-based search to make it more competitive, especially when it competes with swarm 

intelligence.   

The complexity of SFCA can be investigated based on the existence of the loop. In the initialization 

phase, only a nested loop consists of two loops. The swarm size controls the outer loop, while the dimension 

controls the inner loop. This circumstance makes the complexity of the initialization phase can be presented 

as 𝑂(𝑛(𝑆). 𝑑). On the other hand, the nested loop in the iteration phase is different. There is a three-layer 

loop. The outer layer is controlled by maximum iteration. The swarm size controls the middle layer. 

Meanwhile, the inner loop consists of two sequential loops. The first loop is a loop for the whole swarm to 

find the center of the swarm with a loop controlled by the dimension in it. On the other hand, the second loop 

consists of a loop for the whole dimension but is performed three times as SFCA implements three walk 

strategies. Based on this explanation, the complexity in the iteration phase can be presented as 

𝑂(𝑡𝑚. 𝑛(𝑆). (𝑑(𝑛(𝑆) + 3))). 
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5. CONCLUSION 

A new metaheuristic called as swarm flip-crossover algorithm is presented in this paper (SFCA). 

The fundamental concept of SFCA is utilizing swarm intelligence as the core model with a balance arithmetic 

crossover strategy as complementary. This formalization of the model through pseudocode, and mathematical 

formulation has been presented as an interpretation of the fundamental concept. Both comparison and 

individual search assessments have been performed where SFCA is proven superior to its five confronters. 

SFCA performs consecutively better in 20, 23, 17, 17, 17 functions than SMA, GSO, OOA, COA, and 

WaOA. Meanwhile, based on the individual search assessment result, the walk toward and away from the 

center of the swarm performs superiorly. Then it is followed by the walk toward the best swarm member and 

the combined flip and crossover search. This result indicates that swarm intelligence is generally more potent 

than the evolution-based metaheuristic, where the crossover becomes its backbone. 

 There are several pathways for future studies. First, more assessment, especially with practical 

optimization use cases, is needed to evaluate the performance of SFCA more comprehensively. Second, the 

inferior performance of the evolution-based technique can be used as motivation for improvement because, 

until now, evolution-based metaheuristics are still widely utilized in various optimization studies. Third, 

inventing new references for the guided search is challenging, primarily to compete with the best swarm 

member. 
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