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 Prostate cancer is the predominant form of cancer observed in men 

worldwide. The application of magnetic resonance imaging (MRI) as a 

guidance tool for conducting biopsies has been established as a reliable and 

well-established approach in the diagnosis of prostate cancer. The diagnostic 

performance of MRI-guided prostate cancer diagnosis exhibits significant 

heterogeneity due to the intricate and multi-step nature of the diagnostic 

pathway. The development of artificial intelligence (AI) models, specifically 

through the utilization of machine learning techniques such as deep learning, 

is assuming an increasingly significant role in the field of radiology. In the 

realm of prostate MRI, a considerable body of literature has been dedicated 

to the development of various AI algorithms. These algorithms have been 

specifically designed for tasks such as prostate segmentation, lesion 

identification, and classification. The overarching objective of these 

endeavors is to enhance diagnostic performance and foster greater agreement 

among different observers within MRI scans for the prostate. This review 

article aims to provide a concise overview of the application of AI in the 

field of radiology, with a specific focus on its utilization in prostate MRI. 
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1. INTRODUCTION 

Magnetic resonance imaging (MRI) is frequently employed in the diagnosis and management of 

prostate cancers that possess clinical significance. Although reports of MRI's usefulness exist, the diagnostic 

performance seen in large-scale academic investigations cannot be reliably reproduced outside of research 

hospitals [1]–[5]. The application of prostate MRI for the diagnosis of prostate cancer through MRI-guided 

biopsy entails a series of sequential quality control measures. These measures encompass the acquisition of 

MRI scans, the interpretation and reporting of the MRI findings, the processing of MRI data for biopsy 

purposes, and the registration of MRI images with transrectal ultrasonography during the biopsy procedure 

[6]–[8]. The prostate imaging and reporting data system (PI-RADS) was formulated and introduced in 2015 

[9] by a consortium of global experts with the aim of enhancing uniformity in the application of MRI for 
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prostate assessment. The most recent iteration currently employed is version 2.1 [10]. However, the essential 

features of PI-RADS are still subjective, which can weaken the reliability of prostate MRI, especially in the 

community context, despite the fact that it has been shown to increase the use of prostate MRI in prostate 

cancer clinical treatment. The application of artificial intelligence (AI) in medical imaging, encompassing 

radiography and pathological conditions, has demonstrated advancements in tasks [11], [12]. 

Machine learning is a specialized domain within the field of AI that facilitates the acquisition of 

knowledge by computers through the analysis of data provided by human experts. This acquired knowledge 

is then utilized to generate predictions and make informed decisions [13], [14]. Machine learning algorithms 

can be categorized into three distinct groups as shown in Figure 1. Initially, it is imperative to note that 

algorithms can solely be instructed through the utilization of a training data set that encompasses ground truth 

information that has been meticulously annotated by experts in the respective field. This particular approach 

is commonly referred to as supervised learning. Furthermore, within the domain of unsupervised learning, 

algorithms have the capability to undergo training without relying on human-labelled data. Thirdly, 

reinforcement learning places significant emphasis on the algorithm's previous failures and successes as 

influential factors in shaping its subsequent learning processes [15]–[18]. 

 

 

 
 

Figure 1. The machine learning categories 

 

 

The significance of machine learning strategies is increasing in the field of radiology due to the 

substantial volume of data generated on a regular basis. Machine learning techniques offer the capability to 

analyze and utilize large-scale datasets for training AI models, which is more efficient compared to 

conventional statistical methods [19], [20]. Convolutional neural networks (CNNs) represent a specific class 

of algorithms employed within the realm of deep learning, which constitutes a subfield of supervised 

machine learning. These neural networks possess concealed layers and are structured in a manner that mimics 

the organization of human neurons [21], [22]. 

In traditional radiology applications, the input neurons of a network are constructed using integrated 

feature vectors, and the network subsequently comprises multiple hidden layers consisting of neural nodes. In 

order to establish a connection with the output neurons that correspond to the model's final result, each node 

forms connections with nodes in different layers, with the strength of these connections being determined by 

varying weights [23]–[25]. This review paper aims to provide an overview of the application of AI in 

radiology applications, specifically for prostate MRI. The field of AI in prostate MRI has garnered significant 

attention in the past five years, primarily driven by the advancements in deep learning-based AI applications. 

 

 

2. THE PERFORMANCE OF AI IN PROSTATE CANCER BASED-MRI SCANS  

The extensive implementation of prostate MRI has led to a considerable variation in the quality of 

scans obtained. The factors that contribute to the scanning process encompass various elements such as the 

presence of a hip prosthesis, patient motion, and rectal gas, as well as the characteristics of the equipment and 

pulse sequence parameters [26], [27]. The PI-RADS v. 2.1 document provides comprehensive information 

regarding the suggested technological prerequisites and patient preparation methodologies aimed at 

enhancing the quality of prostate MRI [10]. Although there is a general correlation between strict adherence 

to PI-RADS technical criteria and higher-quality prostate MRI scans [28], [29] it is important to note that this 
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relationship is not universally consistent [30] Moreover, the impact of patient preparation measures is highly 

varied, encompassing procedures such as bowel preparation and the administration of antispasmodic 

medications [30]–[32]. The European prostate MRI experts have recently released prostate imaging quality 

(PI-QUAL), which is among several ongoing global initiatives aimed at improving the quality of prostate 

MRI [33] The primary objective of this system is to evaluate and determine the diagnostic efficacy of various 

pulse sequences utilized in prostate MRI [33]. A recent study examined the inter reader agreement for 

PI-QUAL using a sample of 103 patients and two dedicated radiologists. Significant concurrence was 

observed for each PI-QUAL score (r = 0.85, p < 0.001, percent agreement = 84%). The diagnostic quality of 

T2-weighted imaging, dynamic contrast-enhanced MRI, and diffusion-weighted imaging demonstrated a 

substantial level of agreement, with 92%, 88%, and 78% of the 103 scans, respectively, yielding high-quality 

results [34]. The forthcoming disclosure will provide insights into the true impact of the PI-QUAL evaluation 

system on the improvement of prostate MRI quality. Limited scholarly investigation has been conducted 

pertaining to the utilization of AI for the assessment and enhancement of the caliber of prostate MRI scans. 

In a preliminary study comprising a cohort of 30 individuals, Gassenmaier et al. [35] conducted a 

comparative analysis between the utilization of a novel deep learning (DL) T2 weighted turbo spin echo 

imaging sequence and conventional T2 weighted turbo spin echo imaging in prostate MRI. The researchers in 

this study were able to achieve faster image acquisitions by training the deep learning algorithm using a 

representative data pool. The methodology employed data consistency inside a parallel imaging signal model 

following the completion of training. The rapid reconstruction of MR images using the fixed-unrolled 

technique is based on the principles of data consistency, trainable Nesterov momentum, and regularization 

using convolutional neural networks (CNN). The regularization approach employs a novel hierarchical 

iterative network architecture. This network utilizes a technique of iteratively decreasing and increasing the 

resolution of feature maps, resulting in a lower memory usage compared to conventional CNNs. The network 

received under sampled k-space data and conventional coil-sensitivity maps. The acquisition time for image 

capture of the deep learning-based T2 sequence was 1 minute and 38 seconds, in contrast to the conventional 

T2 sequence, which required 4 minutes and 37 seconds. The performance of lesion identification was 

enhanced with the implementation of the deep learning-based T2 sequence, as a result of decreased noise 

levels and improved image quality ratings [35]. Further validation in larger cohorts is necessary for this 

feasibility study.  

The availability of consistently high-quality imaging studies during read-outs would significantly 

enhance the performance of radiologists in their work. There are several ongoing initiatives aimed at 

enhancing the standard of prostate MRI, and the utilization of AI in addressing this matter is currently in its 

nascent stages. Nevertheless, the integration of AI-based MRI quality models within structured frameworks 

such as PI-QUAL has the potential to augment this process (5). 

 

 

3. THE PERFORMANCE OF AI IN PROSTATE TISSUE SEGMENTATION 

The delineation or partitioning of the prostate using magnetic resonance imaging (MRI) scans has 

significant physiological and therapeutic consequences [36]. According to the guidelines of PI-RADS v. 2.1, 

it is utilized for multiple purposes including preparing MRI data for leading specimens in fusion-guided 

examination platforms that incorporate transrectal ultrasonography with magnetic resonance imaging (MRI), 

assisting in the planning of radiation therapy, and providing a precise measurement of the total volume of the 

prostate gland for normalizing serum prostate-specific antigen (PSA) density [37]. The process of manually 

delineating the prostate is characterized by a high degree of labor intensity and a susceptibility to errors [38]. 

The application of AI in prostate segmentation is a prevalent practice. However, the manual processing of 

prostate MRI data is a laborious task, and the availability of commercial solutions for this purpose is 

currently limited [39]. In contemporary discourse, there is a prevailing notion that AI systems based on deep 

learning techniques exhibit notable efficacy in the task of segmenting the prostate gland and its respective 

zones. 

Wang et al. [40] developed a prostate segmentation model for T2-weighted MRI that is fully 

automated. This model utilizes a 3D fully convolutional network with deep supervision. The researchers 

observed a mean dice similarity coefficient (DSC) of 0.88 (range, 0.83-0.93) for the entirety of the prostate 

when comparing the AI model with the hand segmentations. Sanford et al. [41] employed a deep learning 

methodology that integrated both 2D and 3D architectures, along with the inclusion of transfer learning, in 

order to develop an algorithm capable of accurately segmenting the entire prostate and the transition zone 

(TZ). According to the study, the mean Dice similarity coefficients (DSCs) for the entire prostate and TZ 

were 0.931 and 0.89, respectively. The utilization of a distinctive data augmentation technique in this study 

resulted in notable improvements in the segmentation performances of both the entire prostate and the TZ. 

Specifically, the segmentation performances were enhanced by 2.2% and 3% for the entire prostate and TZ, 
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respectively. This augmentation technique was specifically designed to address the deformations, intensity 

variations, and alterations in image quality that are commonly observed in MRI data obtained from five 

distinct medical centers [41]. Anisotropic hybrid network (AH-Net) architecture is shown in Figure 2 as part 

of the training, validation, and testing procedures. 

 

 

 
 

Figure 2. Anisotropic hybrid network (AH-Net) architecture as part of the training, validation, and testing 

procedure [41] 

 

 

According to a recent study by Bardis et al. [42], the average DSCs for the entire prostate, TZ, and 

peripheral zone (PZ) were 0.94, 0.91, and 0.774, respectively. The study involved a deep learning model that 

was constructed using three convolutional networks with a U-Net architecture. The dataset used in the study 

consisted of 242 patients. 

Prostate segmentation has garnered significant attention as one of the primary applications of AI in 

prostate MRI. Several algorithms for prostate segmentation have been documented in the existing literature. 

However, it is worth noting that only a limited selection of five algorithms is currently accessible on 

commercially available platforms designed for user interaction. The Food and Drug Administration (FDA) 

has granted approval for the utilization of the following devices within the United States: Prostate MR® 

(manufactured by Siemens), Quantib Prostate® (manufactured by Quantib), OnQ Prostate® (manufactured by 

Cortechs.ai), PROView® (manufactured by GE Medical Systems), and QP-Prostate® (manufactured by 

Quibim) [43], [44]. The utilization of AI-powered prostate segmentation algorithms offers two distinct 

advantages: the ability to obtain precise prostate-specific antigen (PSA) density calculations and a reduction 

in the amount of time required for MRI data preparation in the context of biopsies. Automated segmentation 

of the prostate and its zones can provide valuable assistance in the detection and classification of 

intraprostatic lesions (5). 

 

 

4. AI IN INTRAPROSTATIC INFLAMMATION SCREENING 

The success of finding intraprostatic lesions during prostate MRI scans has a direct effect on how 

well clinically significant prostate cancer can be found with MRI guidance. As prostate MRI becomes more 

common in clinical practice, a reliable AI system with a satisfactory true-positive/false-positive rate is in high 

demand [45], [46]. Ishioka et al. [47] in their research of 335 patients, created a DL-based model that made 

use of U-Net and residual network (ResNet) designs to identify specific lesions indicative of biopsy-

confirmed prostate cancer. Area under the curve (AUC) values for prostate cancer detection obtained from 

testing the model on two different populations were 0.636 and 0.645, respectively [47]. For the purpose of 

identifying lesions on MRI that may indicate the presence of cancer after a targeted biopsy was performed, 

Schelb et al. [48] constructed and evaluated a U-Net-based DL model that was trained on data from  

250 patients. On a per-patient basis, the sensitivity and specificity of the PI-RADS cut-offs 3 and above 
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versus 4 and above were 96% and 88%, respectively, in the test set [48]. Another study involving 292 low-

risk prostate cancer patients found that a U-Net-based DL model could detect targeted biopsy-confirmed 

prostate cancer lesions with volumes of >0.03 to >0.5 cc with an average sensitivity of 82% to 92% and an 

AUC of 0.65-0.89. Larger data sets are preferable for training AI algorithms, according to experts [49]. Yoo 

et al. [50] trained a ResNet architecture-based neural network on 427 cases using MRI and guided biopsies, 

and the reported AUCs for prostate cancer identification in a separate 108 sample size test cohort were 0.87 

and 0.84 at the slice and patient level, respectively. The AI was a commercial system that has been approved 

for use in both Europe and the US. The average performance of radiologists using an AI system increased 

from 0.84 to 0.88 when searching for PI-RADS >3 lesions. The median reading time in the unaided/aided 

scenario dropped from 103 to 81 s, a reduction of 21%. Inter reader agreement also improved, from = 0.22 to 

0.36. This was a multi reader study designed to simulate what a radiologist would see before performing a 

biopsy; hence, histopathological validation was not included. Despite these caveats, the work provides a 

useful blueprint for how to evaluate lesion detection AI systems for prostate MRI [51]. Saha et al. [52] built a 

sophisticated AI model consisting of two parallel 3D CNNs (dual-attention U-Net detector and residual 

classifier) and a decision fusion node. The model was trained on data from 1,950 patients and its purpose is 

to automate the identification of clinically relevant prostate cancer using biparametric MRI (bpMRI). The 

experiment was conducted on a sample size of 486 patients. The authors achieved superior results compared 

to four advanced baseline architectures (U-SEResNet, unit network (UNet)++, U-Net, and Attention U-Net) 

in diagnosing patients. They obtained an area under the receiver operating characteristic curve of 

0.882±0.030 and sensitivity values of 83.69±5.22% and 93.19±2.96% at false positive rates of 0.50 and  

1.46 per patient, respectively. Notably, this AI model exhibits a moderate level of agreement with human 

radiologists (0.51±0.04) and pathologists (0.56±0.06). A recent meta-analysis of 12 trials found that the area 

under the curve (AUC) for detecting prostate cancer was 0.86, which is considered clinically significant. The 

95% confidence interval for this AUC ranged from 0.81 to 0.91 [52]. 

Prostate cancer analysis there is still several caveats despite the fact that the present published 

results are encouraging for AI applications in prostate cancer detection with MRI. The first is that large-scale, 

diversified, and well-annotated training and independent testing data sets are essential for DL-based AI 

algorithms [53]. Current evidence in the literature is largely based on research with sample sizes of 1,000 

cases, which is likely to limit the widespread applicability of existing AI systems. Since data governance 

standards might vary globally, and bureaucracy can frequently be time-consuming and resource-intensive, it 

can be difficult to construct big, multicenter, and consequently diverse data sets for constructing stronger AI 

models. In order to speed up the construction of models between institutions and provide higher 

generalizability in clinical application without actual data exchange, alternatives such as federated learning 

can be highly effective [54]. The current published performance measures are not reflective of a real-world 

scenario because they are largely based on cross-validation and do not involve a real-world interaction 

between a radiologist and AI. The consequences of such a connection and the discrepancies between 

radiologist interpretations and AI findings are not well understood [55]. The AI will undoubtedly prove 

useful in prostate cancer detection during MRI in the future. 

 

 

5. CONCLUSION 

In conclusion, there has been a substantial rise in the utilization of MRI over the past decade. The 

utilization of prostate MRI in the detection of prostate cancer is influenced by several critical procedures, 

nearly all of which are currently vulnerable to human-induced errors. In recent years, there have been notable 

advancements in the field of imaging attributed to AI. It has been suggested that AI-based systems possess 

the ability to undertake tasks traditionally performed by diagnostic radiologists. The tasks encompassed in 

this study involve the assessment of scan quality, segmentation of the prostate, detection of lesions, and 

classification of PI-RADS in research environments. Currently, there are commercial AI platforms for 

prostate MRI. However, the majority of AI solutions developed for this purpose in research settings 

necessitate training with larger and more diverse datasets. Furthermore, before these AI models can be 

routinely employed in clinical practice, they must undergo testing in actual situations. 
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