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 Data collection using thermocouple sensors in low-cost data acquisition is 

prone to noise interference, which could reduce the data quality. Noise 

sources such as cold junction compensators, electromagnetic interference, 

and Johnson noise can significantly affect the reliability and accuracy of 

conventional measurements. This study aims to improve the quality of 

thermocouple sensor readings on low-cost data acquisition using calibration 

method based on deep learning and the denoising process using a wavelet 

transform. This taken approach successfully increase the accuracy value of 

97.67% with a mean absolute error (MAE) of 0.2. The precision also 

increases of 262.7% as indicated by the result of signal-to-noise ratio (SNR) 

with a value of 105.29 dB. Comparative analysis was carried out against 

National Instruments® device and it was found that deep-wavelet method 

had a lower and higher of MAE and SNRdB values of 16.67% and 0.8% 

respectively. This study shows that the denoising-calibration method with 

deep-wavelet can improve the accuracy and reliability of data from low-cost 

thermocouple devices. 
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1. INTRODUCTION 

Temperature is a fundamental parameter in sciences which influences many aspects of life particularly 

in thermal process. The wide use of these parameters has led to an increasing demand for accurate temperature 

measurement instruments. The global market data estimates that the annual growth of temperature sensors will 

increase by 4.8% in 2027 [1], and it is also predicted that in the next ten years will exceed 10 billion 

sensors/year [2]. The impact caused by this increased demand is the rise of the thermocouple modules price with 

high accuracy. Thus, the increasing demand of using of cheap sensors with low-quality accuracy will slowly 

increases. The level of accuracy and range of the temperature sensor is influenced by the type of sensor. 

Thermocouple, one of them, is widely used because of their broad range capability and quick response compare 

with others temperature sensor. Thermocouples also have more reasonable prices and easy handling compared 

with resistance temperature detectors (RTD), which is another type of temperature sensor [3]. The main 

problem found in thermocouple sensors is the presence of Johnson noise which is created due to thermal 

gradients at the reference junctions [4] caused by poor insulation, shielding, and temperature stabilization in 
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thermocouple data acquisition devices. Other noise created due to electromagnetic interference in electronic 

circuits and unstable input voltages due to ripple or poor grounding affects the quality of the readings output [5]. 

There are several approaches in minimizing the presence of noise in thermocouple sensor, one of them 

is applying the Kalman filter algorithm [6]. In fact, the process of implementing the Kalman filter is strongly 

depend on the system dynamic model which is set at the beginning and ineffective with the high variation data 

[7]. Another approach by Leon-Medina et al. [8] using a deep neural network has also been carried out to 

minimize the amount of noise contained in the thermocouple data and obtain the best of root mean squared error 

(RMSE) value of 1.19 °C. However, the presence of noise is still visible in the peak signal area. Yilmaz et al. 

[9] using fast Fourier transform (FFT) for denoising process, which is based on the observed frequency values. 

This method still has limitations in dealing with transient noise and frequency leakage, which are common in 

non-stationary signals such as sensor data readings. Papaioannou et al. [10] using moving average filter (MAF) 

to minimize errors in thermocouple sensor during temperature measurement in internal combustion engines with 

a maximum error value of 1.5% to 2% of peak temperature. The MAF filtering process has limitations in 

multiresolution analysis because it treats all component frequencies evenly. This method also does not respond 

well to non-stationary signals.  

High fluctuation and noise generated by the thermocouple sensor cause conventional data acquisition 

techniques to be inaccurate and unreliable. The aim of our study was to examine the calibration and denoising 

method to improve the readings accuracy and quality of low-cost thermocouple device (DAQ) in order to 

overcoming the previous problems. This work contributes to understanding calibration techniques, guiding 

informed decisions in selecting appropriate temperature measurement methods for real-world applications.  

 

 

2. METHOD  

The calibration process was carried out using deep neural network on each thermocouple to reduce 

deviation values created to differences in the characteristics of each sensor. The denoising method also 

performed to reduce the uncertainty value which was created by interreferences and Johnson noise. This 

method using wavelet transform by applying a threshold to each wavelet coefficient by entering the deviation 

value from each level. Both techniques are performed based on computer modeling by identifying the mean 

absolute error (MAE) value and signal-to-noise ratio (SNR) performance of the deep wavelet method. 

This study begins with a calibration process of thermocouple sensors using Huber® controlled 

thermostatic bath (CTB) with high precision temperature controls (±0.1 °C). The process was performed to 

get the difference of temperature readings between the thermocouple and the actual temperature setup by the 

CTB. The temperature calibration ranging from 20 ℃ to 73 ℃ with a sampling frequency of 1 Hz for five 

minutes. Type-K of thermocouple was used in this experiment with length of 1,500 mm and a probe diameter 

of 3 mm. Some of the thermocouple was connected to the 32-channel of low-cost data acquisition (DAQ) 

module and the rest was connected to NI-9213 using NI-cDAQ 9174. Both of temperatures data were stored 

and analyze in one PC to avoid the inconsistency of elapsed time. Figure 1 shows the data collection process 

using two different DAQ (e.g. National Instrument® and low-cost thermocouple device/DAQ module). The 

artificial neural network (ANN) was then performed to calibrated the result data from the data collection 

process. The activation function of ANN architecture was varied so that enable of capturing complex pattern 

of the data. The smallest MAE of the activation function will be used by the ANN architecture for the 

denoising process using wavelet transform. 

 

 

 
 

Figure 1. Schematic system of data collection setup 
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The reading data from both modules are analyzed using ANN and wavelet for its accuracy, 

precision, errors, and data fluctuations readings. Specifically, the deep-wavelet method's calibration and 

denoising capabilities were evaluated at temperatures ranging from 20 ℃ to 73 ℃ under steady-state 

conditions, considering each dataset's MAE, SNRdB, and uncertainty values. The MAE was used to analyze 

accuracy and systematic errors. Lower MAE values indicate a superior calibration. Additionally, signal-to-

noise ratio in decibels (SNRdB) was employed to assess denoising performance. Higher values of SNRdB 

suggest effective noise reduction. Evaluating uncertainty provided valuable insights into the technique's 

reliability and robustness for low-cost thermocouple measurements with deep-wavelet. Ultimately, the 

comparison with NI-9213 and the application of deep-wavelet showed significant implications for enhancing 

temperature measurements' accuracy and reliability, particularly when employing low-cost thermocouples.  

 

2.1.  Artificial neural network 

Artificial neural network (ANN) is a computational model system and created by mimicking the 

network pattern of the human brain so that it can recognize patterns and complex relationships in data [11]. 

The use of ANN in the calibration process using noisy data is suitable because of its ability to generalize and 

recognize outlier data [12]. ANN has an architecture consisting of layers of neurons with nodes connected. 

Interactions and relationships between each node in each layer have different weight and bias values which 

can function as regression or classification [13]. ANN performs learning through forward propagation to 

compute input values from data into initial node neurons to produce the expected output node. This process is 

performed through a computational process of adding weight and bias to each neuron node through a specific 

activation function [14]. The performance test of the ANN uses the MAE shown in (1) as the accuracy test 

performance of the regression model. This test is generally used due to intuitive interpretation of the model 

[15].  This MAE represents the accuracy of the data. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑎𝑗

𝐿 − �̂�𝑖|
𝑁
𝑖=1  (1) 

 

N: Number of samples in batch data 

The accuracy performance of the ANN model is affected by the given activation function [16]. 

During the calibration process, variations of the activation function are carried out by varying the activation 

function, namely rectified linear unit (ReLU), exponential linear unit (ELU), Gaussian error linear unit 

(GELU), linear and leaky ReLU. The choice of the ReLU activation function is due to its ability to deal with 

vanishing gradients [17]. ELU has ability to recognize noisy data and also used to prevent dying node 

neurons [18]. Linear is used to find out whether the simplification process can be used to ease model 

computation. GELU is used to overcome dying node neurons with lighter computation than ELU, and the 

asymptotic behavior of GELU provides a more stable training process [19]. Simplification of equations for 

computational process efficiency and prevention of dying node neurons is also found in Leaky ReLU [20] as 

stated in (2) to (6). 
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Backpropagation was used to optimize the weight and bias values of the model. Backpropagation 

performs optimization based on the error value obtained from the loss function equation with the actual and 

predicted values as input to the function [21]. The mean squared error (MSE) function is used rather than the 

mean absolute error (MAE) due to MSE performs well on data with a Gaussian distribution. MSE show in 

(9) not using a Laplacian distribution as a loss function distribution [22]. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 2625-2633 

2628 

2.2.  Wavelet transform  

Wavelet transform is a mathematical technique for converting data from the time domain into the 

frequency domain and particularly used in processing and data analysis. For multiresolution analysis, time 

domain is easier to uses than the Fourier transform, which only presents data in the form of the frequency 

domain [23]. Wavelet transform has more adaptability than Fourier transform in terms of noise suppression. 

This is because the threshold given to each coefficient is different at each level, which makes the use of 

Wavelet transform have various implementations [24]–[28]. 

Wavelet discrete transform is used because of its computational efficiency, which resembles fast 

Fourier transform. Discrete wavelet transform is more commonly used than continuous wavelet transforms 

for signal decomposition [29]. The Haar transformation is used in the noise reduction function because of its 

simplicity, versatility, and computational efficiency [30], as shown in (7) and (8). 

 

𝜑[𝑛] = {

  1,  𝑖𝑓 0 ≤ 𝑛 <
𝑁

2

−1,  𝑖𝑓 
𝑁
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 (7) 
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  0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

 

where N is number of signal input; 𝜑[𝑛] is wavelet function at level-𝑗 and position-𝑘; and 𝜙[𝑛] is wavelet 

scaling function at level-𝑗 and position-𝑘. 

In the thresholding process, the VisuShrink (10) is used because of its ability to overcome additive 

noise, which commonly occurs in sensors [31]. The deviation value for each level is calculated using (9) and 

(10) to determine global thresholding. The global thresholding value will be used for the denoising process 

for each wavelet coefficient. The SNR equation measures the wavelet transform's denoising performance 

against the equation's actual value (13). The uncertainty value is calculated using the mean deviation in (12) 

to find out the reliability data. All the equations are shown in (9)-(13): 
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where �̂� is signal deviation; 𝐾 is number of coefficients at level-𝑗; 𝐽 is number of levels; 𝑇 is universal 

thresholding; 𝑀𝐴𝐷 is mean absolute deviation; and 𝜇 is mean data. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Data calibration 

Figure 2 shows the data of thermocouple sensor from low-cost DAQ compare with actual 

temperature values from CTB settings within range from 20 ℃ to 73 ℃. Data from low-cost DAQ shows 

different offset variations to the actual temperature set. The graph also shows the presence of evenly 

distributed noise related to the noise caused by the cold junction compensator in the amplifier contained in 

the thermocouple module [32]. The data shows that the magnitude of the noise fluctuation is different at low 

temperature and high temperatures, which might be caused by the presence of Johnson noise. This noise 

creates the current that flowing from sensor to thermocouple module fluctuates due to increase of thermal 

energy and vibrations from the water as a reading environment [33]. 
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Figure 2. Calibration between thermocouple sensor readings and actual temperature data readings 

 

 

Deep learning using ANN is performed to reduce noise by varying the type of activation function in 

(2) to (6). In this work two-layer architecture were used. Eight neuron nodes in the first layer and one neuron 

node in the second layer with both having the same type of activation. The training process was carried out 

with α value of 0.001 and i of 1,000 iterations as shown in Figure 3. The ELU activation function has the 

lowest MAE value and GELU with a faster convergent time than the other four activation functions. In 

addition, ELU, has high results when trained on data with high noise. Our result in this stage shows linear 

consistency with Poulinakis et al. [34].   

 

 

 
 

Figure 3. Activation functions MAE comparisons 

 

 

3.2.  Denoising signal 

The next process is to carry out analysis using wavelet transform as a denoising process with a  

𝐽 level value of 6 and total N of 6,300. The decomposition results of the wavelet transform calculated using 

(7) to (10). Figure 4 shows the results of the wavelet decomposition process. The value of 𝑐𝐴𝑗,𝑘 and 𝑐𝐷𝑗,𝑘 

represents the coefficient of the approximation. Detail coefficients at the 𝑗-level, the 𝑘-signal and 𝑐𝐴𝑗,𝑘
∗ , 

𝑐𝐷𝑗,𝑘
∗  represents the approximation and detail coefficients respectively, after denoising with wavelet 

transform. The results are indicating that the value 𝑐𝐴6,𝑘 shows the same trend as the input signal from deep 

learning calibration. This might be due to the value of 𝑐𝐴6,𝑘 represents values at low frequencies. In addition, 

the sampling frequency during the data collection process, which is 1 Hz, makes deep learning data 

emphasize the low-frequency trend in 𝑐𝐴6,𝑘. In 𝑐𝐷5,𝑘 high frequencies caused by fluctuations begin to appear. 
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These fluctuations are caused by the presence of Johson noise and other noise, which is created from cold 

junction compensators on low-cost devices. The denoising process can be seen in each of the coefficients 

of 𝑐𝐴𝑗,𝑘
∗  and 𝑐𝐷𝑗,𝑘

∗  especially at high frequency. The noise of 𝑐𝐷6,𝑘
∗  can no longer be seen due to the influence 

of the denoising process. 

 

 

 
 

Figure 4. Deep-wavelet denoising process 

 

 

Comparison of the initial measurements using low-cost DAQ, deep-wavelet, and NI-9213 was 

carried out using the error plot graph as shown in Figure 5. The average and deviation value of the total data 

collection in temperature varies from 20 ℃ to 73 ℃. Based on our result, it is shown that the measurements 

made by the low-cost DAQ have good measurements in the range of 37 ℃ to 40 ℃ with an offset value that 

gets bigger with every increase in temperature. 

Table 1 shows the performance calculation of each measurement from the low-cost DAQ, deep-

wavelet and NI-9213. The average MAE from the deep-wavelet shows the lowest value compared with 

others. There is a reduction of MAE of 97.67% percent, which indicates a good performance of calibration. 

The average MAE value of deep-wavelet is lower than NI-9213 about 16.67%. The SNRdB performance for 

deep-wavelet is also superior to low-cost DAQ with the increase of 262.7% and higher than NI-9213 about 

0.8%. Noise reduction of 65.22 dB was achieved using deep-wavelet through a hard thresholding process 

with VisuShrink. This result on SNRdB shows the denoising process works well in increasing data reliability. 

On the other hand, Table 1 also shows that uncertainty (e.g. mean deviation) of deep-wavelet analysis 

decreases about 60% from initial value. This uncertainty of deep-wavelet is still lower about 0.02 compared 

with NI-9213. This indicates that the method of increasing the accuracy using deep-wavelet have high 

robustness and reliability even though the hardware device were performed through a low-cost DAQ. 
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Figure 5. Deep-wavelet results 

 

 

Table 1. Comparison of performances 
Temperature 

value 

MAE SNRdB Mean deviation 

Low-cost 

DAQ 

Deep-

wavelet 

NI-

9213 

Low-cost 

DAQ 

Deep-

wavelet 

NI-

9213 

Low-cost 

DAQ 

Deep-

wavelet 

NI-

9213 

Average 8.59 0.2 0.24 40.07 105.29 104.45 0.4 0.16 0.14 

 

 

4. CONCLUSION  

This study investigated the improvement methods of temperature reading from a low-cost DAQ for 

thermocouples sensors using deep-wavelet method. The performance evaluation used MAE, SNRdB, and 

measurement uncertainty. The results demonstrated a significant advantage of the deep-wavelet with an 

average MAE value of 0.2. An increase in accuracy of 97.67% from the low-cost measurement shows the 

success of the calibration process from deep-wavelet as a superior calibration method for accurate 

temperature estimation. The denoising process based on deep-wavelet is known to increase the reliability of 

temperature data, with an increase in SNRdB of 262.7% from the low-cost device. Comparative analysis of 

Deep-wavelet performance against NI-9213 shows an advantage of 0.84 dB in noise reduction through a hard 

thresholding process with VisuShrink. Although the NI-9213 exhibits the lowest uncertainty level about 0.14 

the mean deviation of Deep wavelet method still shows a good achievement, which is only differ about 0.02. 

This research demonstrates the potential of deep-wavelet method as an efficient solution for improving the 

accuracy of low-cost DAQ which is susceptible to noise effects. 
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