
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 1, February 2024, pp. 772~781

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i1.pp772-781  772

Journal homepage: http://ijece.iaescore.com

Survey on detecting and preventing web application broken

access control attacks

Ahmed Anas, Salwa Elgamal, Basheer Youssef
Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt

Article Info ABSTRACT

Article history:

Received Jul 27, 2023

Revised Oct 3, 2023

Accepted Oct 9, 2023

 Web applications are an essential component of the current wide range of

digital services proposition including financial and governmental services as

well as social networking and communications. Broken access control

vulnerabilities pose a huge risk to that echo system because they allow the

attacker to circumvent the allocated permissions and rights and perform

actions that he is not authorized to perform. This paper gives a broad survey

of the current research progress on approaches used to detect access control

vulnerabilities exploitations and attacks in web application components.

It categorizes these approaches based on their key techniques and compares

the different detection methods in addition to evaluating their strengths and

weaknesses. We also spotted and elaborated on some exciting research gaps

found in the current literature, Finally, the paper summarizes the general

detection approaches and suggests potential research directions for the

future.

Keywords:

Broken access control

Exploitation detection

Logical vulnerabilities

Survey paper

Web application security

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ahmed Anas

Department of Computer Science, Faculty of Computers and Artificial Intelligence, Cairo University

5 Dr. Ahmed Zewail Street, Orman, Giza, Egypt

Email: ahmed.anas@pg.fci-cu.edu.eg

1. INTRODUCTION

Web applications are software programs that run on a web server and can be accessed over the

internet through a variety of clients such as browsers or mobile apps. They are essential nowadays and have

emerged as a primary service delivery channel. Customers and residents can use them as a platform to access

various utilities, including banking, shopping, governmental services, social networking, and professional

and personal communication.

Web applications and web application programming interfaces (APIs) are suspectable to various

types of vulnerabilities due to their inherent structure as it is reachable from external sources and networks.

Web applications are attractive targets for attackers as they may be used to run critical business systems and

contain sensitive data. Accordingly, it is important to have robust countermeasures in place to detect and

prevent exploitation. Malicious actors often target web applications exploiting the possible various

vulnerabilities due to the lack of adherence to secure coding and architecture best practices.

Generally, the web application [1] communicates through the hypertext transfer protocol (HTTP)

protocol, which involves HTTP web requests and HTTP responses. Applications servers use session objects

[2] to store information about user sessions, including the session id, user id, profile id, user privileges, types,

and any other data or localization needed for the application's business functions and smooth workflows. This

session information is typically stored in a session table or session object on the application server side and is

mapped to the session id sent from the client side. There are two main groups of vulnerabilities [3]–[6] in

web applications: injection (technical vulnerabilities) and business logic vulnerabilities, which include

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

Survey on detecting and preventing web application broken access control attacks (Ahmed Anas)

773

broken access control (BAC) vulnerabilities. Technical vulnerabilities often result from insufficient input

validation, allowing attackers to inject attacks such as cross-site scripting and structured query language

(SQL) injection [7]. These attacks involve injecting malicious payloads into the application to perform

malicious actions. Various technologies, such as web application firewalls (WAF) [8], can help protect

against these types of attacks. In contrast, logical attacks are more difficult to address. Despite their criticality

and in contrast to input validation vulnerabilities, the logical attacks have very limited work to address.

Open web application security project (OWASP) reports that 94% of applications have

vulnerabilities related to broken access control as the most discovered and reported through penetration

testing [9]. Broken access control vulnerability raised from fifth to first place on OWASP Top 10 web

application vulnerabilities list for 2021 [9]. Access control vulnerabilities occur when a user can circumvent

the allocated permissions and rights. This usually leads to unauthorized access, privilege escalation,

information leakage, and data integrity issues. These vulnerabilities might be caused by insecure coding or

unprotected authentication and authorization procedures.

Common access control flaws include the following i) Allowed forced browsing to pages requires

authentication for unauthenticated users, or allows access to a highly privileged page from users with

inadequate rights; in this category, the vulnerability occurred when some private pages (e.g., back up files,

operations, and configuration files) does not have proper authentication and authorization policies which

allow an intruder to exploit this flaw and accesses those restricted pages or resources through directly

accessing their uniform resource locator (URL) bypassing the intended but not properly implemented normal

authentication and authorization procedure; ii) Another type occurs when some specific functions that only

intended to be accessed from a specific user role (e.g., bank approver role) while the application

implementation allows the other user (e.g., maker role) to call the approving function directly to process an

item despite the authorization level; iii) Another critical broken access control category occurs when a

standard low-privileged user can gain increased privileges, such as being able to act as an administrator by

tricking the application into thinking that the user is an administrator, this can take place through multiple

scenarios including manipulating user session parameters or accessing admin portal functions and escalate

the user or the session rights; iv) Another type of access control vulnerability in HTTP request methods

occurs when an application fails to restrict access to certain HTTP methods (e.g., PUT request method or

DELETE request method) which allows the intruder to utilize the web method to manipulate the application

integrity and confidentiality; v) Other types of access control violations can especially exist in multi-step

operations or workflows where the access control rules may be applied on specific steps but are not applied

consistently on other steps moreover it may occur when contextual access control rules do not take into

consideration the steps execution order and prerequisites steps for each specific step, a common example for

this vulnerability is not preventing the modification of the shopping cart items after order bill calculation; and

vi) Another major category of broken access control vulnerabilities is what is commonly named insecure

direct object reference (IDOR) [10] which occurs when an application exposes a reference to an internal

object directly without validating the request authentication and authorization parameters, as an example,

consider a web application that allows the user to retrieve his personal information saved at a specific system

using his national identification number (NIN) through the following web application sample URL (e.g.,

example.com/show_my_details/NIN/28889900001); however, a malicious actor can modify the NIN

parameter in the URL to view other user's personal information through typing the target user’s NIN (e.g.,

example.com/show_my_details/NIN/28889900002), this example can apply to other resources.

Identifying broken access control vulnerability requires a thorough knowledge and understanding of

both the application's intended behavior of the application and the actual implementation of the application.

This requires understanding the relation between inputs and outputs along with the intended data flow and

correlating it with the level of resource permissions and user rights. There are multiple factors to be

considered for application security to prevent the existence of such vulnerability like robust session

management, and proper account permissions configuration, nevertheless, multiple frameworks are designed

to help with having proper authentication and authorization in the application but it needs a thorough

configuration to reach the intended result. The researchers who focused on detecting BAC vulnerability and

detecting BAC exploits topic explored and developed some methods such as static and dynamic code

analysis, enhancing the software development life cycle, nevertheless developed black box approaches to

detect state violation attacks and malicious SQL queries that are used in exploiting the vulnerabilities.

This paper considers different vulnerability detection and exploit prevention for Brocken access

control vulnerability. Our contributions are detailed as follows:

a. The study discusses various broken access control vulnerability and exploitation detection techniques,

concepts, and architecture, along with their pros and cons.

b. A comprehensive comparison of exited broken access control vulnerability and exploitation detection

techniques and concepts that are used.

c. We spotted some exciting research gaps were found in the detection and prevention techniques.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 772-781

774

d. open research problems, challenges, and future research directions are discussed to provide adequate

protection against logical attacks.

e. The study categorizes different broken access control vulnerability and exploitation detection methods

according to techniques categories.

The rest of this paper is divided into five sections. In section 2, we explore various categories of

existing countermeasures. Section 3 analyzes the relevant literature and its contribution and limitations.

Section 4 includes a discussion of gaps and potential research directions. The paper concludes in section 5

along with outlining future work direction.

2. COUNTERMEASURES FAMILIES

Research in mitigating broken access control vulnerability risks can be categorized into three major

categories. The first category focuses on preventing the creation of the vulnerability itself in the coding phase

in addition to detecting and fixing the vulnerability through code review activities. The second category aims

to detect the vulnerability in the running application and make the needed effort to mitigate it. The third

category targets detecting and preventing the exploitation of existing broken access control vulnerabilities in

the running applications.

The existing literature has proposed research to secure web applications from logic flaws during the

different phases of the software life cycle. The researchers suggest a wide diversity of coding practices

recommendations during the development stage (e.g., in [11], [12]) in addition to secure web frameworks

suggested as in the following references [13]–[17] to address the security aspects from different perspectives,

some frameworks functions are providing the developers with a set of tools to implement the security policies

(e.g., [18], [19]) in development and architecture phases. Nevertheless, some frameworks functions exist to

leverage the auditing and authorization capabilities. Source code review plays a crucial role in detecting

security flaws in software systems including BAC vulnerabilities. Studies (e.g., [20]–[22]) found that source

code review while utilizing automated source code review tools can effectively detect multiple security issues

categories including broken access control. These studies emphasize the importance of incorporating source

code review into the software development life cycle to improve the security of the application and

strengthen it against potential exploitations.

Security testing is one of the most effective and practical techniques for identifying vulnerabilities in

software solutions including broken access control vulnerabilities. Studies (e.g., in [22]–[27]) found that

security testing can effectively find BAC vulnerabilities as it analyzes the behavior of the running system and

evaluates the implementation of access control policies and applied controls and security levels. Other studies

[28] discussed the use of security testing in combination with code review alongside threat modeling to

identify BAC vulnerabilities in web applications; nevertheless, studies emphasize the value of the usage of

automated security testing tools for effective and automated detection of broken access control vulnerabilities

as it can provide a thorough assessment and analysis of the target application and help identify issues that

may be overlooked by manual testing.

Limited research exists to prevent the exploitation of broken access control vulnerabilities in the

running applications during runtime focusing on exploit and attack prevention instead of detecting the

vulnerabilities. The research in this area used different techniques and methodologies to distingue the

application's benign and malicious requests. Research in these areas aimed to learn application valid

invariants and states to reject invalid states (e.g., [29]–[31]). This category of research aims to overcome the

limitations in Blackbox testing and Whitebox testing such as including its requirements for cost and

resources for applying the needed mitigations, in addition, some research in this category targeted to

addresses the code access requirement constraint.

Research directions and approaches related to the usage of frameworks and coding can be

considered ineffective by design as they require to be enforced and used at the early development stage as

they cannot be used with running applications. They require the source code existence in case a refactoring

approach is needed, it also only deals with the vulnerability existence, not the active exploitation prevention.

Additionally, the research focused on static code analysis [32] has a major limitation as it requires the source

code as well which is not valid in most cases since a wide percentage of the applications is closed source and

source code owners are not willing to provide for multiple reasons, also it requires time to fix and deploy

putting the whole effort on developers, and it is a technology and programing language highly dependent

which make it inefficient in most of the environments which usually have diversity of applications and

technologies and it still facing high false positive rates. In addition, it is considered a detection tool for the

vulnerability existence, not the active exploitation prevention

Dynamic analysis solutions such as DetLogic [23] and LogicScope [24], along with similar models,

aim to detect vulnerabilities in running applications that are limited by design. These methods are heavily

Int J Elec & Comp Eng ISSN: 2088-8708 

Survey on detecting and preventing web application broken access control attacks (Ahmed Anas)

775

dependent on the assessor’s ability to efficiently crawl the application during the learning phase. As a result,

any areas, pages, or functions not explored by the assessor will not be assessed or protected. Furthermore, it

requires additional costs and resources to implement necessary fixes for the discovered vulnerabilities. There

is no guarantee that closed-source providers and product manufacturers will rectify the issues in a timely and

acceptable manner.

Other approaches exist as well to support defending against logical attacks from different specific

perspectives such as the requirements engineering language for adaptive information security (RELAIS)

approach [33]. RELAIS is designed to address a specific issue related to parameter tampering attacks, where

it is not feasible to establish all defensive mechanisms during the design phase. RELAIS utilizes the

knowledge gained during system runtime and failures in specific about the environment along with applying

machine learning techniques like Bayesian classification, logistic regression, and input approximation

techniques to only extract requirements and determine behavior to identify needed adaptation to be

implemented later.

3. ATTACK AND EXPLOIT DETECTION TECHNIQUES

One of the approaches to mitigate the broken access control vulnerability risk is to detect and

prevent the exploitation phase of the vulnerability. One of the methodologies to detect exploitation and

anomalies is by learning the application specification and then identifying the deviations between the

intended application behavior and its runtime behavior. Researchers utilized different data sources and

parameters for performing the learning process in their proposed solutions and also used different algorithms

and concepts to have better verdicts and overcome limitations.

Researchers presented BLack-bOx approach for detecting state violation attaCKs (BLOCK) [29],

The BLOCK technique is about detecting types of broken access control attacks in web applications using a

black-box method. In the context of this technique, the web application is viewed as a stateless system where

the intended behavior of the system is inferred by examining how clients interact with the application. Web

requests and responses are assessed at runtime using the identified invariants from the web request/response

sequences and associated session variable values during normal system operation. A potential state violation

attack is one that deviates from these invariants in either the request or the response. BLOCK researchers

implement their techniques as proxy [34] between client and server to intercept the messages between client

and web application server and collect the session data from session files in training mode, then they generate

malicious traffic to evaluate the solution's effectiveness. Results show high false positive rates due to the

following limitations; BLOCK only focuses on the relation between requests, responses, and session

variables which lake of visibility on the persistent information stored in the database, the stored information

in the database may be used to maintain the session across more complex scenarios and workflows and

multiple different web sessions, additionally, BLOCK cannot capture indirect relations, BLOCK requires

manual intervention to guarantee adequate manual learning and filter out false positives. BLOCK by design

will consider all unvisited paths or built invariants as attacks which as well contribute to raising false positive

rates. The solution did not take into consideration tasks that must be executed by humans such as workflow

procedures [35].

The researchers introduced securing database from logic flaws in web application (SENTINEL)

[30], SENTINEL is a black-box approach to detect SQL queries that violate the application's intended

behavior and produce logic flaws, their methodology is composed of systematically extracting a set of

invariants from observed SQL queries, responses, and session variables, they model the interactions between

the web application and the database based on the principals of the extended finite state machine; they

consider SQL queries that not have corresponding invariant as a potential attack and drop it. They

implemented their solution through two components sensor and analyzer, the sensor collects traffic such as

SQL quires its responses along with session variables and communicates with the analyzer, while the

analyzer performs offline training by extracting SQL signatures and infers the set of invariants associated

with signatures, In runtime, the analyzer evaluates incoming SQL queries and directs the sensor to block any

violating queries, SENTINAL overcomes some of the limitations in BLOCK since it takes in consideration

the persistent state in the database, additionally its visibility on SQL queries provides more capability in

blocking attacks targeted database integrity. SENTINAL limitations include that the solution does not take

into consideration NoSQL [36] database backend web applications and can only be applied to the traditional

flat relational data model, moreover, it can only address traditional SQL queries that have the same patterns

in different languages [37], moreover, can only be applied to specific web development languages and

platforms, another limitation from the performance point of view that it introduces performance overhead in

SQL response time because of the communication overhead between sensor and analyzer and the analysis

time during which analyzer extracts SQL signature and evaluates the query, SENTINAL provides a slight

enhancement on false positive rate comparing to BLOCK but still requires some additional techniques to

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 772-781

776

suppress false positives. SENTINAL as well by design considers all unvisited paths or recorded invariants as

attacks that also contribute to raising false positive rates, nevertheless, any change in the application structure

or data layer will make the learned invariants invalid and require a new round of learning to avoid false

positives and incorrect application wide blockage state.

Invariant detector (IVD) [31] is an approach for automatic learning and enforcement of

authorization rules in online social networks [38], the solution approach is to block requests attempting to

exploit vulnerabilities in the authorization logic of online social networks. The solution technique starts with

the learning phase which can take place at the staging phase or testing or pre-release stages of the features in

scope, IVD intercepts requests made by an online social network (OSN) to its database, and it stores the

likely invariants as attributed graph model [39], nevertheless, IVD design allows it to adapt automatically to

OSN changes by continuously learning invariants to minimize manual learning requirements, the IVD

composed of three components, request sampler which handles the database queries, the second component

the invariant inference which uses the first component output for offline learning, the last component is the

invariant checker which is responsible for validating the requests and block the malicious request. IVD work

limitation is that it is specific for online social networks and requires manual intervention through writing

manual customized rules to minimize potential false positives and false negatives which makes it a challenge

to apply it generally in other applications and other domains, IVD’s scope is to verify only on write access

control policies and their relevant vulnerabilities and exploitations an example for that is that only “Alice’s

friends can post to Alice’s profile”; IVD can contribute to confidentiality indirectly through blocking exploits

that can result in “friend” maliciously created a relation between two users, which allows the attacker to

collect information from some users as a friend role, IVD, however, does not validate access control on reads

and, thus, cannot completely enforce data confidentiality [40], the authors as well planned to overcome some

limitation in their future work by extending the approach to cover the more complex invariants. The solution

does not take into consideration NoSQL database backend web applications.

InteGuard [41] is an approach to tackle the particular threat surface related to logical flaws resulting

from third-party services API integration, the research discussed the new threats associated with the

integration process with external web services such as payment services and single-sign-on (SSO), the

research aims to reach a solution for how to securely integrate different three parties involved, including the

merchant service (integrator), the provider of the third party services such as PayPal and the web clients

using the application. The InteGuard which acts as a proxy deployed to analyze the ingress and egress traffic

of the service integrators web' site composed of three main components, a trace collector used to generate

and label learning traffic, an internet content adaptation protocol (ICAP) server to intercept the direct

communication between the integrator and the provider, both of the components analyze and extract the

needed parameters and relations and analyzing responses scripts and hypertext markup language (HTML)

content then send it to the security policy generator to extract the invariants and construct a finite state

machine (FSM) that reflects the security policies for the integration. The ICAP server inspects HTTP

messages that have been sent to the integrator's website to perform the global policy by checking and

extracting elements of interest from the messages and checking their compliance with security policies.

Policies can be tuned when false positives are discovered during the protection mechanism operation.

Limitations of this approach include that it does not protect provider-side flaws while several attacks can only

be detected at that side such as variants of the unauthorized login by auth. code (or token) redirection attack

from [42]. InteGuard only analyzes the application and network traffic for invariants creation and loses the

advantages of inferring invariants at the database layer [31] which instead offers more advantages by

providing both comprehensive invariants and scalability. The solution did not take into consideration tasks

that must be executed by humans such as workflow and multistep procedures [35] and does not enforce

authorization policies or constraints. InteGuard primarily focuses on browser-based web applications and not

on mobile-based application merchant platforms [43].

Swaddler [44] is an anomaly detection method for detecting workflow relevant attacks, Swaddler

uses anomaly detection in the internal state of the web application to detect vulnerabilities. The model works

in one of two modes, training and detection mode, the training phase is required to record the characteristics

of normal events including the code execution paths linked to session variables, two components are used in

the implementation, the sensor is an extension of the hypertext preprocessor (PHP) interpreter that analyze

the ongoing state of an application, while the analyzer is an anomaly-based system that assesses the

regularity of the application's state and anomaly score thresholds to distinguish between regular and

anomalous values are created when the sensor has finished its processing, it invokes the original handler of

the statement, passing and resume the application path execution. After creating the profiles, which means

that the models have collected the needed info about normal events as well and the appropriate thresholds

have been established, the system can work in the detection mode. During this mode, the system calculates

anomaly scores and reports any anomalous states. One of the main Swaddler limitations that it is requires

Int J Elec & Comp Eng ISSN: 2088-8708 

Survey on detecting and preventing web application broken access control attacks (Ahmed Anas)

777

source code access which makes it technology and source code dependent along with that it necessitates the

modification of the PHP engine to enable monitoring of the web application's execution flow and the need to

access execution paths to monitor, which could present major practical deployment difficulties. Moreover, it

is crucial to consider the performance trade-off of Swaddler. Moreover, Swaddler cannot detect categories of

data flow violation [45] such as insecure direct object reference (IDOR) and types of broken access control

(BAC). Follow-up research as in [46] considers the challenge of tuning in operational settings and a large

number of false positives due to the usage of unsupervised learning.

Double Guard [47] is an intuition detection system (IDS) that targets to detect privilege escalation

attacks, hijack future session attacks, injection attacks, and direct database attacks. Double guard is deployed

in such a way as to monitor both users' requests to a web server and its subsequent corresponding database

requests to the back-end to detect malicious activity, doable guard utilizes container-based web server

architecture where each session to be assigned to a separate web server and isolated from other sessions and

mapped to a single user to enable separating different information flows by its every session and allow

linking it to corresponding database query or request. Limitations of double guard include the inability to

detect some of the broken access control categories including that it cannot detect insecure direct object

reference attacks (IDOR) since it focuses on query structure anomalies, moreover, it is designed to work on

detection and not prevention mode [48], and does not employ incremental learning which requires the model

learning phase to be reset in case of application new legitimate features added, additionally, there is a big

challenge in scalability and performance management given that the proposed architecture which requires

container image per each single user session. Double guard identifies user session per their internet protocol

(IP) address which is not reliable given the users' clusters who uses proxy (e.g., corporates or countries) and

mobile users who dynamically change their IP address.

TamperProof [49] is an inline defense tool deployed as a proxy between the client and server, the

tool can be used to protect legacy against parameter tampering attacks. The solution approach is to infer and

enforce field, and value constraints on each input submitted to the server dynamically, it analyzes each form

generated by the server to extract the constraints enforced by HTML and JavaScript and record the

constraints. validation takes place by rejecting any request to the server that does not satisfy the constraints

corresponding to the page form used to submit the input. TamperProof also injects a hidden field into each

web form an identifier referred to as patchID which is used to validate the requests and sequencing. The main

limitation of the TamperProof tool that is it cannot provide protection applications that alter the client code of

a web form and Asynchronous JavaScript and eXtensible Markup Language (AJAX) requests in addition to

those written for Web 2.0 or Web 3.0 or any dynamic altering client code which make it almost unusable for

most of the currently running applications; additionally, web pages which employed HTML and JavaScript

obscuration will be another challenge.

PHP-Sensor [50] is a model that approaches to discover workflow violation attacks and cross-site

scripting (XSS) attacks that target PHP applications. To perform the workflow violation attack detection, the

model observes the sequences of HTTP requests/responses and their associated session variables while in

offline mode to extract a specific set of axioms. This set of axioms is later applied to assess the HTTP

request/response during online mod where If an HTTP request/response fails to comply with its

corresponding axiom, it is considered a workflow violation attack within a PHP web application,

additionally, it can detect XSS worms through monitoring HTTP web requests and responses. The

deployment will utilize a web proxy which is responsible for the workflow violation filter process, it

identifies workflow violation attacks by constructing the expected flow model of the web application by

analyzing the communication between the web browser and the server. The PHP-Sensor defensive model,

which detects workflow violation attacks, comprises two primary phases: the offline phase and the

recognition phase. The proposed framework, PHP-sensor, detects workflow violations using a recognition

phase that involves a set of axioms. Each HTTP web request key is linked to two specific types of axioms,

while input/output pairs are linked to different types of axioms. Axioms are converted into estimation

functions that yield true or false values based on whether input pairs satisfy them. The recognition phase

authenticates input and output pairs by checking if the associated axioms are fulfilled, and if not, the HTTP

request or HTML page is blocked. Limitations of the PHP-Sensor model include that it is technology

dependent since it works only on PHP, in addition, limitations of the model are that it does not detect other

categories of broken access control such as direct object reference attacks (IDOR) and unauthorized access to

functions and privilege escalations, moreover, PHP-Sensor is not applicable to web applications developed

on platforms such as AJAX. Additionally, the PHP-Sensor's capability to control complex restrictions within

the database is limited. The authors of the solution also planned to overcome some of these limitations by

considering other internal states of PHP web applications. Furthermore, they will focus on optimizing several

methods to reduce the performance overhead caused by PHP-Sensor.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 772-781

778

4. DISCUSSION AND RESEARCH DIRECTION

Exploitation prevention and detection current approaches and techniques for BAC have different

working models and implantations which result in different value added and shortcomings. In order to infer

the current techniques challenges and research directions, a thorough evaluation and comparison took place

as illustrated in Tables 1 and 2 based on the following characteristics, false positives (FP), presetancy aware

(PA) in which we evaluate if the technique takes into account the persistent state information in the

application logic, workflows aware (WA) in which we evaluate if the technique takes into account the

workflow BAC relevant attacks, manual intervention required (MIR) for false positive filtering, manual

crawling is required (MCR) for the application functions as any non-manually learned functions is considered

a false positive, source code required (SCR), performance noticeable overhead (PO), NoSQL aware (NSA) in

which it can handle the persistency while the backend is non-relational NoSQL databases, specific web

development languages and platforms (SDLP), IDOR in which we evaluate if the technique can detect

IDOR,: broken access control privilege escalation (BACPE), business or domain specific (BDS), and

blocking mode (BM) in which we evaluate if the technique can work in blocking mode and not only in

detection mode with no blocking capabilities.

Table 1. Solutions comparison part 1
 Solution Data Source FP PA WA MIR MCR PO

1 BLOCK [29] Requests, responses, and session variables High No No Yes Yes Average

2 SENTINEL
[30]

SQL queries, responses, and session
variables

Exist Yes Yes Yes Yes Requires
improvement

3 IVD [31] Database requests and logs Exist Yes Yes Yes Yes Trade-off

4 InteGuard
[41]

Ingress and egress traffic of the service
integrators.

Communication between the integrator and

the provider.
Trace Collector is used to generate and

label learning traffic.

Exist No No Yes Yes Average

5 Swaddler
[44]

Code execution paths linked to session
variables

High No Yes Yes Yes Requires
improvement

6 DoubleGuard

[47]

User requests to a web server and its

subsequent corresponding database
requests to the back-end

Exist No No Yes Yes Requires

significant
improvement

7 TamperProof

[49]

It analyzes each form generated by the

server to extract the constraints enforced by

HTML and JavaScript and record the
constraints

High No Yes

(workflow)

No No Requires

improvement

8 PHP-Sensor

[50]

Observes the sequences of HTTP

requests/responses and their associated
session variables

Exist No Yes Yes Yes Requires

improvement

Table 2. Solutions comparison part 2
 Solution NSA SDLP IDOR BACPE SCR BDS BM

1 BLOCK [29] No Yes Yes Yes No General Blocking mode
2 SENTINEL [30] No Yes Yes Yes No General Blocking mode

3 IVD [31] No Yes Yes Yes No Domain specific: online social networks (OSN)

Enforce Integrity. Does not directly enforce
confidentiality.

Blocking mode

4 InteGuard [41] No No No No No Third-party services APIs integration.

Protects only the merchant side.
No mobile application

Blocking mode

5 Swaddler [44] No Yes No No Yes Workflow relevant attacks only Detection only

6 Double Guard [47] No No No Yes No Double Guard identifies user sessions per their IP Detection only
7 TamperProof [49] No Yes No Yes No Not supporting AJAX, Web 2.0 or Web 3.0, or

obfuscated HTML and JS

Blocking mode

8 PHP-Sensor [50] No Yes No No Yes Not supporting web applications developed on
platforms such as AJAX

Blocking mode

Based on the thorough comparison as elaborated, we can group the current gaps and limitations

along with the corresponding research direction as listed following:

a. The wide spectrum of the existing literature that aims to detect broken access control vulnerability and its

sub-category such as insecure direct object reference have a serious limitation as those solutions by

design requires application crawling through human and spiders and then considering all not crawled

paths or recorded invariants as attacks, that strategy impacts model efficiency including striking the false

Int J Elec & Comp Eng ISSN: 2088-8708 

Survey on detecting and preventing web application broken access control attacks (Ahmed Anas)

779

positive rates, nevertheless, one of its results that any change in the application structure or data layer

make the learning phase or learned invariants invalid and requires a new round of learning to avoid false

Positives and incorrect application wide blockage state, research is required in this point to overcome this

challenge through exploring the available machine learning and artificial intelligence techniques and

algorithms that can provide a solution to this focal issue.

b. Most of the provided solutions are either very dependent and custom only to be operating on or protect

specific technology in a matter of programming language used or technology used such as PHP

applications only or specific databases types which not able to protect other types of databases NoSQL

database backend web applications. Research is required to provide less technology dependent and more

generalized solutions that can cover the wide spectrum of technologies and implementation

diversifications.

c. Some solutions require the source code access during learning and blocking mode, providing the source

code which is not applicable in most cases since a wide percentage of the applications is closed source

and source code owners are not willing to provide for multiple reasons, nevertheless, it makes the solution

very dependent on the language used, research is required to overcome this challenge to provide less

source code dependent techniques.

d. Some of the solutions provided are very dependent on specific business type or services and needs further

research to be generalized to be a more generic solution for securing against broken access control attack.

e. Most of the provided solutions are not capable of detecting the severe insecure direct object reference

category, research is required to close this gap and find innovative and effective techniques to safeguard

against the vulnerability.

f. Horizontally, deeper research is required to overcome the performance impact on most of the solutions to

be practically visible in enterprises and to enhance false positive and false negative rates.

5. CONCLUSION AND FUTURE WORK

The existent solutions cannot be considered reliable and comprehensive enough to provide an

adequate level of protection against critical broken access control attacks including some of its subcategories

such as insecure direct object reference. This research provides a thorough analysis of the current literature,

identifying current gaps and limitations. This paper suggests research areas and directions for tackling this

critical issue.

Future work can be conducted to evaluate machine learning and artificial intelligence techniques to

develop a methodology and model that can be an effective and efficient solution to detect and prevent broken

access control attacks. The target model implementation should ensure that any identified limitations issues

and gaps have been addressed. The research will also assess the principles of incremental learning, a process

where the model continues to learn and adapt from new data, thereby enhancing its predictions or decisions

over time.

REFERENCES
[1] R. T. Fielding and R. N. Taylor, “Principled design of the modern web architecture,” ACM Transactions on Internet Technology,

vol. 2, no. 2, pp. 115–150, May 2002, doi: 10.1145/514183.514185.

[2] K. Gutzmann, “Access control and session management in the HTTP environment,” IEEE Internet Computing, vol. 5, no. 1,

pp. 26–35, 2001, doi: 10.1109/4236.895139.

[3] A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t pentest: an analysis of black-box web vulnerability scanners,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 6201, Springer Berlin Heidelberg, 2010, pp. 111–131.
[4] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward automated detection of logic vulnerabilities in web applications,”

in Proceedings of the 19th USENIX Security Symposium, 2010, pp. 143–160.

[5] J. Kaur and U. Garg, “State-of-the-art survey on web vulnerabilities, threat vectors, and countermeasures,” in Studies in
Computational Intelligence, vol. 1007, Springer Singapore, 2022, pp. 3–17.

[6] G. Deepa and P. S. Thilagam, “Securing web applications from injection and logic vulnerabilities: Approaches and challenges,”

Information and Software Technology, vol. 74, pp. 160–180, Jun. 2016, doi: 10.1016/j.infsof.2016.02.005.
[7] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring for neutralizing SQL-injection attacks,” in Proceedings of the

20th IEEE/ACM International Conference on Automated Software Engineering, Nov. 2005, pp. 174–183, doi:

10.1145/1101908.1101935.
[8] S. V Pingale and S. R. Sutar, “Analysis of web application firewalls, challenges, and research opportunities,” in Lecture Notes in

Electrical Engineering, vol. 783, Springer Singapore, 2022, pp. 239–248.

[9] OWASP Top 10:2021, “A01:2021 – broken access control,” OWASP. https://owasp.org/Top10/A01_2021-
Broken_Access_Control/#references (accessed Jun. 19, 2022).

[10] A. K. Shrestha, P. S. Maharjan, and S. Paudel, “Identification and illustration of insecure direct object references and their

countermeasures,” International Journal of Computer Applications, vol. 114, no. 18, pp. 39–44, Mar. 2015, doi: 10.5120/20082-2148.
[11] Y. Ndiaye, O. Barais, A. Blouin, A. Bouabdallah, and N. Aillery, “Requirements for preventing logic flaws in the authentication

procedure of web applications,” in Proceedings of the ACM Symposium on Applied Computing, Apr. 2019, pp. 1620–1628, doi:

10.1145/3297280.3297438.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 772-781

780

[12] OWASP, “Authorization cheat sheet,” OWASP. https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

(accessed Jan. 29, 2023).
[13] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: a language for enforcing user-defined security policies,” in 2008 IEEE

Symposium on Security and Privacy (sp 2008), May 2008, pp. 369–383, doi: 10.1109/SP.2008.29.

[14] S. Chong, K. Vikram, and A. C. Myers, “SIF: enforcing confidentiality and integrity in web applications,” in Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium, 2007, pp. 1–16.

[15] L. Jia et al., “AURA: a programming language for authorization and audit,” in Proceedings of the ACM SIGPLAN International

Conference on Functional Programming, Sep. 2008, pp. 27–38, doi: 10.1145/1411204.1411212.
[16] K. Vikram, A. Prateek, and B. Livshits, “Ripley: automatically securing web 2.0 applications through replicated execution,” in

Proceedings of the 16th ACM conference on Computer and communications security, Nov. 2009, pp. 173–186, doi:

10.1145/1653662.1653685.
[17] J. Morgenstern and D. R. Licata, “Security-typed programming within dependently typed programming,” in Proceedings of the

15th ACM SIGPLAN International Conference on Functional programming, 2010, pp. 169–180, doi: 10.1145/1863543.1863569.

[18] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Improving application security with data flow assertions,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, Oct. 2009, pp. 291–304, doi: 10.1145/1629575.1629604.

[19] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and S. Chong, “Precise, dynamic information flow for database-

backed applications,” in Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Jun. 2016, vol. 51, no. 6, pp. 631–647, doi: 10.1145/2908080.2908098.

[20] M. Ghorbanzadeh and H. R. Shahriari, “ANOVUL: detection of logic vulnerabilities in annotated programs via data and control

flow analysis,” IET Information Security, vol. 14, no. 3, pp. 352–364, May 2020, doi: 10.1049/iet-ifs.2018.5615.
[21] M. Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan, “MACE: detecting privilege escalation vulnerabilities in web

applications,” in Proceedings of the ACM Conference on Computer and Communications Security, Nov. 2014, pp. 690–701, doi:

10.1145/2660267.2660337.
[22] B. Zhang, J. Li, J. Ren, and G. Huang, “Efficiency and effectiveness of web application vulnerability detection approaches: a

review,” ACM Computing Surveys, vol. 54, no. 9, pp. 1–35, Dec. 2022, doi: 10.1145/3474553.
[23] G. Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais, “DetLogic: a black-box approach for detecting logic vulnerabilities in web

applications,” Journal of Network and Computer Applications, vol. 109, pp. 89–109, May 2018, doi: 10.1016/j.jnca.2018.01.008.

[24] X. Li and Y. Xue, “LogicScope: automatic discovery of logic vulnerabilities within web applications,” in ASIA CCS 2013 -
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, May 2013,

pp. 481–486, doi: 10.1145/2484313.2484375.

[25] X. Li, X. Si, and Y. Xue, “Automated black-box detection of access control vulnerabilities in web applications,” in Proceedings
of the 4th ACM Conference on Data and Application Security and Privacy, 2014, pp. 49–60, doi: 10.1145/2557547.2557552.

[26] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic flaws in web applications,” Proceedings 2014 Network and

Distributed System Security Symposium, 2014, doi: 10.14722/ndss.2014.23021.
[27] G. Deepa, P. S. Thilagam, F. A. Khan, A. Praseed, A. R. Pais, and N. Palsetia, “Black-box detection of XQuery injection and

parameter tampering vulnerabilities in web applications,” International Journal of Information Security, vol. 17, no. 1,

pp. 105–120, Jan. 2018, doi: 10.1007/s10207-016-0359-4.
[28] S. C, J. G, R. V. P, and E. P R L, “PROP - patronage of PHP web applications,” International Journal of Computer Science and

Information Technology, vol. 7, no. 2, pp. 111–125, Apr. 2015, doi: 10.5121/ijcsit.2015.7210.

[29] X. Li and Y. Xue, “BLOCK: a black-bOx approach for detection of state violation attacks towards web applications,” in ACM
International Conference Proceeding Series, Dec. 2011, pp. 247–256, doi: 10.1145/2076732.2076767.

[30] X. Li, W. Yan, and Y. Xue, “SENTINEL: securing database from logic flaws in web applications,” in Proceedings of the second

ACM conference on Data and Application Security and Privacy, Feb. 2012, pp. 25–36, doi: 10.1145/2133601.2133605.
[31] P. Marinescu, C. Parry, M. Pomarole, Y. Tian, P. Tague, and I. Papagiannis, “IVD: automatic learning and enforcement of

authorization rules in online social networks,” in 2017 IEEE Symposium on Security and Privacy (SP), May 2017, pp. 1094–1109,

doi: 10.1109/SP.2017.33.
[32] R. Croft, D. Newlands, Z. Chen, and M. A. Babar, “An empirical study of rule-based and learning-based approaches for static

application security testing,” in Proceedings of the 15th ACM / IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Oct. 2021, pp. 1–12, doi: 10.1145/3475716.3475781.
[33] T. T. Tun et al., “Requirements and specifications for adaptive security,” in Proceedings of the 13th International Conference on

Software Engineering for Adaptive and Self-Managing Systems, May 2018, pp. 161–171, doi: 10.1145/3194133.3194155.

[34] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here be web proxies,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8362, Springer International

Publishing, 2014, pp. 183–192.

[35] L. Compagna, D. R. dos Santos, S. E. Ponta, and S. Ranise, “Aegis: automatic enforcement of security policies in workflow-
driven web applications,” in Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy, Mar.

2017, pp. 321–328, doi: 10.1145/3029806.3029813.

[36] M. Stonebraker, “SQL databases v. NoSQL databases,” Communications of the ACM, vol. 53, no. 4, pp. 10–11, Apr. 2010, doi:
10.1145/1721654.1721659.

[37] S. Wen et al., “Toward exploiting access control vulnerabilities within MongoDB backend web applications,” in 2016 IEEE 40th

Annual Computer Software and Applications Conference (COMPSAC), Jun. 2016, vol. 1, pp. 143–153, doi:
10.1109/COMPSAC.2016.207.

[38] A. Aldo Tenis and R. Santhosh, “Challenges and security issues of online social networks (OSN),” in Lecture Notes on Data

Engineering and Communications Technologies, vol. 68, Springer Singapore, 2022, pp. 703–709.
[39] S. Sakr, S. Elnikety, and Y. He, “G-SPARQL: a hybrid engine for querying large attributed graphs,” in Proceedings of the 21st ACM

international conference on Information and knowledge management, Oct. 2012, pp. 335–344, doi: 10.1145/2396761.2396806.

[40] E. Elnikety, “Comprehensive and practical policy compliance in data retrieval systems,” Ph.D. dissertation, Department of
Computer Science, Saarland University, Saarbrücken, 2019.

[41] L. Xing, Y. Chen, X. Wang, and S. Chen, “InteGuard: toward automatic protection of third-party web service integrations,”

Proceeding of the 20th Network and Distributed System Security Symposium, 2013.
[42] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis, “Discovering concrete attacks on website authorization by formal

analysis,” Journal of Computer Security, vol. 22, no. 4, pp. 601–657, Apr. 2014, doi: 10.3233/JCS-140503.

[43] W. Yang et al., “Show me the money! Finding flawed implementations of third-party in-app payment in android apps,” Network
and Distributed System Security Symposium, 2017, doi: 10.14722/ndss.2017.23091.

Int J Elec & Comp Eng ISSN: 2088-8708 

Survey on detecting and preventing web application broken access control attacks (Ahmed Anas)

781

[44] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swaddler: an approach for the anomaly-based detection of state violations
in web applications,” in Recent Advances in Intrusion Detection, vol. 4637, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,

pp. 63–86.

[45] M. Ghorbanzadeh and H. R. Shahriari, “Detecting application logic vulnerabilities via finding incompatibility between application
design and implementation,” IET Software, vol. 14, no. 4, pp. 377–388, Aug. 2020, doi: 10.1049/iet-sen.2019.0186.

[46] I. Jana and A. Oprea, “AppMine: behavioral analytics for web application vulnerability detection,” in Proceedings of the ACM

Conference on Computer and Communications Security, Nov. 2019, pp. 69–80, doi: 10.1145/3338466.3358923.
[47] M. Le, A. Stavrou, and B. B. Kang, “DoubleGuard: detecting intrusions in multitier web applications,” IEEE Transactions on

Dependable and Secure Computing, vol. 9, no. 4, pp. 512–525, Jul. 2012, doi: 10.1109/TDSC.2011.59.

[48] N. Agarwal and S. Z. Hussain, “A closer look at intrusion detection system for web applications,” Security and Communication
Networks, vol. 2018, pp. 1–27, Aug. 2018, doi: 10.1155/2018/9601357.

[49] N. Skrupsky, P. Bisht, T. Hinrichs, V. N. Venkatakrishnan, and L. Zuck, “TamperProof: a server-agnostic defense for parameter

tampering attacks on web applications,” in Proceedings of the third ACM conference on Data and application security and
privacy, Feb. 2013, pp. 129–140, doi: 10.1145/2435349.2435365.

[50] S. Gupta and B. B. Gupta, “PHP-sensor: a prototype method to discover workflow violation and XSS vulnerabilities in PHP web

applications,” in Proceedings of the 12th ACM International Conference on Computing Frontiers, May 2015, pp. 1–8, doi:
10.1145/2742854.2745719.

BIOGRAPHIES OF AUTHORS

Ahmed Anas is the head of the Cyber Security Governance Unit at The Central

Bank of Egypt, before joining CBE, Ahmed was acting as EFG Holding and Valu CISO.

Ahmed is an industry and cybersecurity expert and public speaker. Ahmed has extensive

experience in creating and implementing cybersecurity strategies, designing, implementing,

and assessing infrastructure and applications cybersecurity. His areas of experience also

include governance, risk management and assessment, compliance, incident handling and

response, penetration testing, Red Teaming, and SOC implementation. Ahmed earned his

master’s degree in computer science from Cairo University with a thesis in the field of cyber

security, Ahmed is an ISC² certified information systems security professional,

EC-Council Certified Instructor, and Ethical Hacker, and obtained GIAC web application

penetration tester and ISACA COBIT 2019 Foundation certificates. Ahmed is Ph.D. student in

cyber security and AI. He can be contacted at email: ahmed.anas@pg.fci-cu.edu.eg.

Salwa Elgamal is a professor at the Computer Science Department, Faculty of

Computers and Information, Cairo University. Vice dean of environmental development and

community service, Faculty of Computers and Information, Cairo University. Head of

Computer Science Department, Faculty of Computers and Information, Cairo University.

Research interests include security fields and parallel computing. She can be contacted at

email: s.elgamal@fci-cu.edu.eg.

Basheer Youssef is a teacher in the Computer Science Department, Faculty of

Computers and Artificial Intelligence, Cairo University. He was awarded his Ph.D. in

cryptography from the Faculty of Computers and Information, at Cairo University, in 2011.

He was awarded his M.Sc. in cryptography from the faculty of computers and information,

Cairo University, 2005. The B. Sc is awarded from the computer science department, faculty

of computers and information, Cairo University, 2000. Research interests include algorithms

and security fields. He can be contacted at email: basheer@fci-cu.edu.eg.

mailto:s.elgamal@fci-cu.edu.eg
mailto:basheer@fci-cu.edu.eg
http://orcid.org/0009-0004-4001-2222
https://scholar.google.com/citations?user=05dPC5gAAAAJ
https://www.webofscience.com/wos/author/record/JFK-4630-2023
http://orcid.org/0000-0003-0745-7663
http://orcid.org/0000-0003-0479-199X
https://scholar.google.com/citations?user=7advKDAAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57215211545

