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 Load forecasting is a critical aspect of energy management and grid 

operations. Machine learning techniques as support vector regression (SVR), 

have been widely used for load forecasting. However, the effectiveness of 

SVR is highly dependent on its hyperparameters, including the error 

sensitivity parameter, penalty factor, and kernel function. Furthermore, as 

the load data follows a time series pattern, the accuracy of the SVR model is 

influenced by the data's characteristics. In this regard, the present study aims 

to investigate the impact of combining the sliding window procedure and 

differencing the input data on the prediction accuracy of the SVR model. 

The study utilizes daily maximum load data from the Queensland and 

Victoria states in Australia. The analyses revealed that while the sliding 

window procedure had a minimal impact on the prediction results, the 

differencing of the input data significantly improved the accuracy of the 

predictions. 
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1. INTRODUCTION 

Electrical load forecasting refers to the process of predicting future electricity load demand within a 

specific region, system, or grid. The primary purpose of load forecasting is to assist energy providers, 

utilities, and grid operators in efficiently planning and managing the generation, transmission, and 

distribution of electricity or energy. Electrical load forecasting plays a vital role in all aspects of the electrical 

power system, including generation, transmission, distribution, retail sale of electricity [1]–[3]. Load 

forecasting can be classified into four main categories based on the period of prediction time: Very short-

term load forecasting (VSTLF), short term load forecasting (STLF), medium term load forecasting (MTLF), 

and long-term load forecasting (LTLF). Specifically, VSTLF focuses on predicting the electricity load within 

a short time horizon, typically ranging from a few minutes to a few hours. Meanwhile, the categories of 

STLF, MTLF, and LTLF take a longer time to predict the electricity load from a few hours to a few days, a 

few weeks to a few months, and even several years to decades, respectively [4], [5]. 

There are numerous techniques and methodologies which can be used for electricity load 

forecasting, such as multiple regression, exponential smoothing, autoregressive integrated moving average, 

artificial neural networks, support vector regression, deep learning models, and ensemble methods [6]–[8]. 

For these approaches, support vector regression (SVR), a variant of support vector machines with several 

advantages for regression tasks, has gained popularity as a promising solution for electricity load forecasting 
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in recent years [9], [10]. The prediction precision of the SVR model depends on its hyperparameters of 𝜀 

(error tolerance), C (penalty parameter), Kernel functions, and Kernel parameters [11], [12]. In addition to 

the hyperparameters of the SVR model, the preprocessing steps applied to input data, such as sliding window 

and differencing procedures also have a significant impact on the accuracy of the prediction results. The 

sliding window procedure is a commonly used technique in combination with SVR for handling time series 

data, including the case of load forecasting. In the sliding window procedure, the window size is an important 

factor which must be considered because it determines the number of past observations used as input features 

for predicting the future load. In other words, the window size should be taken into account when using the 

sliding window procedure with SVR due to the direct impact on the accuracy of the model's predictions  

[13]–[16]. Regarding the utilization of sliding window procedure, another important characteristic that cannot 

be ignored for the daily maximum load data is its repetitive nature. For example, the maximum load on a 

Monday this week may have a similar value to the maximum load on the previous Mondays, and so on. 

Therefore, the method of differencing the input data can also be applied to improve the accuracy of the 

prediction results [17].  

In this study, the sliding window procedure and differencing the input data are combined to 

investigate their impact on the accuracy of load forecasting based on the SVR network. A large number of 

different combinations of the hyperparameters C, 𝜀, and 𝛾 of the SVR network are considered. Additionally, 

the daily maximum load data taken from the states of Victoria and Queensland, Australia, are used in the 

study. The obtained forecast errors will be used to analyze the performance of the sliding window procedure 

and differencing the input data in relation to the accuracy of the SVR model. 

The paper is organized as follows. Section 2 provides a critical discussion of support vector 

regression and introduces the methodology that combines the sliding window procedure and differencing the 

input data. Section 3 presents the experimental results with analyses and discussions for the findings. Section 

4 concludes the paper, summarizing the main findings and contributions of the study. 

 

 

2. METHOD  

2.1.  Support vector regression 

In SVR, the training data consists of pairs (xi, yi) ∈ Rn x R, where xi ∈ Rn and yi ∈ R that represent 

the feature input vector and the corresponding target value, respectively. The index 𝑖 = 1, . . . , 𝑚, is assigned 

to the number of training instances, while 𝑛 is referred to the number of features in each instance. In SVR, 

the input x is mapped to a higher dimensional feature space using the function 𝜑(𝑥) which is expressed as (1) 

[18], [19]: 

 

𝑓(𝑥) = < 𝜔, 𝜑(𝑥) > + 𝑏 (1) 

 

Here, the symbol < . , . > represents the dot product, where 𝜔 is the weight vector and b is the bias term. The 

objective is to estimate the values of 𝜔 and b by minimizing the following regularized risk: 

 

𝑅  =
1

2
‖𝜔‖2 + 𝐶 ∑ 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)𝑚

𝑖=1 )  (2) 

 

where L(yi, f(xi)) represents the linear 𝜀 -insensitive loss, which is defined as (3). 

 

𝐿(𝑦, 𝑓(𝑥)) = |𝑦 − 𝑓(𝑥)|𝜀 = 𝑚𝑎𝑥{ 0, |𝑦 − 𝑓(𝑥)| − 𝜀}  (3) 

 

In (2)-(3), C and 𝜀 are the parameters of regularization and the error sensitivity, respectively. By substituting 

(3) for (2) and introducing the positive slack variables 𝜉𝑖, 𝜉𝑖
∗ to represent deviations from the 𝜀 -zone, the (2) 

can be reformulated as the objective function (4) subject to the constraints expressed in (5). 

 

𝑅  =
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1  (4) 

 

𝑦𝑖 − (𝜔𝑇𝜑(𝑥𝑖) + 𝑏) ≤  𝜀 + 𝜉𝑖 

𝜔𝑇𝜑(𝑥𝑖) + 𝑏) − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗  

𝜉𝑖 ,  𝜉𝑖
∗   ≥ 0;  𝑖 = 1,2, . . . , 𝑁 (5) 

 

By applying the Lagrange multiplier and considering the optimally constrained formulation, (1) can 

be explicitly represented as (6). In this equation, 𝛼𝑖
∗ and 𝛼𝑖 represent the Lagrange multipliers, and 𝐾(𝑥𝑖 , 𝑥) 

denotes the Kernel function, which is defined as the dot product between 𝜑(𝑥𝑖)𝑇and 𝜑(𝑥): 
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𝑓(𝑥) = ∑ (𝛼𝑖
∗ − 𝛼𝑖)𝐾(𝑥𝑖 , 𝑥)𝑁

𝑖=1 + 𝑏 (6) 

 

One commonly used kernel function is the radial basis function (RBF), which is often employed with a 

Gaussian RBF kernel. In this paper, the authors have utilized the Gaussian RBF kernel for their study. 

 

𝐾(𝑥, 𝑦) = 𝑒−𝛾‖𝑥−𝑦‖2
 (7) 

 

A deep learning model, including SVR, typically consists of two types of parameters [20]–[25]. The 

first type comprises the model parameters that are learned during the training process. The second type 

consists of hyperparameters, which are set before training and govern the behavior of the model. Based on 

the detailed analysis of the SVR model described above, there are three hyperparameters that significantly 

impact its performance. These include the 𝜀 parameter which defines the constraints of the function f(x); the 

C parameter used to determine the balance between the regularization term and the empirical error; and the 

Kernel parameter. These hyperparameters have a strong influence on the accuracy of the SVR model. 

 

2.2.  The sliding window procedure and differencing the input data 

The maximum daily load of electricity is a time series data that can be described in a following 

mathematical model:  

 

𝑦(𝑡)   =   {𝑦1,  𝑦2 ,   . . . ,  𝑦𝑁 ,   . . . } (8) 

 

where 1, 2, ..., N, ... represents the order of observed variables. To apply the load forecasting model with 

SVR, a common method by utilizing the sliding window procedure to generate input and target data for both 

training and prediction is used. The sliding window procedure operates based on two parameters of the 

window size and stride. The window size shows the length of the window that is applied for the time series 

data. The stride parameter determines the shift of the window, which is referred to the distance between two 

consecutive windows, normally, with a default value of 1. Table 1 illustrates the operation process of the 

sliding window procedure with a window size of N and a stride of 1. 

 

 

Table 1. The Sliding window procedure 
Input Target 

𝑦1, 𝑦2,  . . . ,  𝑦𝑁 𝑦𝑁+1 

𝑦2, 𝑦3,  . . . , 𝑦𝑁+1 𝑦𝑁+2 

… … 

𝑦ℎ , 𝑦ℎ+1, . . . , 𝑦𝑁+ℎ−1 𝑦𝑁+ℎ 

 

 

Based on the operation process of the sliding window procedure, we can see that the window size 

parameter can potentially impact the accuracy of the SVR model. This is because it determines the amount of 

information included in the input data set. Therefore, in this study, the window size parameter will be 

investigated, and specifically, the value of window size = 𝑁 will be examined to assess its impact on the 

SVR model's performance. 

Regarding the repetitive nature due to the possible repetition of the maximum load on a specific day 

of a week with those on the same day of the previous weeks as mentioned above, the differencing procedure 

can also be applied to the input data to enhance the accuracy of the prediction results. The differencing of 

time series data is a technique used to transform the data by taking the differences between consecutive 

observations. It is commonly employed to remove trends and seasonality from the data, making it more 

stationary and suitable for analysis and modeling. The differencing process involves subtracting the previous 

observation from the current observation to calculate the difference. This can be done once (first 

differencing) or multiple times (higher-order differencing) depending on the characteristics of the data. The 

first differencing is performed by subtracting each observation from its preceding observation, as shown in 

(9). Meanwhile, the seasonal differencing can be utilized by taking the difference between an observation and 

the corresponding observation from the previous seasonal period, as shown in (10), where d represents the 

seasonal period which could be characterized for the length of a season or a specific time interval. 

 

𝑑𝑦(𝑦)   =  𝑦(𝑡) − 𝑦(𝑡 − 1) (9) 

 

𝑑𝑦(𝑦)   =  𝑦(𝑡) − 𝑦(𝑡 − 𝑑) (10) 
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Therefore, the parameter N in the sliding window and the parameter d in the differencing procedures 

can affect the prediction accuracy of the SVR model. Figure 1 presents the integration of the sliding window 

and differencing procedures applied to the SVR model, including the following main processes: 

− Firstly, the data ([𝑦1, 𝑦2, … , 𝑦𝑛]) is split into training data (𝑦1 , 𝑦2, … , 𝑦𝑛−ℎ) and testing data (𝑦𝑛−ℎ + 1,
… , 𝑦𝑛), the testing and training data have lengths of h and n-h, respectively.  

− The training data undergoes differencing in the input data through the diff process, and the working 

principle of the diff process is described by (9)-(10). 

− The split 1 process separates the training data into the input and output sets for the training process, 

denoted as Xtrain and Ytrain, respectively. On the other hand, the split 2 process separates the data into the 

input and output sets for testing, denoted as Xtest and Ytest. The operating principles of the split 1 and  

split 2 processes are based on the operating principles of the sliding window procedure described in Table 1. 

 

 

 
 

Figure 1. Methodology for the combination of the sliding window and differencing procedures 

 

 

The Xtrain and Ytrain data will be used for training the SVR network, and its trained model will be 

represented as mdl. This mdl model will be used as an input for the prediction process, along with input Xtest, 

and the output will be the predicted values Fpredict. The mean absolute percentage error (MAPE) is proposed 

in this study as the measure of the difference between the predicted values Fpredict and the actual values Ytest as 

defined by (11) [26], [27]. Analyzing the MAPE values with different values of N in the sliding window 

procedure and the value of d in the differencing procedure allows to evaluate their impact on the SVR 

network. 

 

𝑀𝐴𝑃𝐸 =
1

ℎ
∑ |

𝑌𝑡𝑒𝑠𝑡−𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑌𝑡𝑒𝑠𝑡
|ℎ

𝑖=1  (11) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental settings 

In this study, the maximum load data exported from the Victoria (VI) and Queensland (QL) grids in 

Australia in a period from June 6, 2010 to May 31, 2014 is used. The load profiles of these two datasets are 

depicted in Figure 2 with Victoria dataset in Figure 2(a) and Queensland dataset in Figure 2(b). To conduct 

the analysis, the datasets will be divided into two subsets: the training set and the test set. The test set will 

comprise the last 364 days of data, while the remaining data will be allocated for training purposes. 

Simultaneously, a large number of different combinations of the hyperparameters C, 𝜀, and 𝛾 of the SVR 
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network are considered in this study to enhance the reliability of the research results. The range, values, and 

the number of surveys for these hyperparameters are presented in Table 2. The total number of combinations 

for the hyperparameters C, 𝜀, and 𝛾 is 700 cases. 

 

 

  
(a) (b) 

 

Figure 2. The maximum load data (a) Victoria and (b) Queensland 

 

 

Table 2. The characteristic of hyperparameters 
Hyperparameter Values of elements Number of elements 

C [1e-2, 4e-2, 7e-2, 1e-1, 4e-1, 7e-1, 1e0, 4e0, 7e0, 1e1] A=10 

𝜀 [1e-3, 4e-3, 7e-3, 1e-2, 4e-2, 7e-2, 1e-1] B=7 

𝛾 [1e-2, 4e-2, 7e-2, 1e-1, 4e-1, 7e-1, 1e0, 4e0, 7e0, 1e1] C=10 

 

 

3.2.  Experimental results 

The boxplot charts in Figures 3 and 4 present the statistical results of the forecasting errors for the 

VI and QL datasets, respectively. Each figure corresponds to a specific combination of N and d values. 

Tables 3 and 4 provide detailed statistical information regarding the respective error values shown in Figure 3 

and Figure 4. Specifically, the first row values listed in Table 3 (N=7, d=0, mean=6.9, std=1.2,..., 100th=11.1) 

correspond to the statistical measurements of the first column (N=7, d=0) in Figure 3, and so on. The similar 

correspondence is also made for Table 4 and Figure 4. Based on the results shown in Figure 3 and Figure 4 

along with the statistical values of prediction errors provided in Tables 3 and 4, we can analyze the influence 

of the parameter N in the sliding window procedure and the parameter d in the differencing procedure on the 

SVR network.  

Analyzing the influence of the parameter N. Specifically, for the case of d=0 and the VI dataset, we 

can observe that the different N values such as N=7, N=14, or N=28 yield similar prediction errors. The mean 

values of the errors are approximately 6.9 (for N=7), 6.7 (for N=14), and 6.9 (for N=28), respectively. The 

standard deviation values are approximately 1.1-1.2 for all three cases. The minimum values are 5.8, 5.6, and 

5.6. The 25th percentile values are 6.1, 5.8, and 6. The 50th percentile values are 6.3, 6.2, and 6.6. The 75th 

percentile values are 7.4, 7.2, and 7.5. The maximum values are 11.1, 11.0, and 10.8. Similar results are 

obtained for the cases of d=1 and d=7, as well as when using the QL dataset. Therefore, with different N 

values, the statistical properties of the prediction errors remain almost the same. This indicates that the input 

N value has an insignificant impact on the prediction results in this study. 

Analyzing the influence of the parameter d. Let consider N=7 for the VI dataset. When d=1, it 

shows the lowest statistical values among d=0 and d=7 in terms of prediction errors. Specifically, the mean 

value is 6.2 (for d=1) i.e. lower than 6.9 (for d=0) and 6.8 (for d=7), the standard deviation is 0.5 compared to 

1.2 and 0.5, the minimum value is 5.5 compared to 5.8 and 6.2, the 25 th percentile value is 5.9 compared to 

6.1 and 6.4, the 50th percentile value is 6.1 compared to 6.3 and 6.6, the 75th percentile value is 6.4 compared 

to 7.4 and 7, and the maximum value is 7.5 compared to 11.1 and 8.2. Similar results are obtained for N=14 

and 28, where d=1 also exhibits the lowest statistical values. Therefore, using differencing with d=1 as input 

can give the higher accuracy of the prediction results in comparison with the case of using the original data 

d=0 or d=7 in this study. 

Figure 5 presents graphical illustrations of the prediction results for different combinations of N and 

d, corresponding to specific values of hyperparameters. Figure 5(a) corresponds to the VI dataset with 

hyperparameters C=7e-2, ε=7e-3, γ=7e-2. Figure 5(b) corresponds to the QL dataset with hyperparameters 
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C=7e-1, ε=7e-2, γ=7e-1. Observing that the prediction curves (depicted in dashed line) for the cases of  

d=1 closely align with the actual data obtained for the cases of d=0 and d=7. This observation aligns with the 

analyses mentioned above. 

 

 

 
 

Figure 3. The boxplot of error rate for Victoria case 

 

 

 
 

Figure 4. The boxplot of error rate for Queensland case 

 

 

Table 3. The statistical characteristic of error rate MAPE (%) for VI case  
N d mean std min 25th 50th 75th 100th 

7 0 6.9 1.2 5.8 6.1 6.3 7.4 11.1 
7 1 6.2 0.5 5.5 5.9 6.1 6.4 7.5 

7 7 6.8 0.5 6.2 6.4 6.6 7 8.2 

14 0 6.7 1.2 5.6 5.8 6.2 7.2 11 
14 1 6.2 0.4 5.6 5.9 6 6.4 7.5 

14 7 6.9 0.6 6 6.4 6.9 7.3 8.6 
28 0 6.9 1.1 5.6 6 6.6 7.5 10.8 

28 1 6.1 0.4 5.6 5.8 6 6.4 7.4 

28 7 7.1 0.7 5.8 6.5 7.1 7.6 9.1 

 

 

Table 4. The statistical characteristic of error rate MAPE (%) for QL case 
N d mean std min 25th 50th 75th 100th 

7 0 3.8 1.1 2.7 2.9 3.2 4.4 6.7 

7 1 3 0.4 2.6 2.7 2.8 3.4 4 
7 7 3.3 0.4 2.9 3 3.1 3.4 4.4 

14 0 3.6 1.3 2.4 2.6 3 4.4 7 

14 1 2.9 0.4 2.5 2.6 2.7 3.3 3.9 
14 7 3.3 0.5 2.7 2.8 3.1 3.5 4.4 

28 0 3.6 1.3 2.4 2.5 3.1 4.5 7.1 

28 1 2.9 0.4 2.4 2.5 2.7 3.3 3.9 

28 7 3.3 0.5 2.6 2.9 3.3 3.6 4.4 
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(a) 

 

 
(b) 

 

Figure 5. The plot of prediction and test values (a) VI and (b) QL 

 

 

4. CONCLUSION 

The study provided valuable insights into the impact of the N and d parameters on the SVR model 

and offers potential approaches for improving the accuracy of load forecasting and other predictive 

applications. The obtained results revealed that the impact on the prediction errors can be ignored in the case 

of changing the values of N. However, altering the values of d gives a strong influence. Specifically, in this 

study, using d=1 yields the highest accuracy in the prediction results in comparison with the original data 

(d=0) or the case with d=7. These findings are highly meaningful not only for the load forecasting problem of 

substations, but also for other forecasting applications. 
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