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 Early detection and diagnosis of breast cancer are critical for saving lives. 

This paper addresses two major challenges associated with this task: the vast 

amount of data processing involved and the need for early detection of breast 

cancer. To tackle these issues, we developed thirty hybrid architectures by 

combining five deep learning techniques (Xception, Inception-V3, 

ResNet50, VGG16, VGG19) as feature extractors and six classifiers 

(random forest, logistic regression, naive Bayes, gradient-boosted tree, 

decision tree, and support vector machine) implemented on the Spark 

framework. We evaluated the performance of these architectures using four 

classification criteria. The results, analyzed using Scott Knott's statistical 

test, demonstrated the effectiveness of merging deep learning feature 

extraction techniques with traditional classifiers for classifying breast cancer 

into malignant and benign tumors. Notably, the hybrid architecture using 

logistic regression as the classifier and ResNet50 for feature extraction 

(RESLR) emerged as the top performer. It achieved impressive accuracy 

scores of 98.20%, 96.59%, 96.64%, and 94.84% across the Break-His 

dataset at different magnifications (40X, 100X, 200X, and 400X) 

respectively. Additionally, RESLR achieved an accuracy of 97.05% on the 

ICIAR dataset and a remarkable accuracy of 95.31% on the FNAC dataset. 
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1. INTRODUCTION 

The sixth-leading cause of cancer-related deaths globally, and the primary cause among women, is 

breast cancer, projected to be the most frequently diagnosed cancer worldwide by 2020. Approximately  

2.26 million new cases of breast cancer are anticipated, with an estimated 685,000 deaths [1]. Recognized as 

a significant global health issue, cancer poses substantial challenges. The global burden of disease (GBD) 

estimates that in 2020 alone, there will be approximately 19.3 million new cancer cases and nearly 10 million 

cancer-related deaths. Among various cancer types, breast cancer stands out as the most common, 

significantly contributing to female mortality globally. In 2020, an estimated 2.3 million women were 

affected by this disease, highlighting its widespread impact. 

As the number of women afflicted with breast cancer increased, radiologists faced challenges in 

handling timely diagnoses [2]. While the touchstone standard for breast cancer diagnosis remains 

pathological examination, it is time-consuming and resource-intensive [3]. Due to the superficial nature of 

breasts, imaging technologies can detect anomalies in breast mass, proving to be valuable. Image analysis in 

https://creativecommons.org/licenses/by-sa/4.0/
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medicine, particularly using deep learning, has shown superior performance in various domains [4], including 

classification [5], [6], detection, and segmentation [7]. 

Deep learning techniques offer exceptional outcomes [8], [9] aiding radiologists in making informed 

decisions and enabling early detection [9]. These algorithms automatically extract features, retrieve 

information from data, and learn advanced abstract data representations [10]. However, classical machine 

learning techniques, while producing accurate results for breast cancer classification [11], require less time in 

training and parameter tuning. Numerous studies have been conducted to evaluate tumor detections by using 

traditional deep learning techniques, using the IRMA dataset, visual geometry group 16-layer model 

(VGG16) and residual network with 50 layers (ResNet50) were applied to classify normal and abnormal 

tumors. Results indicate VGG16 achieved superior accuracy at 94%, surpassing ResNet50's 91.7% [12]. 

Results indicate that K-nearest neighbors (KNN) achieves the highest accuracy (97.51%) and the lowest error 

rate, outperforming the naive Bayes (NB) classifier (96.19%) [13]. Therefore, the researchers have developed 

hybrid architectures effectively combining deep learning techniques for feature extraction with traditional 

machine learning methods for classification [14]–[18]. 

The multi-layer perceptron and DenseNet 201 (MDEN) architecture, combining the multi-layer 

perceptron (MLP) classifier and DenseNet 201 for feature extraction, emerged as the top-performing model 

with up to 99% accuracy on the Fine needle aspiration cytology (FNAC) dataset [19]. Its success lies in the 

synergistic combination of dense connections from DenseNet and the multilayer perceptron's classification 

capabilities, which effectively captured intricate patterns within the data. On the other hand, the 

convolutional neural network-long short-term memory (CNN-LSTM) model achieved a remarkable accuracy 

of 96% by combining convolutional neural network (CNN) for feature extraction and long short-term 

memory (LSTM) for classification, showcasing the effectiveness of leveraging both convolutional and 

recurrent neural network architectures for complex data analysis tasks [20]. 

In addressing the categorization challenge within the Wisconsin diagnostic breast cancer (WDBC) 

dataset, researchers employed an ensemble of support vector machines (SVMs) that demonstrated 

exceptional performance. This ensemble achieved over 99% accuracy in identifying test data, and notably, 

100% accuracy in predicting benign tumors [21]. Moreover, in another study focused on lung cancer 

classification, a hybrid approach utilizing SVM and neural networks was adopted. This approach yielded 

even higher results, with an average precision value of 98.17% [22]. 

The rising incidence of diseases such as breast cancer has resulted in a surge in the volume of 

medical images, presenting challenges for conventional deep learning and machine learning techniques. In 

response, big data has emerged as a promising solution. Studies have shown that leveraging big data analytics 

has led to enhancements in decision-making quality [23], [24]. This highlights the potential of big data in 

addressing the complexities posed by the growing number of medical images.  

In the realm of classifying extensive datasets, researchers have developed a distributed 

heterogeneous boosting-inspired ensemble classifier (DHBoost). This classifier, which operates on the 

MapReduce computing paradigm and Apache Spark framework, has demonstrated superior performance 

compared to Spark ensemble classifiers (such as Spark-random forests (Spark-RF) and Spark-gradient-

boosted trees (Spark-GBT)) across various scenarios [25]. The efficacy of DHBoost underscores the 

importance of leveraging innovative approaches, particularly within the context of large-scale data 

processing. 

In this study, our primary objective is to identify an optimal combined architecture that attains 

superior accuracy within a concise timeframe. To achieve this goal, we thoroughly investigate thirty hybrid 

architectures, utilizing a diverse set of six classifiers and incorporating five deep learning techniques. Our 

experimentation is conducted across three distinct datasets for binary breast cancer classification. The 

implementation is carried out on the Apache Spark framework, strategically chosen to enhance both 

execution speed and training efficiency. This comprehensive approach is designed to tackle two critical 

challenges: effectively managing substantial volumes of data and facilitating early detection. The primary 

objective of this study is to examine and provide insights into five fundamental aspects (FAs): 

− (FA1): To what extent do the thirty hybrid architectures developed on Apache Spark demonstrate 

performance in classifying breast cancer? 

− (FA2): Is there a feature extractor approach that obviously exceeds others when used in a heterogeneous 

design? 

− (FA3): Is there a hybrid design that obviously outperforms others, irrespective of the selection of feature 

extractor and classifier? 

− (FA4): Is there a combination design that clearly outperforms others, independent of the dataset? 

− (FA5): Did the implementation of Apache Spark have a noticeable impact on the outcomes, indicating an 

improvement?  
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The structure of this work unfolds as follows: section 2, labeled research method, delves into the 

dataset, preprocessing methods, evaluation metrics, and abbreviations. In section 3, the proposed method 

employed in this study is detailed. Empirical findings are succinctly summarized and analyzed in section 4. 

Moving forward, section 5 engages in a thorough discussion of the results while also outlining potential 

avenues for future research projects. 

 

 

2. RESEARCH METHOD 

2.1.  The dataset description and preprocessing 

Table 1 offers a detailed overview of the datasets utilized in the study, including references for the 

ICIAR, FNAC, and BreakHis datasets, along with their respective types and sizes. Specifically, the ICIAR 

dataset comprises 400 microscope images, while the FNAC dataset includes 113 malignant and 99 benign 

cases. Moreover, the BreakHis dataset encompasses 7,909 images distributed across four magnification 

factors: 40X, 100X, 200X, and 400X. 

 

 

Table 1. Description and preprocessing of three datasets 
DATASET Type Size Preprocessing of data 

ICIAR [26] Images 400 microscope images Rotation: Apply a random rotation to the image within a 
range of 30 degrees. 

Zoom: Adjust the image by zooming out with a range 

value of 0.2. 
Apply shearing: Distort the image by shifting one part in 

one direction and the other part in the opposite direction, 

within a range of 0.2. 
Adjust width and height: Shift the image both 

horizontally and vertically, with a range set at 0.3. 

Implement horizontal flipping: Create a mirror image 
along the horizontal axis. 

Utilize fill mode: Substitute empty areas with the nearest 

pixel value. 
Rescale: Adjust pixel values to a new range of 0-1 from 

the original 0-255 range. 

FNAC [27] Images 113 malignant and 99 benign 

cases 

BreakHis 

[28] 

Images 7,909 images across four 

magnification factors  

40X, 100X, 200X, and 400X 

 

 

2.2.  Evaluation metrics 

In evaluating the efficacy of the heterogeneous methods, we employed a set of performance metrics. 

These metrics, which encompass accuracy, precision, recall, and F1-score, were utilized to assess the models' 

performance. The equations for calculating these metrics are presented as (1)-(4). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)) (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)) (3) 

 

𝐹1 = 2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) (4) 

 

2.3.  Scott Knott statistical tests 

The Scott-Knott (SK) technique, introduced by Scott and Knott in 1974, serves as a valuable 

exploratory clustering method in the analysis of variance (ANOVA) domain. The primary objective of the 

SK method is to discern overlapping groups by conducting multiple comparisons of treatment means. 

Renowned for its simplicity and robustness, this method is commonly employed as a hierarchical 

clustering algorithm [29]. In this study, the Scott-Knott statistical test was applied to the accuracy results 

acquired [30]. 

 

2.4.  Abbreviation 

In Table 2, the naming conventions applied to abbreviate the hybrid architectures are presented. 

These guidelines serve to provide a standardized and concise representation of the various hybrid models 

utilized in the study. By adhering to these conventions, researchers can easily identify and reference the 

specific architectures employed.  
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Table 2. Hybrid architecture abbreviation guidelines table 
Abbreviation Description Abbreviation Description 

LR Logistic regression NBXCP  NB with Xception 
SVM Support vector machine learning NBINCP  NB with Inception-V3 

RF Random forest RFXCP  RF with Xception 

NB Naïve Bayes NBV16 NB with VGG16 
GBT Greed boosting tree RESRF  RF with ResNet50 

RESLR logistic regression with ResNet50 RFINCP  RF with Inception-V3 

SVMINCP SVM with Inception-V3 RFV16  RF with VGG16 
SVMRES SVM with ResNet50 GBTRES  GBT with ResNet50 

LRINCP logistic regression with Inception-V3 GBTXCP  GBT with Xception 

SVMV16 SVM with VGG16 DTRES  DT with ResNet50 
LRV19 Logistic regression with VGG19 GBTV19 GBT with VGG19 

SVMXCP  SVM with Xception DTV19 DT with VGG19 

SVMV19 SVM with VGG19 RFV19 RF with VGG19 
LRXCP  logistic regression with Xception DTXCP  DT with Xception 

NBV19 NB with VGG19 DTINCP  DT with Inception-V3 

DTV16 Decision tree with VGG16 GBTV16 GBT with VGG16 
LRV16  logistic regression with VGG16 GBTINCP  GBT with Inception-V3 

NBRES  NB with ResNet50 - - 

 

 

3. PROPOSED METHOD 

The proposed methodology involves the creation of hybrid architectures, employing six classifiers 

and five pre-trained CNN architectures for feature extraction in breast cancer histopathological images using 

the spark framework. Harnessing the capabilities of Apache Spark, particularly its spark deep learning 

pipeline, the approach incorporates utility functions to efficiently manage large-scale datasets. It seamlessly 

loads millions of images into a distributed spark dataframe, utilizing automatic decoding techniques for 

parallel and efficient processing across the spark cluster, enabling extensive manipulation of the data. The 

workflow, illustrated in Figure 1, delineates the steps followed in this experiment. 

 

 

 
 

Figure 1. The overview of our process 

 

 

In this proposal, 30 hybrid architectures (HA) were developed for each dataset (magnification 

factors (MF) at 40X, 100X, 200X, and 400X magnifications). All architectures provided in SparkDL from 

the DataBricks library (VGG16, Inception-V3, Xception, VGG19, ResNet50) were utilized for feature 

extraction. The extracted features were then fed into six classifiers (GBT, SVM, RF, LR, NB, DT). Specific 

configurations were employed for building and training the proposed models: 

− The input images for the BreakHis dataset were standardized to a 512×512 pixel size after preprocessing. 

− Transfer learning techniques were applied to all feature extraction methods (VGG16, ResNet50, 

Inception-V3, VGG19, Xception). This involved freezing the convolutional base of each architecture, 

and ImageNet weights were downloaded and used as kernel weights for extracting features. 
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− All the six machine learning classifiers (GBT, SVM, RF, LR, NB, and DT) used to classify the 

histopathological images into malignant or begin. These classifiers were used without tuning using the 

default parameters.  

After training all thirty models, we conduct a thorough evaluation of their performance, taking into 

account metrics such as precision, accuracy, F1-score, and recall. To assess the significance of accuracy 

values among these models, we utilize the Scott-Knott (SK) statistical test for comparison. This 

comprehensive analysis allows for a nuanced understanding of the efficacy and relative performance of each 

model.  

 

 

4. RESULTS AND DISCUSSION 

This section presents the empirical findings derived from the evaluation of hybrid architectures 

across three diverse datasets (Break-His, ICIAR, FNAC). The assessment places emphasis on four 

fundamental performance measures. Initially, it assesses each classifier’s accuracy (FA1). Subsequently, it 

investigates the influence of five deep learning feature extraction methods on the four classifiers to determine 

those that contribute positively to classification performance (FA2). The subsequent analysis involves a 

comparison of the best-performing HB among the six classifiers to determine the optimal design (FA3). 

Additionally, a comprehensive evaluation of the thirty developed architectures, regardless of the dataset used, 

is conducted (FA4). Lastly, the study examines the performance improvement achieved by incorporating 

Apache Spark into the experimental workflow (FA5). 

All empirical assessments were conducted in Python, utilizing the Keras and TensorFlow deep 

learning frameworks. The experiments were executed on a graphics processing unit (GPU) processing unit 

with 8 cores, 25 GB of random-access memory (RAM), and a Linux-based operating system provided by 

Google within the Colab Notebook environment. Statistical analysis was performed using R version 3.4.4, 

and machine learning tasks were executed using the scikit-learn framework. 

 

 

4.1.  (FA1): To what extent do the thirty hybrid architectures developed on Apache Spark demonstrate 

performance in classifying breast cancer? 

As shown in Tables 3, 4, and 5 the four metrics results over the datasets. In the discussion of the 

hybrid architecture assessments across the break-his, FNAC, and ICIAR datasets, nuanced insights emerge 

regarding the influence of specific feature extractors and classifiers on the overall performance. For the 

break-his dataset, logistic regression-based hybrids consistently demonstrated superior accuracy, particularly 

when leveraging ResNet50 for feature extraction across varying magnification factors (MF). Noteworthy is 

the commendable performance of random forest-based architectures, excelling with ResNet50, while support 

vector machine-based hybrids showcased optimal accuracy with this particular feature extractor. Naive 

Bayes-based hybrids similarly favored ResNet50, outshining other extractors. On the contrary, the use of 

VGG19, VGG16, and Inception-V3 often resulted in comparatively lower accuracy scores, indicating the 

importance of the choice of feature extractor. Transitioning to the FNAC dataset, logistic regression-based 

hybrids achieved peak accuracy when employing ResNet50. However, divergent feature extractor influences 

were observed for other classifiers, underscoring the nuanced impact of the pairing on classification 

performance. In the case of the ICIAR dataset, logistic regression-based hybrids demonstrated optimal 

accuracy with ResNet50, emphasizing the significance of feature extraction technique selection. This detailed 

discussion highlights the intricate interplay between specific feature extractors and classifiers, shedding light 

on their distinctive roles in shaping the performance outcomes of hybrid architectures across diverse datasets. 

The findings underscore the importance of thoughtful selection to enhance classification accuracy in 

pathology image analysis. 

 

4.2.  (FA2): Is there a feature extractor approach that obviously exceeds others when used in a 

heterogeneous design? 

This section aims to evaluate the impacts of five deep learning techniques as feature extractors on 

the performance of six machine learning classifiers. The objective is to identify the feature extraction 

approaches that significantly influence classification performance across the BreakHis, FNAC, and ICIAR 

datasets. The Scott Knott statistical test was employed, utilizing accuracy scores from heterogeneous 

architectures for each classifier, to group strategies with comparable prediction abilities, regardless of the 

feature extraction method. Figures 2 and 3 present the results of the Scott Knott test based on accuracy, 

highlighting the highest-performing CNN approaches independent of the classifiers. 

For the magnification factor (MF) 40X, the SK test revealed that ResNet50 outperformed other CNN 

techniques, followed by Inception-V3, VGG19, Xception, with VGG16 being the least performant. Similarly, 

for MF 100X, ResNet50 was the top-performing CNN technique, followed by Xception, Inception-V3, VGG19, 
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and VGG16 as the least performant. For MF 200X, ResNet50 led, followed by Xception, Inception-V3, 

VGG16, with VGG19 being the least performant. In the case of MF 400X, ResNet50 was the most effective, 

followed by VGG19, Inception-V3, VGG16, and Xception as the least performant. 

 

 

Table 3. The accuracy of the thirty-heterogenous architecture over the breakHis dataset 
Classifier-ML Features extraction 400X 200X 100X 40X 

Logistic regression Inception-V3 89.91% 91.71% 90.92% 93.42% 

 Resnet50 94.84% 96.64% 96.59% 98.20% 
 VGG16 89.05% 91.20% 90.41% 93.02% 

 VGG19 89.27% 89.34% 89.60% 91.63% 

 Xception 89.27% 92.30% 90.35% 93.62% 
Random forest Inception-V3 81.57% 82.64% 80.94% 84.23% 

 Resnet50 89.44% 86.98% 84.71% 88.29% 

 VGG16 83.02% 76.98% 75.37% 79.65% 
 VGG19 83.39% 83.42% 82.06% 89.41% 

 Xception 80.74% 85.28% 82.07% 83.02% 

SVM Inception-V3 89.31% 87.07% 87.71% 93.41% 
 Resnet50 89.91% 90.18% 91.10% 92.76% 

 VGG16 89.41% 88.39% 91.10% 89.70% 

 VGG19 88.76% 83.97% 82.09% 88.69% 
 Xception 88.65% 89.06% 90% 90.51% 

GBT Inception-V3 73.59% 73.82% 75.55% 77.08% 
 Resnet50 85.50% 86.15% 88.41% 84.21% 

 VGG16 76.73% 82.08% 76.86% 80.33% 

 VGG19 78.12% 77.12% 79.58% 76.77% 
 Xception 71.91% 75.20% 73.75% 77.26% 

Naïve Bayes Inception-V3 80.60% 83.01% 80.47% 86.46% 

 Resnet50 79.25% 80.37% 80.75% 79.12% 
 VGG16 76.32% 77.61% 73.17% 77.81% 

 VGG19 79.04% 78.11% 76.53% 79.22% 

 Xception 79.66% 82.45% 81.57% 80.79% 
Decision tree Inception-V3 72.04% 74.71% 73.20% 75.43% 

 Resnet50 87.37% 84.52% 86.03% 83.87% 

 VGG16 77.84% 77.16% 76.03% 81.19% 

 VGG19 78.26% 78.11% 77.54% 76.19% 

 Xception 75.15% 79.62% 74.52% 77.35% 

 

 

Table 4. The thirty-hybrid architecture's accuracy on the FNAC-dataset 
Classifier-ML Features extraction Precision Recall F1-Score Accuracy 

Logistic regression Inception-V3 92.22% 92.19% 92.18% 92.19% 

 Resnet50 95.31% 95.31% 95.31% 95.31% 

 VGG16 85.97% 85.93% 85.93% 85.93% 
 VGG19 85.93% 85.93% 85.93% 85.93% 

 Xception 94.54% 94.53% 94.53% 94.53% 

Random forest Inception-V3 89.10% 89.06% 89.06% 89.06% 
 Resnet50 82.18% 80.29% 80.26% 80.29% 

 VGG16 76.75% 75% 74.65% 75% 

 VGG19 78.61% 78.12% 78.06% 78.12% 
 Xception 78.98% 78.91% 78.90% 78.91% 

SVM Inception-V3 89.06% 89.06% 89.06% 89.06% 

 Resnet50 82.04% 81.75% 81.79% 81.75% 
 VGG16 82.44% 82.03% 81.99% 82.03% 

 VGG19 79.83% 78.90% 78.77% 78.90% 

 Xception 89.07% 88.28% 88.23% 88.28% 
GBT Inception-V3 78.98% 78.91% 78.90% 78.91% 

 Resnet50 97.54% 79.56% 79.48% 79.56% 

 VGG16 71.38% 67.96% 66.80% 67.96% 
 VGG19 70.92% 68.75% 68.04% 68.75% 

 Xception 73.17% 72.65% 72.55% 72.65% 

Naïve Bayes Inception-V3 81.27% 81.25% 81.24% 81.25% 
Resnet50 69.57% 69.34% 68.70% 69.34% 

VGG16 74.25% 74.21% 74.19% 74.21% 

VGG19 78.21% 78.12% 78.09% 78.12% 
Xception 80.47% 80.47% 80.46% 80.47% 

Decision tree Inception-V3 78.98% 78.90% 78.90% 78.91% 

Resnet50 76.62% 75.78% 75.63% 75.78% 
VGG16 71.39% 67.97% 66.81% 67.97% 

VGG19 69.66% 67.18% 66.28% 67.18% 

Xception 73.17% 72.65% 72.55% 72.65% 
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Table 5. The thirty-hybrid architecture's accuracy on the ICIAR dataset 
Classifier-ML Features extraction Precision Recall F1-Score Accuracy 

Logistic regression Inception-V3 89.99% 89.70% 89.67% 89.70% 
 Resnet50 97.21% 97.05% 97.05% 97.05% 

 VGG16 88.23% 88.23% 88.23% 88.23% 

 VGG19 87.50% 87.50% 87.49% 87.50% 
 Xception 86.03% 86.02% 86.02% 86.02% 

Random forest Inception-V3 80.51% 80.16% 79.98% 80.16% 

 Resnet50 81.39% 81.39% 81.39% 81.39% 
 VGG16 76.51% 76.47% 76.47% 76.47% 

 VGG19 70.71% 70.58% 70.58% 70.58% 

 Xception 82.49% 82.35% 82.35% 82.35% 
SVM Inception-V3 91.73% 91.73% 91.73% 91.73% 

 Resnet50 89.90% 89.92% 89.90% 89.92% 

 VGG16 87.58% 87.50% 87.50% 87.50% 
 VGG19 86.86% 86.76% 86.74% 86.76% 

 Xception 87.23% 86.76% 86.69% 86.76% 

GBT Inception-V3 65.45% 65.44% 65.35% 65.44% 

 Resnet50 75.78% 73.64% 73.84% 73.64% 

 VGG16 67.70% 67.64% 67.54% 67.64% 

 VGG19 71.50% 71.32% 71.31% 71.32% 
 Xception 73.17% 72.65% 72.55% 72.65% 

Naïve Bayes Inception-V3 84.22% 83.47% 83.25% 83.47% 
Resnet50 89.17% 89.14% 89.07% 89.14% 

VGG16 82.50% 81.81% 81.57% 81.81% 

VGG19 86.03% 86.02% 86.02% 86.02% 
Xception 83.82% 83.86% 83.82% 83.82% 

Decision tree Inception-V3 66.87% 66.94% 66.89% 66.94% 

Resnet50 71.63% 71.32% 71.29% 71.32% 
VGG16 62.51% 62.50% 62.50% 62.50% 

VGG19 71.50% 71.32% 71.31% 71.32% 

Xception 68.23% 67.64% 67.19% 67.64% 

 

 

 
 

 
 

Figure 2. The outcomes of the Scott Knott test conducted on the five DL techniques using the BreakHis 

dataset 

 

 

In the FNAC dataset, ResNet50 exhibited the highest performance, followed by Xception, VGG19, 

and VGG16, while Inception-V3 performed the least effectively. Similarly, within the ICIAR dataset, 
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ResNet50 once more demonstrated superior performance among the CNN techniques, followed by Xception, 

VGG19, Inception-V3, and VGG16, with the latter being the least performant. Overall, ResNet50 

consistently achieved the best results as a feature extractor across all classifiers and datasets, while VGG16 

and Inception-V3 were identified as the less performant CNN techniques in specific magnification factors 

and datasets, respectively. The SK test on the three datasets collectively identified Inception-V3 as the least 

performing CNN technique globally. 

 

4.3.  (FA3): Is there a hybrid design that obviously outperforms others, irrespective of the selection of 

feature extractor and classifier?  

In this analysis, we conduct a thorough evaluation of the predictive performance showcased by the 

top heterogeneous models from six classifiers across multiple datasets. Employing the Scott Knott (SK) test 

with accuracy as the benchmark, we delve into the rankings of diverse architectures over the BreakHis 

dataset. Figure 3 visually presents the SK statistical test results, highlighting the superior heterogeneous 

design that outperforms its counterparts, regardless of the feature extractor and classifier used. Figure 4 

comprehensively depict the SK test outcomes for the six classifiers (LR, SVM, RF, NB, DT, and GBT) using 

features extracted with five architectures (VGG16, Inception-V3, Xception, VGG19, ResNet50) across 

different magnification factors and datasets (BreakHis, ICIAR, and FNAC). These figures unveil distinct 

groupings and performances. For the BreakHis dataset, the SK test identifies logistic regression with 

ResNet50 (RESLR) as the top-performing architecture and decision tree with Inception-V3 (DTINCP) as the 

less-performing one. In the FNAC dataset, nine classes emerge, with RESLR standing out as the best 

architecture and DTV19 as the least-performing. The ICIAR dataset reveals seven classes, with RESLR once 

again asserting itself as the superior architecture and DTV16 as the less-performing one. In summary, 

RESLR consistently emerges as the best architecture across all three datasets, while DTV16, DTV19, and 

DTINCP are identified as less-performing architectures in ICIAR, FNAC, and BreakHis datasets, 

respectively. This discussion underscores the nuanced interplay of classifiers and feature extractors, 

providing valuable insights for optimizing performance in pathology image analysis applications. 

 

 

 
 

 
 

Figure 3. the outcomes of the Scott Knott test based on the five deep learning-techniques over the Three 

datasets 
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Figure 4. The outcomes of the Scott Knott test conducted on the heterogenous architectures over the Three 

datasets 

 

 

4.4.  (FA4): Is there a combination design that clearly outperforms others, independent of the dataset? 

The hybrid architecture, utilizing logistic regression for classification and ResNet50 as a feature 

extractor, demonstrated strong performance across multiple datasets. Specifically, on the BreakHis dataset, 

the RESLR architecture achieved impressive accuracy rates of 98.20%, 96.59%, 96.64%, and 94.84% for MF 

categories (40, 100, 200, and 400), respectively. Furthermore, on the FNAC dataset, RESLR exhibited 

notable accuracy, reaching 95.31%. Similarly, on the ICIAR dataset, the same architecture showcased 

excellent performance with an accuracy of 97.05%. In summary, the RESLR hybrid architecture consistently 

delivered outstanding results across diverse datasets, including BreakHis, FNAC, and ICIAR.  

 

4.5.  (FA5): Did the implementation of Apache Spark have a noticeable impact on the outcomes, 

indicating an improvement? 

Table 6 illustrates the training and testing times of diverse hybrid architectures on the FNAC dataset, 

highlighting distinct performance characteristics. Notably, the ResNet50 with logistic regression combination 

stands out for its efficient training (278.7/s) and swift testing (107.225/s). Conversely, ResNet50 with SVM 

exhibits longer training (2680.073/s) but compensates with notably faster testing (76.414/s). Inception-V3 

with GBT demonstrates the highest training speed (5979.279/s) and remarkably fast testing (101.24/s). 

VGG16 with RF achieves the fastest training (1955.498/s), while VGG19 with SVM shows the longest 

training (11642.771/s). These findings underscore trade-offs in training and testing efficiency among hybrid 

architectures, offering insights for optimal combinations. In summary, the ResNet50 and logistic regression 

hybrid proves most time-efficient during training, while random forest with VGG16 excels in testing. Our 

work presents superior times compared to existing studies, enabling faster predictions with Apache Spark's 

integration, enhancing large dataset utilization. 

Our study underscores the importance of specific feature extractors and classifiers in shaping breast 

cancer classification performance across diverse datasets. Logistic regression-based hybrid architectures, 

especially those incorporating ResNet50, consistently exhibited superior accuracy, highlighting the 

importance of strategic component selection in pathology image analysis. 

Among deep learning techniques, ResNet50 consistently outperformed other architectures across 

various magnification factors and datasets. Notably, logistic regression with ResNet50 (RESLR) emerged as 

the top-performing architecture, demonstrating its superiority across the Break-His, FNAC, and ICIAR 

datasets. 
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The integration of Apache Spark yielded notable improvements in training and testing times. The 

ResNet50 and logistic regression hybrid proved the most time-efficient during training, while random forest 

with VGG16 excelled in testing. These findings offer valuable insights into optimal design considerations 

and computational efficiency, paving the way for advancements in breast cancer classification through hybrid 

architectures. 

RESLR, excels with impressive accuracy: 98.20% on break-his, 97.05% on ICIAR, and 95.31% on 

FNAC. Comparatively to traditional deep learning VGG16 achieves 94% accuracy, while ResNet50 follows 

closely with 91.7% [12]. Traditional machine learning models like KNN excel at 97.51%, surpassing NB, 

which achieves a respectable 96.19% [13]. This comprehensive evaluation underscores the varied strengths 

of combined models in the context of medical imaging tasks. 

 

 

Table 6. The time spent training and testing on the FNAC dataset 
HB architecture FNAC Training time /s Testing time/s 

GBT RES 214.261 110.999 

NB RES 250.304 146.290 

RF RES 898.961 227.285 

LR RES 278.7 107.225 
SVM RES 2680.073 76.414 

DT RES 510.999 75.805 

DT INCPV3 1332.621 158.363 
LR INCPV3 1549.278 149.053 

NB INPV3 274.485 784.541 

RF INCPV3 1846.066 320.538 
GBT INCPV3 5979.279 101.24 

SVM INCPV3 5745.457 152.736 

LR VGG19 853.057 296.951 
GBT VGG19 863.172 305.187 

NB VGG19 607.915 373.673 

DT VGG19 1606.117 206.219 
RF VGG19 2418.767 390.701 

SVM VGG19 11642.771 284.268 

GBT VGG16 812.729 237.743 

DT VGG16 1552.262 197.547 

RF VGG16 1955.498 31.015 

LR VGG16 780.311 242.881 
NB VGG16 494.266 304.940 

SVM VGG16 9730.273 242.412 

NB XCP 358.489 232.330 
LR XCP 3080.16 204.076 

DT XCP 2250.009 199.409 

RF XCP 2375.203 265.488 
SVM XCP 6957.896 195.474 

GBT XCP 18318.06 200.734 

 

 

5. CONCLUSION  

This study advances breast cancer imaging classification by exploring 30 hybrid architectures, 

emphasizing diverse designs and effective feature extraction with classifier combinations. Notably, the 

RESLR architecture, utilizing ResNet50 as a feature extractor and logistic regression as a classifier, achieves 

outstanding accuracy of 98.20%, 96.59%, 96.64%, and 94.84% across various magnifications on the Break-

His dataset. Additionally, RESLR demonstrates high accuracy on the ICIAR (97.05%) and FNAC (95.31%) 

datasets, promising enhanced diagnostic capabilities in pathology image analysis. Introducing Apache Spark, 

our study showcases its transformative impact on handling extensive datasets, improving both training and 

testing phases. This efficiency has the potential to revolutionize computational pathology. Our commitment 

extends to refining existing architectures and developing novel combinations to enhance diagnostic accuracy. 

Furthermore, we plan to investigate the scalability and adaptability of these architectures in real-world 

clinical settings, ensuring their practical utility and impact on patient care. 
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