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 Due to the fast growth of cities worldwide, roads are increasing daily, and 

pavement maintenance has become very heavy and costly. Despite all efforts 

made under the pavement management system to keep the road surface in 

good shape, several road sections need to be in better condition, which 

presents a danger for drivers and pedestrians. This paper proposes a novel 

pavement 3D reconstruction and segmentation approach using the structure 

from motion technique, unmanned aerial vehicle, and digital camera. The 

method consists of the 3D modeling of the road by using images taken from 

different perspectives and the structure from motion technique. In this 

method, points cloud is sampled and cleaned using statistical outlier removal 

and noise filters. After that, duplicated and isolated points are eliminated to 

retain only significant data. The normal road plane is estimated using the 

principal component analysis technique and the remaining points. This plan 

presents a root mean square less than 0.85 cm. Finally, distances from those 

points to the normal plane are calculated and clustered to segment the road 

into distressed and non-distressed areas. The proposed approach presents a 

similarity rate to the survey measurement passed 95%. It has demonstrated 

promising results and has the potential for further improvement by 

optimizing various steps. 

Keywords: 

Pavement management system 

Points cloud 

Principal component analysis 

Smart city 

Statistical outlier removal 

Structure from motion 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Brahim Benmhahe 

Laboratory of Computer Science Research, Faculty of Sciences, Ibn Tofail University 

Kenitra, Morocco 

Email: Brahim.benmhahe@uit.ac.ma 

 

 

1. INTRODUCTION 

There is no doubt that pavement damage is a critical situation that cannot be avoided either in a road 

city or at the runway airport. This fact is due to factors such as environmental parameter changes 

(temperature and pressure), aging, vehicle overloads, initial poor construction, and the absence or the 

existence of low maintenance quality. Pavement maintenance must be done in a timely and specific manner 

to ensure safety, avoid accidents, permit minimum comfort for road users, save vehicles from deterioration, 

and prevent pavement maintenance from becoming heavy and costly.  

In this regard, the pavement management system (PMS) concept was introduced in 1970 to monitor 

the pavement’s health and define when and how to maintain it, considering resource optimization and 

keeping the pavement surface in good shape for as long as possible. Initially, PMS was based on handbooks, 

classical measurement tools, and human observation, which is considered time-consuming, subject to 

observer bias and tool limitation, and presenting multiple dangers for observers, pedestrians, and drivers 

during data acquisition. To overcome such limitations, various approaches have been adopted and developed 

over time, as evidenced by numerous research studies and publications in this field [1]–[3]. With the advent 

of smart city technology, PMS has been enhanced to include the latest advanced material and tools such as 

https://creativecommons.org/licenses/by-sa/4.0/
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cameras, laser scanners, and other sensors such as accelerometers, vibration, and acoustic to monitor in real-

time the pavement surface [4]–[6]. After data acquisition, several artificial intelligence and machine learning 

algorithms [7]–[12] were adapted and enhanced to analyze data gathered and extract meaningful information 

to detect, measure, and classify pavement distress. 

Regarding the nature of data acquired, the research could be classified into three categories: 

vibration-based, vision-based, and 3D scanning-based. Vibration-based consists of using accelerometers, 

vibration, and acoustic sensors for data acquisition [13]. Thus, damages on pavement cause a non-desired 

vertical and horizontal movement of the tire, which could be captured by installing such sensors on a 

vehicle. Some solutions were proposed to measure acceleration data by installing smartphone 

accelerometers on cars [14]–[16]. However, these solutions present limitations regarding the absence of 

significant data and the difficulties of gathering data in traffic congestion. Also, vibration data are received 

mainly via tire behavior, and damages not traversed by the tire could not be captured. Vibration-based 

methods have been disregarded for those reasons and others [12]. The second concept is the vision-based 

method of capturing images or videos with a camera, smartphone, or unmanned aerial vehicle (UAV). 

Several researchers intensely studied this method by adapting and enhancing multiple artificial intelligence 

and machine learning algorithms to extract pavement damage from images [17]–[23]. However, images 

present just two dimensions of information, and the third dimension (depth) cannot be extracted. The 

vision-based method is practical for detecting and measuring damage, characterized by two significant 

dimensions (cracks) and identifying and localizing other damages, such as potholes and rutting. Despite 

the high accuracy achieved by the vision-based method for crack detection and measurement (around 

95%) [24], the importance of the depth information for other types of damage is the main reason that 

drives researchers to look for other methods. The third and last concept consists of the 3D scanning of the 

road using laser scanners, light detection sensors, or other methods that offer high accuracy and present 

more significant data. 3D scanning helps to accurately measure all pavement damages, such as cracks, 

ruts, potholes, and wash-boarding [25]–[27]. However, the 3D scanning of the pavement is very costly, 

time-consuming, and stops traffic during the scan.  

Road 3D modeling is the more adapted solution that will permit extracting all necessary data with 

the minimum precision to overcome the abovementioned limitations. However, it should be less costly, more 

flexible, and ensure safety for all involved parties. Bruno et al. [28] proposed a low-cost pothole monitoring 

system based on a camera and global positioning system (GPS) modules managed by a mini-computer 

Raspberry Pi 4B. Collected images were processed through photogrammetric techniques to create the pothole 

3D model and calculate the volume of asphalt to fill. In this regard, the present paper proposes a novel 

approach based on the structure from motion (SFM) technique, a low-cost UAV, and a commercial digital 

camera for road 3D modeling and segmentation. 3D points are extracted and processed to remove almost 

unnecessary data, including noise. The normal plan, which represents the road surface plan before damages, 

is estimated based on the remaining points and the principal component analysis (PCA) technique. After that, 

damaged areas are defined based on distances between 3D points and the normal plane. A case study with a 

complicated, damaged pavement will be used to evaluate the proposed approach. 

The remaining sections are organized as follows: section 2 describes the state-of-the-art research 

studies in pavement 3D reconstruction and distress detection using the SFM technique and UAVs. The 

flowchart of the study outlining the various steps involved in implementing the proposed method will be 

described in section 3. Then, section 4 will present the material used with the experimental results and 

discussion. The paper will be concluded in section 5, and a summary of the key findings will be presented. 

 

 

2. BACKGROUND 

During the literature review, it was observed that using UAVs to asses pavement health is a 

prevalent technique [29], which presents more flexibility and guarantees safety for observers, pedestrians, 

and drivers. Among UAVs, the Da Jiang Innovation (DJI) family was the most efficient due to their superior 

navigation and optical systems, including high-quality cameras, as illustrated in Table 1. Also, it can be 

considered a low-cost solution compared to the vehicle used for road scanning. Furthermore, the SFM was 

identified as the commonly used technique for pavement 3D modeling, which is very robust and accurate. 

Then, multiple software and algorithms (singular value decomposition, canny edge, Hough circle transform, 

and Gabor filtering) are applied to the 3D model to isolate the road from other objects, detect damaged areas, 

and perform measurement and classification. However, existing methods still present some 

limitations regarding the low quality of data gathered, no detection and localization of damages, no 

identification of the type of distress (pothole, rut, and wash-boarding), no measurement of the distress or the 

measurement done manually, and no classification of the severity of damages [30]–[38]. To our knowledge, 

research is still being concluded on automatically detecting, measuring, and classifying damages in road 

networks. Table 1 illustrates recent research studies that used UAVs and SFM techniques to evaluate 
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pavement health, providing a comprehensive overview of the current state-of-the-art in this field and 

presenting the limitations of each method. 

 

 

Table 1. Recent research based on UAVs and SFM to evaluate pavement health 
Reference Material Software and Algorithms Limitations 

[29]  

  
DJI P4RTK 

*SFM 

*Bundle adjustment 
*Pix4DMapper 

*Convex hull 

*Density based spatial clustering of 
applications with noise (DBSCAN) 

*No identification 

*No classification 

[30]  

Helicopter drone 

with Canon EOS Rebel XT camera 

*SFM *Low-quality data 

*No detection 
*No identification 

*No measurement 

*No classification 

[31]  

  
TAZER 800 HELICOPTER 

with Nikon D800 Camera 

*SFM 

*Patch-based multi-view stereo 

*Windowed entropy filter 
*Singular value decomposition 

*Canny edge detection 

*Hough circle transform 
*Gabor filtering 

 

*Detection and identification of 

only potholes and wash-boarding 
*No measurement 

*No classification 

[32]  

 
DJI Mavric Pro 2 

*SFM 
*MetaShape 

*CloudCompare 

*Random sample consensus (RANSAC) 
*2.5D Quadric Fit 

*No detection 
*No identification 

[33]  

  
DJI P4RTK 

*SFM 
*Pix4DMapper 

*GlobalMapper 

*Scale invariant feature transform (SIFT) 
*Multi view stereo (MVS) 

*Detection and identification of 
only ruts and potholes 

*Manual measurement 

*No classification 

[34]  

 
Phantom 4 Pro 

*Pix4Dmapper 
*Region growing 

*Statistical outlier removal (SOR) 

*Graham Scan 

*No identification 
*No classification 

[35]  

 
DJI Mavic Pro 

*SFM 

*Pix4Dmapper 
*PhotoScan 

*SIFT 

*Detection and identification of 

only potholes 
*No classification 

[36]  

 
DJI Phantom 3 Quadcopter 

*PhotoScan. 

*GlobalMapper. 

*Detection and identification of 

only potholes and ruts 

*Manual measurement 
*No classification 

[37] 
 

 
UAV equipped with GoPro Hero3 

*SFM 

*PhotoScan 
*MeshLab 

*Rhinoceros CAD 

*No identification 

*No measurement 
*No classification 
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3. METHOD 

In this section, the flow chart of the study will be presented, and each step of the method will be 

described after explaining the software and algorithms used. This study aims to utilize a cutting-edge 

approach for road 3D reconstruction and segmentation using a UAV and a digital camera to take images of 

the road. Those images will then be processed and transformed into 3D models using the SFM technique. 

Furthermore, a developed algorithm will isolate the road from other objects in the scene and accurately make 

a 3D representation of the inspected road segment. This algorithm can handle damages such as potholes, ruts, 

and wash-boarding. Figure 1 provides a clear and concise flow chart of the study outlining the main steps 

involved in the proposed method, from data acquisition to final analysis and road segmentation to distressed 

and non-distressed areas. 

 

 

 
 

Figure 1. Flow chart of the study 

 

 

3.1.  Software and algorithms 

3.1.1. Structure from motion 

Photogrammetry is a science that aims to extract information and measurements from photographs 

through processes and patterns. It is a well-established technique used in various fields such as surveying, 

cartography, and remote sensing [39], [40]. Structure from Motion is one of the most recent and widely used 

photogrammetry techniques [41]. SFM enables the creation of 3D models using overlapping images acquired 

from different perspectives with standard cameras, including Smartphone cameras. It is based on recovering 

the 3D structure of a stationary scene by collecting 2D images and estimating the cameras’ motion 

corresponding to these images. SFM employs various algorithms and techniques, such as scale invariant 

feature transform (SIFT), random sample consensus (RANSAC), and bundle adjustment.  

SFM process involves four main steps: i) features extraction from images: points of interest, edges, 

and corners, ii) features matching between images, iii) camera pose estimation based on the extracted 

features, and iv) 3D model reconstruction using the estimated poses and features. These steps enable SFM to 

generate accurate and more detailed 3D models of the scene, allowing for precise measurement and analysis 

of the captured images. SFM has been approved as an appropriate technique for pavement 3D modeling. 

Several algorithms and software are built based on the SFM (VisualSFM [42], Bundler [43], Pix4D [44], 

RealityCapture [45], and Agisoft [46]). However, it could be enhanced by introducing other techniques, 

especially feature extraction, feature matching, and image matching steps. Meshroom is considered one of 

the most powerful algorithms based on the SFM technique. 

 

3.1.2. Meshroom 

Meshroom [47] is powerful 3D reconstruction software based on the AliceVision framework. The 

software is available in two versions: application with graphical user interface (GUI) and open-source 

algorithm, which can be modified and adapted to meet user requirements. It is open-source for the three 

major operating systems: Windows, Linux, and macOS. Meshroom is based on the SFM technique and 

employs other algorithms and techniques such as SIFT, RANSAC, and Accelerated KAZE (AKAZE). GUI 

application requires a computer with an Nvidia graphics processing unit (GPU), with a compute capability of 

at least 2.0, for the dense, high-quality mesh generation and 32GB of random-access memory (RAM) for the 

meshing. However, adjusting parameters and bypassing all nodes that require those characteristics is 

possible. In order to avoid any computer limitations, the last stable software (version 2021.1.0 Linux) was 

personalized and run via the virtual platform Google Colab [48]. 

 

3.1.3. CloudCompare 

CloudCompare [49] is a multipurpose 3D points cloud, meshes editing and processing software 

widely used in various fields such as geology, archaeology, architecture, and engineering. It can compare 

points cloud with Mesh data and provide good analysis. This software provides multiple processing 

algorithms, including SOR, noise filters, resampling, color/normal and vectors/scalar management, statistical 

computation, and sensor management. The software presents an intuitive GUI and is plugged into algorithms 

such as Hough normal, RANSAC shape detection, multiscale model-to-model cloud comparison (M3C2), 

and others. This plug-in can perform tasks such as normal estimation, shape detection, points cloud cleaning, 

 

 

 
Data acquisition 

 

Data processing 

 

Road segmentation 

 

https://developer.nvidia.com/cuda-gpus
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plane fitting, and surface reconstruction. Additionally, it is possible to plug in other algorithms when 

necessary for specific tests or applications. 

 

3.2.  Data acquisition 

This step starts with defining the limitation geographic of the road area to be inspected. After that, 

data acquisition is made by a commercial camera or a low-cost UAV. This step is the most critical and 

challenging part of the process. It significantly impacts the precision and accuracy of road 3D modeling and 

segmentation. For this reason, images should be taken from different angles with an overlap of 70% to cover 

the whole section and meet the 3D modeling redundancy requirements. Devices should be configured, 

considering environmental parameters (temperature and lighting) and distance to the pavement, guaranteeing 

clear and not blurred images.  

 

3.3.  Data processing 

This step takes raw pavement images as input and produces a clean 3D points cloud, representing 

the pavement section concerned by the inspection. Data processing is critical because it corrects errors during 

data collection, and the accuracy of its output directly impacts the accuracy of the road segmentation step. 

Data processing consists of six sub-steps, as illustrated in Figure 2: 3D modeling, points cloud extraction, 

road extraction, outliers’ removal, noise removal, and duplicated points removal. 

Road 3D modeling is created using Meshroom. Points cloud extraction is done on CloudCompare to 

remove meshes from the 3D model and keep only 3D points; the total number of existing points was sampled 

to keep all data at this level. Road extraction consists of eliminating all objects and keeping only the section 

of the road to be inspected; the criteria used to eliminate non-road objects is the z coordinate; all points with a 

z value greater than 0.5 m were considered a non-road object and eliminated.  

Outlier removal: the statistical outlier removal filter was applied to points, representing the road, to 

remove outliers. SOR first calculates each point’s average distance to its nearest neighbors. Then, it eliminates 

the points farther than a certain number of standard deviations from the average distances, as defined by (1). 

 

𝑀𝑎𝑥 𝑑 = 𝐴𝑣𝑔 𝑑 + (𝑁. 𝑆𝑡𝑑 𝐷𝑣) (1) 

 

𝑀𝑎𝑥 𝑑 is the maximum distance allowed from a given point, 𝐴𝑣𝑔 𝑑 is the average distance between the 

given point and its K nearest neighbors, 𝑆𝑡𝑑 𝐷𝑣 is the standard deviation of the average distances, and 𝑁 is 

the number of times of standard deviations. 

Noise removal: existing noises make false 3D modeling and reduce the accuracy of road 

segmentation. This sub-step eliminates unnecessary data to keep the minimum required and the more 

confident points. This algorithm locally fits a sphere plane with a radius of 0.9 cm around each point and 

removes all points far away from the fitted plane. Isolated points are also removed at this stage. A point is 

considered isolated when less than three neighbors exist on the fitted sphere. Duplicated points removal 

consists of eliminating 3D points based on a minimum distance criterion. If the distance between two points 

is less than 0.005 cm, those points are considered duplicated, and one will be removed.  

 

 

 
 

Figure 2. Data processing 

 

 

3.4.  Road segmentation  

The objective is to segment the remaining 3D points from data processing into two groups: 3D 

points representing non-distressed areas and points representing distress. This step consists of three sub-steps, 

as illustrated in Figure 3: normal plane definition, 3D points to normal plane distances calculation, and 3D 

points segmentation. The normal plane simulates the road surface before the damage. In this case, as the area 

to be inspected is small, a single normal plane was considered for the entire pavement section. This plane is 

fitted from processed 3D points using the PCA technique. PCA tries to find the plane representing the 

minimal root mean square (RMS) distances to all points. Then, distances between the normal plane and 3D 

points are calculated by making the vertical projection of a point to this plane. Finally, 3D points 

segmentation consists of clustering points, based on distances to the normal plane, into non-distressed 3D 

points (with distances less than 0.1 cm) and distressed 3D points (with distances greater than 0.1 cm). 
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Figure 3. Road segmentation 

 

 

4. RESULTS AND DISCUSSION 

This section summarizes and discusses the main findings of the work. The material used and the 

study area are described while mentioning the reason for those choices. The simulation results were obtained 

using the virtual environment Google Colab, which provides a memory RAM of up to 12 GB and a disk 

capacity of up to 120 GB. 

 

4.1.  Material 

4.1.1. Unmanned aerial vehicle 

An in-depth study evaluated all DJI family UAVs and determined the most suitable drone to provide 

high-quality images that meet 3D modeling requirements, as described in Table 2. This study evaluated 

various factors, such as image resolution, sensor size, maximum speed, and flight time. After a thorough 

analysis, it was concluded that the MAVIC AIR 2 is the most appropriate UAV prototype for this study. This 

UAV has a high-quality camera (48 MP and 1/2" sensor size) that can collect high-quality images with a 

good resolution, providing more accurate and reliable data for pavement 3D representation and segmentation. 

Other characteristics of this UAV, such as maximum speed (19 m/s) and maximum flight time (34 min), also 

make it a suitable option for this study. 

 

4.1.2. Camera 

The camera chosen for the study is the commercial EOS 450D manufactured by Canon. The 

advantages of this camera are its low cost, reliability, reasonable resolution of 12.2 MP, and the ability to 

provide images that meet pavement 3D modeling requirements. Table 3 summarizes the most important 

characteristics of this camera.  

 

 

Table 2. DJI UAVs family characteristics 
Series Type Weight 

(g) 
Dimensions 
(L×W×H) 

(mm)3 

Max 
Speed 

(m/s) 

Max Flight 
Time (min) 

Camera 
Sensor 

CMOS 

Resolution 
(MP) 

MAVIC DJI AIR 2S 595 183×253×77 19 31 1" 20 

AIR 2 570 183×253×77 19 34 1/2" 48 

MINI 249 245×289×55 13 30 1/2.3" 12 

2 PRO 907 322×242×84 20 31 1" 20 

2 ZOOM 905 322×242×84 20 31 1/2.3" 12 
2 ENTERPRISE ADVANCED 1 100 322×242×84 20 31 1/2" 48 

2 ENTERPRISE SERIES 1 100 322×242×84 20 31 1 100 12 

AIR 430 168×184×64 19 21 1/2.3" 12 
Pro Platinum 743 83×83×198 18 30 1/2.3" 12.35 

Mavic Pro 743 83×83×198 18 27 1/2.3" 12.35 

DJI MINI 2 < 249 159×203×56 16 31 1/2.3" 12 
DJI MINI 2 (JP VERSION) 199 159×202×55 16 18 1/2.3" 12 

SPARK SPARK 300 143×143×55 14 16 1/2.3" 12 

PHANTOM 4 PRO V2.0 1 388  20 30 1" 20 
4 PRO 1 388  20 30 1" 20 

4 ADVANCED 1 388  20 30 1" 20 

4 RTK 1 391  16 30 1" 20 
4 1 380  20 28 1/2.3" 12 

3 4K 1 280  16 25 1/2.3" 12.4 

3 SE 1 236  16 25 1/2.3" 12 
3 PROFESSIONAL 1 280  16 23 1/2.3" 12.4 

3 ADVANCED 1 280  16 23 1/2.3" 12.4 
3 STANDARD 1 216  16 25 1/2.3" 12 

FPV FPV 795 255×312×127 39 20 1/2.3" 12 

MATRICE 300 RTK 9 000 810×670×430 23 45   
200 V2 6 140 883×886×398 22.5 38   

210 V2 6 140 883×886×398 22.5 34   

210 RTK V2 6 140 883×886×427 22.5 33   
200 6 140 716×220×236 23 27   

*Data in bold corresponds to the UAV chosen for the study. 

*Missing data needs to be illustrated in the manufactured manuals. 
 

 

 

 Normal plane definition 

 

3D Points to normal plane 

distances calculation 

 

3D Points segmentation 
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Table 3. EOS 450D camera characteristics 
Characteristic Description 

Type Digital mono-objective AF/AE with a built-in flash. 

Recording Memory cards: SD and SDHC 

Sensor size 22.2×14.8 mm 

Sensor Type CMOS 

Resolution 12, 20 Mega Pixels 

Recording format File System 2.0 

Image types JPEG, RAW and simultaneous (JPEG + RAW) 

Display LCD with 3.0 po 

Battery LP-E5: 7.4 V and 1080 mAh 

Number of pictures 400 – 600 photos 

Dimensions (L×H×P) 128.8×97.5×61.9 mm 

Weight 475 g 

Temperature 0 °C - 40 °C 

Humidity < 85 % 

 

 

4.2. Study area  

The study area is located in the city of Kenitra, Morocco. Road conditions in this city are not 

excellent because of several parameters, predominantly temperature change, humidity, and heavy vehicles 

transporting products to the port of Kenitra. The humidity effect is due to the city’s position near the 

Atlantic Ocean; the river of ‘Sebou’ flows through the city and the lake ‘Sidi Boughaba.’ Despite 

administration representatives’ efforts to maintain the road condition in good shape, some sections still 

present critical situations and need to be maintained. The selected road was constructed based on the 

asphalt near Ibn Tofail University. A pavement segment from the east road connecting the university to the 

city's center is selected as a case study, as shown in Figure 4. This segment is 3m long and presents a 

complex distressed area that combines two potholes and one rut. This segment was selected because it 

exemplifies the broader road challenges faced by Kenitra City, thus making it an ideal candidate for an  

in-depth case study. 

 

 

 
Inspected segment 

 

Figure 4. The location of the study area 

 

 

4.3.  Data acquisition 

As a first step to validate the proposed method, the EOS 450D camera was used to take pictures of the 

selected section of the pavement. The survey was conducted on the 13th of August 2022 during daylight hours 

(between 11:00 am and 01:00 pm) to ensure clear and not blurred images. The environmental conditions at this 

time were as follows: temperature=27 °C, wind speed=14 Km/h north-west and humidity=70%. The camera 
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was set to automatic mode, allowing all parameters to be automatically adjusted. During the data acquisition, 

distances between the camera and the pavement surface were kept within the range of 1 to 2 meters to maintain 

a good resolution. Twenty-three (23) images were taken from different angles while covering all possible views, 

as shown in Figures 5 and 6. Images were saved in a JPG format with 4272×2848 pixels. 

 

 

 
 

Figure 5. Images captured during the survey 

 

 

 
 

Figure 6. Camera poses during data acquisition 

 

 

4.4.  Simulation  

3D modeling of the selected road section was created by importing the 23 captured images to a 

personalized version of Meshroom that was adapted and run on a virtual machine via Google Colab to reduce 

simulation time and overcome computer limitations. The environment provided by Google Colab consists of 

a memory RAM of up to 12 GB and a disk capacity of up to 120 GB. Simulation time was 30 minutes to 

generate the 3D model in the OBJECT format (.OBJ) and textures in two images with the portable network 

graphics format (.PNG). 
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After that, the OBJ file was imported to CloudCompare for visualization and data processing.  

Figure 7 illustrates the 3D model shape variation during the data processing sub-steps. The 3D model was 

created in a mesh format containing 817,370 points and 1,633,819 meshes (triangles) as shown in  

Figure 7(a). By applying the points sampling method, 800,177 points were extracted from the 3D model as 

shown in Figure 7(b). Then, the SOR filter was applied to those points. In this case, the values of K and N 

were set to 6 and 1, respectively. As a result, 677,625 points were kept as shown in Figure 7(c). After that, a 

noise filter was applied by setting the sphere’s radius to 0.9 cm and the maximum error to 1, which resulted 

in 395,517 remaining points as shown in Figure 7(d). Isolated points were removed during noise filtering by 

removing all points with less than three neighbors inside the defined sphere. Finally, 69 duplicated points 

were removed to leave 395,448 as shown in Figure 7(e).  

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 7. Variation of 3D model shape through data processing steps (a) initial 3D model with meshes,  

(b) point clouds sampling, (c) SOR filtering, (d) noise filtering, and (e) duplicated points removal 

 

 

A plane was fitted to the remaining 395,448 points by using the PCA technique. This plane is 

considered the normal plane for the pavement. After that, distances between each point and the fitted plan are 

calculated. These distances ranged between -2.06 and 3.11 cm. Red and orange represent points with 

distances from the normal plane between 2 and 3.11 cm. The yellow color is considered for points with 

distances from the normal plane between 1 and 2 cm. The green color is considered for points with distances 

from the normal plane between -0.78 and 1 cm. The blue represents points with distances from the normal 

plane between -2.06 and -0.78 cm. Figure 8 illustrates the location of the distressed area, Figure 8(a) shows 

the normal plane position through 3D points representing the pavement segment of the study, and Figure 8(b) 

illustrates the variation of distances between the normal plane and those points.  

After that, a filter was applied to segment the road into distressed and non-distressed areas  

as shown in Figure 9. This filter clusters 3D points into two groups based on their distances from the normal 

plane. Distressed areas, as illustrated in Figure 9(a), are represented by 3D points with distances to the 

normal plane more than 1 cm, and non-distressed areas as shown in Figure 9(b) are formed by 3D points with 

distances less than 1 cm to the normal plane. 
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(a) (b) 

 

Figure 8. The location of the distressed area (a) normal plane estimation and (b) 3D points to normal plane 

distance variation 

 

 

  
(a) (b) 

 

Figure 9. Road segmentation (a) distressed areas and (b) non-distressed areas 

 

 

4.5.  Discussion 

The proposed method was applied to a section of pavement for 3D representation and road 

segmentation to distressed and non-distressed areas. Twenty-three (23) images on a JPG format were taken 

by the commercial camera EOS 450D with a good resolution of 4272×2848 pixels. Those images were 

transferred to a 3D model containing 817,370 points and 1,633,819 meshes (triangles). After data processing, 

all meshes and 421,922 points (51.62% of the initial 3D model) were removed, as shown in Table 4. Then, a 

plane was fitted to the remaining 395,448 points. The root mean square of distances between each remaining 

points and the normal plane was RMS=0.85 cm. The most deviated points are represented by red, followed 

by yellow, and the green color represents minor deviations. However, the blue color characterizes points with 

an elevation higher than the normal plane. Figure 10 describes the histogram of colors representing distances 

between each remaining point and the normal plane. The proposed method successfully creates a 3D model 

and segments the road into non-distressed and distressed areas. The rate of similarity to the survey 

measurement passed 95%. 

However, this method was applied to a minor road section containing two types of distress (pothole 

and rut). It should be enhanced to detect, with high accuracy, minor damages and other distress types such as 

cracks. The method should also be adapted to handle extended road networks by estimating the normal plane 

locally while considering the variation of the road curvature. The proposed approach makes semi-automatic 

distress detection; distressed areas are detected automatically. However, the type of distress is defined by a 

visual observation, which could be improved by developing an algorithm to automate the process.  

The proposed approach presents a crucial milestone in the global study ‘Automated pavement 

distress detection, classification, and measurement’. The results prove that the proposed solution is efficient 

and most advantageous regarding its low cost and the possibility of enhancing several steps. Future research 

will focus on enhancing the accuracy and automating distress detection, measurement, and classification. The 

method will also be adapted to handle an extensive network of roads while using UAVs for data acquisition. 
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Table 4. 3D Points numbers variation through the data processing sub-steps 
Step Number of points Number of removed points 

3D model with meshes 817 370 0 
Points sampling 800 177 17 193 

SOR filter application 677 625 122 552 

Noise filter application and isolated points removal 395 517 282 108 
Duplicated points removal 395 448 69 

Total points removed 421 922 

Percentage of total points removed 51.62 % 

 

 

 
 

Figure 10. Histogram of remaining points to normal plane distances 

 

 

5. CONCLUSION 

This study presents a low-cost and quick solution based on an unmanned aerial vehicle, a 

commercial camera, and the Structure from Motion technique for the 3D representation and segmentation of 

road sections. The EOS 450D camera was used to capture images of the pavement from different angles with 

an overlap of 70 %. Those images were used to create a road 3D model using a personalized version of 

Meshroom based on SFM. Then, points sampled from the 3D model are processed by applying the Statistical 

Outlier Removal and noise filters to remove unnecessary data. After that, isolated and duplicated points were 

eliminated based on a minimal distance from neighbors. The normal plane, which represents the road surface 

before the damage, was fitted from the remaining points using the principal component analysis technique. 

Then, distances between each point and the normal plane were calculated and clustered to segment the road 

into distressed and non-distressed areas. In order to validate this approach, a case study has been conducted 

in a road section near Ibn Tofail University, Kenitra, Morocco. Based on a comparison between results 

obtained from simulation and survey measurements, it was observed that the proposed method is accurate in 

road 3D modeling and segmentation for complicated distress in the pavement, including depth information. 

The rate of similarity passed 95%. Future works will focus on improving the proposed approach by 

automating detection, measurement, and classification in an extensive network of roads.  
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