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 According to the World Health Organization (WHO), seventy million 

individuals worldwide suffer from epilepsy, a neurological disorder. While 

electroencephalography (EEG) is crucial for diagnosing epilepsy and 

monitoring the brain activity of epilepsy patients, it requires a specialist to 

examine all EEG recordings to find epileptic behavior. This procedure needs 

an experienced doctor, and a precise epilepsy diagnosis is crucial for 

appropriate treatment. To identify epileptic seizures, this study employed a 

convolutional neural network (CNN) based on raw scalp EEG signals to 

discriminate between preictal, ictal, postictal, and interictal segments. The 

possibility of these characteristics is explored by examining how well time-

domain signals work in the detection of epileptic signals using intracranial 

Freiburg Hospital (FH), scalp Children's Hospital Boston-Massachusetts 

Institute of Technology (CHB-MIT) databases, and Temple University 

Hospital (TUH) EEG. To test the viability of this approach, two types of 

experiments were carried out. Firstly, binary class classification (preictal, 

ictal, postictal each versus interictal) and four-class classification (interictal 

versus preictal versus ictal versus postictal). The average accuracy for stage 

detection using CHB-MIT database was 84.4%, while the Freiburg 

database's time-domain signals had an accuracy of 79.7% and the highest 

accuracy of 94.02% for classification in the TUH EEG database when 

comparing interictal stage to preictal stage. 
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1. INTRODUCTION 

The defining feature of epilepsy is recurrent seizures brought on by irregular electrical discharges in 

the brain resulting in unconscious behavioral alterations including convolutions and loss of awareness  

[1], [2]. Of the 80% of epileptic patients in low- and middle-income nations, three-fourths experience a lack 

of anti-seizure medications or a gap in their therapy. Because of this, epileptic episodes can occur suddenly 

and often, which makes diagnosis and treatment challenging. Preictal, ictal, postictal, and interictal are the 

four stages of a seizure. Preictal occurs shortly prior to an epileptic seizure; ictal is the seizure's onset period; 

post-ictal occurs immediately following the ictal and lasts for up to ten minutes; and interictal occurs after 

around ten minutes of onset and continues until the next seizure occurs. Preictal symptoms include headache, 

nausea, and dizziness. The ictal area of the brain experiences high electrical activity after this stage. The 
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postictal phase follows, during which the patient regains baseline symptoms and experiences symptoms such 

as headache, fatigue, and vertigo. 

Classifying patients into two main categories: i) seizure-free individuals and ii) distinct types of 

seizures-is now feasible because to the development of machine learning and deep learning, although  

this is done during the ictal period. Classification is slightly easier when using a high-frequency 

electroencephalography (EEG) output that includes spikes. There is a significant amount of study on the 

ictal stage available in the literature, but not in the pre-, post-, or interictal stages. 

This section focuses on multiple studies present in the literature that are based on stage detection, 

including ictal, preictal, interictal, postictal, sleep stage, and mental state. In study [3], [4], the epileptic 

episode in the EEG signals was automatically identified using a radial basis function (RBF) kernel and a least 

squares support vector machine (SVM) classifier. From the recorded EEG signal, the normal stage, ictal 

stage, and interictal stage can be identified here. Generalized retrospective method was adopted by researcher 

where long short-term memory (LSTMs) and convolutional neural networks (CNNs) were used as classifier 

for hybrid models considering PatientWise details in [5]–[7]. Nine connectivity aspects have been 

investigated in total, based on five different metrics in the time, frequency, and time-frequency domains. The 

K-nearest neighbor (KNN) algorithm has validated the solution by distinguishing an epilepsy group (EG) 

against a healthy control (HC). Afterward, a psychogenic kind of disease was tested using another group of 

patients characterized by non-epileptic disorder (NEAD) [8], [9]. 

Because EEG signals are chaotic and nonlinear, entropy-based techniques [10], [11] are frequently 

employed for the classification of seizures. Seizures are detected using two entropy features: i) multiscale 

dispersion entropy (MDE) and ii) refined composite multiscale dispersion entropy (RCMDE). The capacity 

of MDE and RCMDE to separate epilepsy patients' ictal (during seizures) and interictal (between episodes) 

EEGs from EEGs of non-epileptic subjects. When attempting to classify sleep phases from single-channel 

EEG data using statistical variables in the time domain, six distinct sleep stages were identified by combining 

structural graph similarity and K-means analysis. This technique effectively extracts features without signal 

preprocessing [12]–[14]. Whereas study in [15]–[17], investigates the feasibility of utilizing frontal and 

central electrodes for tiredness detection, posterior alpha band and frontal beta band activity for 

dissatisfaction detection, and posterior alpha band activity for attention detection for feature extraction in a 

passive brain-computer interface. EEG is used on a single-trial basis towards monitoring mental state. Where 

the dual-tree is classified using complex wavelet transform approach against low levels of supervised training 

up to the sixth level utilizing time-frequency subbands [18].  

During clinical intervention, non-invasive EEG signal recording is used for the majority of this type 

of study. However, the data of patients receiving invasive video EEG monitoring (VEM) were retrospectively 

reviewed [19]–[21]. Included in the data were cases in which the brain region responsible for inducing 

electrically induced seizures (EIS) was removed and at least one spontaneously occurring habitual seizure 

(SHS) occurred during VEM. After surgical intervention, follow-up (FU) visits were conducted trice (1, 2 

years, and the latest FU) to assess seizure outcome in accordance with the international league against 

epilepsy (ILAE) and Engel. 

In [22]–[24] used a combination of seven different classifiers, namely SVM, decision tree (DT) the 

fuzzy surgeon classifier (FSC), KNN, Gaussian mixture models (GMM), probabilistic neural network, and 

nave Bayes (NB), to differentiate between a patient's three stages of “normal”, “preictal”, and “ictal”. With 

preprocessed data, several classifiers were used in [25], [26] namely KNN, SVM, a polynomial classifier, 

logistic model tree (LMT), an uncorrelated normal density-based classifier (UDC), DT. The preprocessing 

techniques adopted are as follows: entropy, variance, skewness, and root mean square (RMS). A statistical 

sampling strategy called optimal sample allocation methodology was proposed [27], and a feature selection 

algorithm was created towards decreasing the features. For the investigation, five classifiers were combined: 

SVM, KNN, NB, LMT, and random forest (RF). 

SVM, KNN, RF, and AdaBoost were the four classifiers used [28] on a dataset with high-

dimensional data comprised of 28 features. Where results showed that the SVM performs better than the 

cubic kernel. SVM and RF were used by [28] using the dataset created by ten characteristics of time and 

frequency domain. The three distinct seizure stages i.e. “preictal,” “ictal,” and “interictal” seizures were 

classified with 100% accuracy using KNN, artificial neural networks (ANN), SVM, and RF as classifiers. 

These classifiers were applied to two well-known datasets: Fitchburg Hospital (FH) and Children's Hospital 

Boston-Massachusetts institute of technology (CHB-MIT) [29]. In [30], [31] proposed an automated method 

using RF and iterative filtering to identify the EEG signals. This classification accuracy for D versus E was 

96%, E versus ABCD was 98.4%, and 99.5% for the a against E subsets using the Bonn University dataset 

(A-E). The “seizure” versus “non-seizure” classes are distinguished using KNN, and the important channels 

are investigated using random forest, as stated in [32]. 

From the literature survey it is noted that, automatic seizure detection plays vital role towards 

epilepsy treatment. Many works explained the role of machine and deep learning models in seizure 
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diagnostic. Towards protecting the epileptic patients from sudden fall or understanding the condition of the 

patients, it is important to detect and predict the stage of seizure. Though in the recent past, few work focused 

on seizure stage prediction but classification of all stages with raw EEG data is not considered. Moreover, 

most of the research work mainly focused on seizure free prediction and seizure type prediction in the ictal 

stage. Very less attention paid for preictal, postictal and interictal stages. Preictal stage prediction is very 

important towards patient’s safety. Whereas detection of post ictal can help to understand the frequency of 

occurrence of seizure and it is duration of disturbance after the episode. Since most of the outpatients consult 

clinician only in interictal stage, so classification of interictal stage can aid diagnostic of epileptic seizure. 

Recently few researchers used preictal and interictal stages for experimentation, but after preprocessing the 

EEG signals using various mathematical models. Since EEG is a very sensitive signal, there is a chance of 

losing information during pre-processing. 

Thus, using raw EEG signals and CNN models, prediction and categorization of all four stages are 

taken into consideration in this research work. Three datasets are employed in this work: FH, CHB-MIT, and 

Temple University Hospital (TUH) EEG. TUHEEG is partitioned for four phases, in this study, while the FH 

and CHB-MIT datasets are partitioned at source. The CNN model is developed and validated using three 

datasets in order to extract features and classify the four different stages from raw EEG signals. The second 

section discusses the methodology. Section 3 discusses results in detail followed by section 4 dealing with 

conclusion. 

 

 

2. METHOD  

In this section the methodology adopted for this work is discussed in details. To predict different 

stages of seizure, the CNN algorithm is used. It is trained to classify preictal, ictal, postictal, and interictal 

stages using three EEG datasets are carried out.  

 

2.1.  Dataset 

In this section, the dataset used for stage prediction is discussed. To check model performance and 

validate CNN model three EEG datasets are used. They are namely FH, CHB-MIT and TUHEEG datasets. In 

FH and CHB-MIT, data of different stages are available for use, whereas TUHEEG data is self-partitioned, 

and four stages dataset is created. 

 

2.1.1. Freiburg Hospital dataset 

This dataset was created by the Epilepsy Center (EC) at the University Hospital of Freiburg based 

on data collected from 21 patients with focal epilepsy. Here intracranial EEG (iEEG) recordings with 128 

channels a 256 Hz sampling rate are used. The digital video EEG were acquired with a Neurofile 

Nortriptyline (NT), a 16-bit analogue-to-digital converter system. Records of 87 seizures from 21 patients, all 

of whom had two to five seizures throughout the study are included in the collection. Skilled epileptologists 

visually examined the iEEG data for each patient in this database to select six contacts: three in the 

immediate vicinity of the epileptic zone and three in more distant locations implicated in seizure propagation 

and spread. The age group considered from 10 to 50, with 13 women and 8 men. At least two of the patients 

suffered focal seizure (FNSz), complex partial seizure (CPSz), or generalized tonic-clonic seizure (GTCSz) 

seizures. In neocortical brain areas, around eleven patients have epileptic focus, whereas eight patients had in 

hippocampus, and two patients had both the areas. The Epilepsy Center's board-certified epileptologists 

annotated the epileptiform activities and seizure onset times. 

 

2.1.2 Children's Hospital Boston-M Institute of Technology dataset 

It is an open-source EEG database with 23 epileptic children information, where scalp electrodes were 

used to record the data. The study included 17 female participants with ages ranging from 1.5 to 19 years and  

5 boys with 3 to 22 years age group. The sexual orientation and age of one child were overlooked. All were 

instructed to stop using relevant drugs one week prior to data collection. There are 23 pediatric patients in the 

dataset, and they have 844 hours of continuous EEG recording of 163 seizures. The majority of the scalp EEG 

data were recorded with 256 Hz sampling rate. Each individual had varying numbers and durations of seizures, 

and the begin and end periods of each seizure are clearly labeled based on expert assessments. 

Many segments were selected for the purpose of detecting preictal, ictal, postictal, and interictal 

signals for these two publicly available datasets. In this work, raw recordings were divided into 1-s epochs 

using the moving-window technique, and each patient's differences were evaluated by applying CNN. 

Predicting the preictal, ictal, postictal, and interictal stages is the primary goal of this work. 
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2.1.3. Temple University Hospital EEG dataset 

In this case, the generalized seizure (GNSZ) seizure dataset is considered. Here, EEG recordings 

taken 100 seconds before the start time of onset for the preictal period and 100 seconds after 10 minutes of 

the stop time of onset for the interictal period are considered. The data collected from TUHEEG corpus for 

Preictal, ictal, post ictal and interictal stages are as follows. The number of events considered 54,39, 51, and 

44 where samples collected 723400, 733780, 725600 and 737000 for preictal, ictal, post ictal and inter ictal 

respectively. 

 

2.2.  Implementation of convolutional neural networks 

CNN model with 4 layers is designed. Each convolution layer has 32 filters maps with 3×3 kernel 

size. The summary of the CNN model shown in Table 1. The layers from conv2d_1 to conv2d_4 represent 

four convolution layers followed by four maxpool layer represented by maxpool2d_1.to maxpool2d_4. 

Output shape represents the shape of output or activation maps after each operation. The calculation of output 

of convolution layer is done using (1). 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑖𝑛𝑝𝑢𝑡 − 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔)/𝑠𝑡𝑟𝑖𝑑𝑒 + 1 (1) 

 

For 3×3 kernel size with padding=1, the output shape of the layer is (124, 124, 32), where each convolution 

layer has 32 filters. For the first convolutional layer the calculation of parameters are done using (2). 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 = ((𝑆𝑘 × 𝐹𝑝) + 1) × 𝐹𝑐 (2) 

 

Where, 𝑆𝑘=kernel size, 𝐹𝑝=previous layer filters, 𝐹𝑐= current layer filters, Parameter in 1st convolution 

layer = ((3×3×3)+1)×32=896 

 

 

Table 1. CNN implementation model details 
Type of Layer  Shape of the output Parameter Type of Layer  Shape of the output Parameter 

Conv2d_1  (None, 124, 124, 32) 896 Activation_4 (None, 12, 12, 32) 0 

Activation_1  (None, 124, 124, 32) 0 Max_pooling2d_4 (None, 6, 6, 32) 0 

Maxpool2d_1  (None, 62, 62, 32) 0 Flatten_1 (None, 1152) 0 

Conv2d_2 (None, 60, 60, 32) 9248 Dense_1 (None, 511) 589825 
Activation_2  (None, 60, 60, 32) 0 Activation_5 (None, 511) 0 

Max_pooling2d_2  (None, 30, 30, 32) 0 Dropout_1 (None, 511) 0 
Conv2d_3  (None, 28, 28, 32) 9248 Dense_2 (None, 32) 16985 

Activation_3  (None, 28, 28, 32) 0 Activation_6 (None, 32) 0 

Max_pooling2d_3  (None, 14, 14, 32) 0 Dropout_2 (None, 32) 0 
Conv2d_4  (None, 12, 12, 32) 9248 Dense_3 (None ,1) 33 

 

 

The algorithms used to extract features and classify using a typical CNN model are as follows.  

Step 1: Input image (two dimensional) dataset is fed into the network. 

Step 2: Convolutional layers perform dot products between the input image and a set of filters to produce 

feature maps. The filters are then shifted across the image to cover all possible locations. 

Step 3: To reduce the spatial dimensions the feature map is down sampled in pooling layers and increase the 

robustness to small translations in the input. 

Step 4: Fully connected layers perform a dot product between the feature maps and a set of weights to 

produce the final prediction. 

Step 5: Using the back propagation technique, the weights are changed by measuring the difference between 

the ground truth labels and the predictions using the loss function. 

Step 6: The above steps are repeated for multiple epochs until convergence or a stopping criterion is met. 

Max pooling operation reduces the size up to 62 pixels using 2×2 window with a stride of 2. The 

learnable parameters in pooling layer are zero. Similarly, second, third and fourth convolutional layer 

parameters are calculated using 3×3 filters and with padding = 0. 

The highest number of parameters are present in fully connected layer as every neuron is connected 

to each other. It can be calculated by the product of number of neurons in current layer (𝑁𝑐) and number of 

neurons in the previous layer (𝑁𝑝) with a bias term is as in (3). These layers are followed by a flattening. 

There are three dense layer and two dropout layers are considered. Here, dropout-rate p is the number of 

hyperparameter. For 50% of the neurons being dropped out 𝑝 = 0.5 is set. Figure 1 CNN model with layer 

wise calculations. The class labels obtained after passing 511×511 input image dataset through classification 

algorithm. 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 = ((𝑁𝑐 𝑥 𝑁𝑝) + 1 𝑥 𝑁𝑐) (3) 

 

 

 
 

Figure 1. CNN model with layer wise calculations 

 

 

3. RESULTS AND DISCUSSION  

In this experimentation, three binary class classification and one four class classification is 

considered for three datasets, i.e. FH, CHB-MIT and TUHEEG. The three datasets considered in raw form 

i.e. without any pre-processing to avoid losing any information from EEG signals. The results obtained by 

each dataset are discussed in detail in the preceding sub sections.  

 

3.1.  Result obtained for Freiburg Hospital dataset 

Table 2 describes the performance of CNN model in the FH database. A total of 13 patients (PAT) 

results are noted and the average of all the patients for three binary classes i.e. preictal versus interictal, ictal 

versus interictal and postictal versus interictal are 79.7%, 93.69%, and 83.85% respectively. Out of 13 

patients, model shows satisfactory performance for nine patients, but patient numbers 5,14,19,20 shows 60%, 

25%, 25% and 60% accuracy for preictal versus interictal classification. However, patient numbers 1, 3, 6, 

15, 18, 21 shows 100% accuracy for all the three binary classification methods.  

 

 

Table 2. Seizure prediction results using FH EEG dataset and CHB-MIT EEG dataset 
FH  CHB-MIT 

Patient 
No. of 

seizure 

No. of 

Hours 

Acc(%) 
Preictal 

Vs 

Interictal 

Acc(%) 

Ictal Vs 
Interictal 

Acc(%) 
Postictal 

Vs 

Interictal 

Patients 
No. of 

seizure 

No. of 

Hours 

Acc(%) 
Preictal 

Vs 

Interictal 

Acc(%) 

ictal Vs 
Interictal 

Acc(%) 
Postictal 

Vs 

Interictal 

PAT1 4 23.9 100 100 100 PAT1 7 17 100 100 100 

PAT3 5 23.9 100 100 100 PAT2 3 22.9 33 78.5 45.5 

PAT4 5 23.9 100 100 90 PAT3 6 21.9 100 100 98.5 
PAT5 5 23.9 60 90 68 PAT5 5 13 80 90.5 81.6 

PAT6 3 23.8 100 100 100 PAT9 4 12.3 50 75.2 60.2 

PAT14 4 22.6 25 85 56 PAT10 6 11.1 67 90.4 70.7 
PAT15 4 23.7 100 98 100 PAT13 5 14 80 98.5 85.4 

PAT16 5 23.9 80 80 78 PAT14 5 5 60 79.5 70.1 

PAT17 5 24 80 100 80 PAT18 6 23 100 100 98.4 
PAT18 5 24.8 100 100 100 PAT19 3 24.9 100 100 100 

PAT19 4 24.3 25 75 48 PAT20 5 20 100 99.5 100 

PAT20 5 24.8 60 90 70 PAT21 4 20.9 100 96.8 99.2 
PAT21 5 23.9 100 100 100 PAT23 5 3 100 100 100 

TOTAL 59 311.4 79.7 93.6 83.85 TOTAL 64 311.4 84.4 93.01 85.38 

 

 

3.2.  Result obtained for TUHEEG dataset 

The performance of CNN model in the TUHEEG database for a total of 18 patients’ information are 

as follows. The three binary class classifications result 92.04%, 98.56% and 93.33% for preictal versus 

interictal, ictal versus interictal and postictal versus interictal respectively. These binary classes used the total 

number of events as 98,85 and 95.  
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The mathematical formula for calculating accuracy, precision, sensitivity, F1 score, and each class 

accuracy is shown in (4) to (8) respectively. 

 

𝑂𝑣𝑒𝑟 𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (6) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 𝑇𝑃/(𝑇𝑃 +  0.5 × (𝐹𝑁 + 𝐹𝑃)) (7) 

 

𝐶𝑙𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (8) 

 

where 𝑇𝑃 is true positive, 𝑇𝑁 is true negative. 

Table 3 describes accuracy, precision, sensitivity and F1 score of binary seizure stage prediction 

using CNN model of three datasets for preictal versus interictal, ictal versus interictal, and postictal versus 

interictal respectively. 

 

 

Table 3. Performance of prediction of preictal vs interictal, ictal vs interictal and postictal vs interictal 
  Preictal Vs Interictal Ictal Vs Interictal Postictal Vs Interictal 

Dataset Matrix Acc(%) 
Preictal  

Acc(%) 
Interictal 

Acc(%) 
Mean 

Acc(%) 
ictal  

Acc(%) 
Interictal 

Acc(%) 
Mean 

Acc(%) 
Postictal  

Acc(%) 
Interictal 

Acc(%) 
Mean 

FH Accuracy 80.0 79.4 79.7 90.9 96.15 93.69 84.61 81.81 83.85 

Precision 74.07 84.37 79.22 96.77 89.28 93.02 78.57 87.09 82.83 
Sensitivity 80.0 79.4 79.7 90.9 96.15 93.69 84.61 81.81 83.85 

F1 Score 0.769 0.842 0.805 0.937 0.933 0.935 0.814 0.843 0.829 

CHBMIT Accuracy 88.89 81.08 84.4 96.96 91.17 93.01 89.28 83.33 85.38 
Precision 77.42 90.09 83.75 90.62 96.87 93.74 80.64 90.9 85.77 

Sensitivity 88.89 81.08 84.4 96.96 91.17 93.01 89.28 83.33 85.38 

F1 Score 0.827 0.857 0.842 0.935 0.939 0.937 0.847 0.869 0.858 

TUHEEG Accuracy 90.9 93.02 92.04 100 97.82 98.56 95.65 91.83 93.33 

Precision 94.33 88.89 91.60 97.5 100 98.75 91.66 95.74 93.7 

Sensitivity 90.9 93.02 92.04 100 97.82 98.56 95.65 91.83 93.33 
F1 Score 0.925 0.909 0.917 0.987 0.989 0.988 0.936 0.937 0.937 

 

 

Whereas the trains accuracies of three datasets for four class classification i.e., preictal versus ictal 

versus postictal versus interictal are 78.7%, 86.0%, 95.08% for FH, CHB-MIT and TUHEEG dataset 

respectively. The test accuracies are 79.7%, 84.4% and 94.02% for FH, CHB-MIT and TUHEEG dataset 

respectively. For this experimentation, train –test ratio is considered as 80:20. Out of train data, 10% is used 

for validation. 

From the above it can be observed that, the performance of developed CNN model with all the three 

datasets are comparable and accuracy varies from 79.7% to 92.04% in case of preictal versus interictal binary 

classifications. The accuracy varies from 93.69% to 98.56% in the case of ictal versus interictal binary 

classification. The accuracy varies from 83.85% to 93.33% in case of postictal versus interictal binary 

classifications. Whereas, for four class classification lowest and highest test accuracy achieved 79.7% and 

94.02% respectively. It can be noted, in all the cases, FH shows lowest accuracy and TUHEEG shows 

highest accuracies. The reason might be self-partitioning the datasets in the case of TUHEEG.  

 

 

4. CONCLUSION 

Currently, a variety of conventional and cutting-edge technologies are generally used to assess 

epileptic activity in EEG recordings. A speedier diagnosis, ongoing monitoring, and a decrease in the overall 

cost of medical care are just a few benefits of automating this procedure. In this work, a very straightforward 

CNN structure is used to avoid the challenging feature extraction procedure. To verify the efficacy of the 

model, the Freiburg, CHB-MIT and TUHEEG datasets are examined. The CNN algorithm is used in FH, 

CHB-MIT, and TUHEEG datasets with 32 specified filters in the Conv2D layer, so the actual output shape is 

(124, 124, 32) for each input image. The overall accuracy of four class classification is 79.7%, 84.4%, and 

94.02% for the FH, CHB-MIT, and TUHEEG datasets, respectively. All three datasets are trained and tested 

at an 80:20 ratio. Epileptic EEG signals from all three datasets, preictal, ictal, postictal, and interictal stages-

have been extracted. The CNN model is used to predict preictal, ictal, postictal, and interictal stages. 
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In future, detection of seizure- non seizure in all the for stages can be done. Which can aid treatment 

by relating history with model diagnosis. The diagnosis of different types of seizure in mainly interictal stage 

a help to a large extend to clinical to prescribe proper anti-seizure drugs. 
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