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 The focus on power optimization in embedded systems is especially 

important for embedded applications since it has brought in many methods 

and factors that are necessary for developing systems that are both power- 

and area-efficient. In contrast to the current delayed wavelet μ-law 

proportionate least mean square (DWMPLMS) and delayed least mean 

square (DLMS) algorithms, this work offers the development of adaptive 

filters based on the least mean square (LMS) method, which improves power 

and timing performance. In order to improve area and time efficiency, the 

proportionate least mean square (PLMS) algorithm's architecture has been 

modified to remove delay, add a proportionate gain block, design for a fixed 

length, include an approximate multiplier block, and swap out standard 

blocks for floating-point adder and divider blocks. According to a power and 

temporal comparison with the DWMPLMS and DLMS algorithms, field-

programmable gate array (FPGA) synthesis reduces power usage by 95% for 

a 32-bit filter length in PLMS when compared to the above methods.  
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1. INTRODUCTION  

Adaptive filters adjust their transfer functions based on optimization algorithms to adapt to changes 

in the operating environment, making them effective for sparse system identification. Among these, the least 

mean square (LMS) adaptive filter is widely used due to its simplicity, avoiding correlation functions and 

matrix inversions while offering good convergence performance. However, LMS has limitations, including a 

feedback error time lag that hinders pipeline implementation at high sampling rates and sensitivity to input 

scaling, complicating learning rate selection. 

The delayed least mean square (DLMS) architecture in [1] demonstrated effective error convergence 

through MATLAB® Simulink modeling. The proportionate least mean square (PLMS) architecture in [2] 

further clarified PLMS fundamentals, enabling enhanced simulations. Although the novel design in [3] 

achieved power and timing efficiency, it required more area. This inspired our design, which optimizes area 

at a slight timing complexity cost. 

https://creativecommons.org/licenses/by-sa/4.0/
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Replacing multipliers with logarithmic and anti-logarithmic computations, as discussed in [4], 

improved time efficiency but increased power consumption. Thus, we adopted an 8-bit Vedic multiplier from 

[5]–[12] for better latency and power performance. Adder selection, informed by [13]–[20], and insights 

from systolic architectures in [21]–[29] contributed to our design's faster convergence. Studies [30], [31] 

highlighted the accuracy and wide range benefits of floating-point arithmetic, guiding the efficient 

implementation of floating-point operations in our design. 

 

 

2. RESEARCH METHOD 

The block diagram shown in Figures 1 (a) and 1(b) represents the block diagram of the adaptive 

filter as an unknown system identifier and convergence graph for different algorithm respectively. Both the 

adaptive filter as well as the unknown system are given the same inputs. The output that occurs across the 

unknown system will be the desired signal 𝑑(𝑛). 

The input vector 𝑈(𝑛) is the result of further encoding the input provided by the adaptive filter into 

digital binary data. In the filter, the tap length determines the filter's order. Simple convolution is used to 

calculate the adaptive filter's output, which will initially have some unknown weights. If there is a 

discrepancy between this output and the intended output, it is passed back to the weight update block to 

provide new coefficients. 

 

 

  
(a) (b) 

 

Figure 1. Analysis and performance evaluation of the adaptive filter system: (a) block diagram of the 

adaptive filter illustrating the key components and signal flow and (b) convergence graph comparing the 

performance of different algorithms in terms of error reduction over iterations 

 

 

This process continues to happen till the error signal ideally goes down to zero. If the error signal is 

zero it implies that: 

a. The output of the adaptive filter is same as that of the output of the unknown system, i.e. 𝑌(𝑛) = 𝑑(𝑛) 

(because 𝑒(𝑛) = 𝑌(𝑛) − 𝑑(𝑛)). 

b. If 𝑌(𝑛) = 𝑑(𝑛) it suggests that the adaptive filter is producing the same output as the unknown system 

for a given input and hence the coefficients of both the unknown system and the adaptive filter are the 

same. So therefore, the adaptive filter is said to have identified the unknown system under test. 

The mathematical equations that will be used to find out the filter output, the error signal and the updated 

weights are as given in Table 1. 

 

 

Table 1. Adaptive filter equations 
Function Equation 

Input vector 𝑋(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1), . . . . , 𝑥(𝑘 − 𝐿 + 1)]𝑇 

Filter output 𝑌(𝑘) = 𝑥𝑇(𝑘)𝑊(𝑘) 

Error signal matrix 𝐸(𝑘) = 𝑑(𝑘) − 𝑌(𝑘) 

Updated weights 𝑊(𝑘 + 1) = 𝑊(𝑘) + 𝛽𝑔(𝑘)𝑋(𝑘)𝐸(𝑘) 

Identity matrix 𝑔(𝑘) = 𝐼 

Note: 𝑤(𝑘) is set of current weights, 𝛽 is adaptive step size, and 𝑔(𝑘) is gain matrix 
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The novel implementations on our design would be: i) A proposed floating point module approach for 

the PLMS register transfer level implementation and ii) Implementing an area efficient architecture for PLMS 

algorithm based adaptive filter implementation on FPGA's. The PLMS update equation is given by (1): 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝐺(𝑛)𝑢(𝑛)𝑒(𝑛)  (1) 

 

The Pt-NLMS family of algorithms iteratively estimate the filter weights 

 

𝑤(𝑛) = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤(𝐿 − 1)(𝑛)]𝑇 (2) 

 

The Gain matrix 𝐺(𝑛) is explained in (3), 

 

𝐺(𝑛) = 𝑑𝑖𝑎𝑔 (𝑔0(𝑛), 𝑔1(𝑛), … . , 𝑔𝐿 − 1 (𝑛)) (3) 

 

and 𝑎 gain factor 𝑔𝑖(𝑛) is assigned to the ith tap in proportion to |𝑤𝑖(𝑛)| 
 

𝑔𝑖(𝑛) =
𝑤(𝑛)

1

𝐿
∑ 𝑤𝑖(𝑛)𝑖=0

𝐿−1

  (4) 

 

For the simplified PLMS algorithm, 𝛾𝑖(𝑛) for each tap is evaluated as  

 

𝛾𝑖(𝑛) = 𝐹[|𝑤𝑖(𝑛)| + 𝜌] (5) 
 

and 
 

𝐹[|𝑤𝑖(𝑛)|] = |𝑤𝑖(𝑛)|  (6) 

 

The Pt-LMS algorithm simplifies its predecessors by omitting weighted normalization and simplifying gain 

factor evaluation, with a small constant p ensuring minimum gain for inactive coefficients and reducing time 

complexity. These changes improve area and power efficiency, but high time complexity remains due to 

repeated gain matrix and weight updates. Delayed adaptation addresses this issue, leveraging the unchanged 

error gradient despite delays. 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝐺(𝑛 − 𝑀)𝑢(𝑛 −  𝑀)𝑒(𝑛 − 𝑀) (7) 

 

When we compare the results of Pt-LMS with other LMS algorithm we observe that the convergence 

performance of Pt-LMS is comparatively better than that of other LMS algorithms and its convergence 

performance can be improved further. It is also observed that Pt-LMS is real time flexible and robust. Hence, 

we decided to move forward with PLMS. 

 

 

3. ARCHITECTURE 

3.1.   Proposed PLMS architecture 

Figure 2 shows the proposed PLMS architecture and floating-point adder block respectively. As 

illustrated in Figure 2(a); to implement pipelining, the number of taps increases with the order of the filter, 

which significantly impacts the area. Additionally, switches are placed after every two taps to manage the 

tap-out and gamma function at the corresponding clock phases. While these switches help reduce timing 

complexity, their large number contributes to increased area. Instead of connecting the regressor input and 

initial weights directly to the taps, they are routed through a switch. Depending on the clock phase, each filter 

coefficient and input pass through a floating-point multiplier, which accelerates the multiplication process 

and generates the tap-out (n) and gain function. These outputs are directed to switch 2. After all the outputs 

are generated from a single tap, switch 1 is activated during one clock phase and switch 2 in the next. When 

switch 1 is active, the adder sums the tap-outs, providing the adaptive filter output, and when switch 2 is 

active in the following phase, the sum of the weighted functions is obtained. 

The inputs to the serial adder block, as shown in Figure 2(b), come from a switch that receives 

partial filter outputs and gain factors from the corresponding taps over four successive switching cycles. The 

switch sends these tap-outs to the adder only after it has received the partial outputs from all N input samples. 

Since the inputs are 32-bit floating-point values, the tap-out, which is the product of the input x and weight 

W, also results in a 32-bit floating-point value. Therefore, a 32-bit floating-point adder is required to combine 

the partial filter outputs and generate the complete filter output. This architecture employs a 32-bit floating-
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point adder (FPA) due to its ability to handle a wide range of numbers with high precision. Since the IEEE 

754 32-bit floating-point format separates the exponent and mantissa, adding two floating-point numbers 

involves adding their mantissas, with a specific number of shifts applied to the mantissa of the number with 

the smaller exponent. 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Representation of the proposed architecture components: (a) proposed PLMS architecture 

showcasing the pipeline and control mechanism and (b) floating-point adder block used for accurate 

computation of weights and updates 

 

 

Figures 3(a) and 3(b) represent the tap block and error computation block respectively. The tap 

block architecture computes the gain factor and partial filter output using a 32-bit floating-point multiplier. 

The tap also receives an input, 𝐸(𝑛 − 𝑀), from the error computation block. The system output, 𝑦(𝑛 − 𝑖), is 

the sum of the tap outputs from the current and previous iterations. The error signal is subtracted from the 

actual output and fed back to the tap block, updating the weights for the next iteration. A serial adder sums 

the 𝐿 previous tap outputs and weights for the gain factor and system output. 
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(a) (b) 

 

Figure 3. Illustration of the key components in the adaptive filter architecture: (a) tap block for managing the 

input data and weight updates and (b) error computation block for determining the error signal to refine the 

filter's performance 

 

 

3.2.  Floating point modules architecture 

We propose efficient floating-point (FP) arithmetic units, including FP addition, subtraction, 

multiplication, and division, for fast computation using single-precision IEEE 754 format. This 32-bit format 

includes a 1-bit sign (1 for negative, 0 for positive), an 8-bit exponent, and a 23-bit mantissa for high-range 

data representation. 

 

𝑋 = (−1𝑠𝑖𝑔𝑛𝑥2 exp(1. 𝑚𝑎𝑛)) (8) 

 

where 𝑠𝑖𝑔𝑛 is sign of the number 𝑋, 𝑒𝑥𝑝 is exponential value of a number, and 𝑚𝑎𝑛 is mantissa value of the 

number. 

 

3.2.1. Floating point adder/subtractor 

Figure 4 shows the floating-point adder where the larger exponent is taken as common, and the 

mantissa of the smaller exponent is left-shifted by the exponent difference before addition. The mantissas are 

added, and any carry is added to the exponent while left-shifting the result. The sign bit is determined by 

XOR-ing the input signs. The process involves an exponent comparison block to align exponents, a mantissa 

block for addition/subtraction based on sign bits, and a normalization block for adjusting the final 32-bit 

result. Normalization shifts the mantissa based on carry/borrow, producing the final exponent and mantissa 

values. 

 

 

 
 

Figure 4. Floating point adder 

 

 

3.2.2. Multiplication and division of two floating point value 

Figure 5 shows the floating-point multiplier and floating-point divider respectively. The sign bit is 

obtained by XOR-ing the input sign bits. The mantissas are processed through a 23-bit adder and a Vedic 

multiplier for accuracy, with their results summed by another 23-bit adder. The combined carry from both 

adders is used in a shifter block and added to the exponent sum, yielding the final result's exponent and 
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mantissa. Complex multiplication of two 32-bit floating-point (FP) values are broken down into simple 

module design as shown in Figure 5(a). 

 

𝑋1 = (−1)𝑠𝑖𝑔𝑛1 ∗ (2𝑒1) ∗ (1. 𝑚1) (9) 

 

𝑋1 = (−1)𝑠𝑖𝑔𝑛2 ∗ (2𝑒2) ∗ (1. 𝑚2) (10) 

 

where 𝑋1, 𝑋2 are values expressed in form of single precision floating point format; 𝑠𝑖𝑔𝑛1, 𝑠𝑖𝑔𝑛2 are the 

sign of number 𝑋; 𝑒1, 𝑒2 are the exponential value; and 𝑚1, 𝑚2 are the mantissa value. 

Complex division of two 32-bit floating-point values is simplified as shown in Figure 5(b). The sign 

bit is obtained by XOR-ing the input signs. The second mantissa is subtracted from 24′ℎ80000024 and the 

result is multiplied with the first mantissa using a Vedic multiplier. The outputs are added to form the result's 

mantissa, while the carry is added to the exponent block for the final result's exponent. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Key computational blocks of the floating-point unit: (a) Floating-point multiplier for efficient 

multiplication operations and (b) Floating-point divider for precise division computations 

 

 

4. RESULTS AND DISCUSSION 

4.1.  MATLAB results 

This system was built to analyze any type of input signal which is generated by a signal generator, 

the same signal is been passed to unknown system and adaptive system and results in error convergence 

effectively. Once we achieved satisfactory results, we started the synthesis. The Simulink diagram can be 

seen in Figure 6(a). Figure 6(b) presents the Simulink model results for the adaptive filter, showing the 

desired signal, the filter's output, and the error signal. The third graph demonstrates error convergence over 

time. Figure 6(c) shows the register transfer language (RTL) schematic of PLMS algorithm using Libero 

SOC version 11.9 with FPGA A3P1000L from ProASIC3L series.  
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(a) (b) 

 

 
(c) 

 

Figure 6. Comprehensive analysis and implementation of the proposed PLMS architecture: (a) Simulink 

model of the proposed PLMS architecture, (b) Simulink result for sine wave demonstrating the system 

response, and (c) RTL schematic representing the hardware implementation of the PLMS algorithm 

 

 

4.2.  Synthesis results 

Tables 2 and 3 represents the characteristics of proposed PLMS and comparison with existing 

architectures respectively. Figures 7(a) and 7(b) show the graphical comparison power-delay comparison and 

timing comparison with referred algorithms with existing DLMS and DWMPLMS architectures respectively. 

Table 3 shows that the proposed design reduces power consumption by up to 95%, with savings of 95% and 

88% compared to the DWMPLMS and DMPLMS architectures, respectively. This efficiency stems from 

replacing the logarithmic multiplier with a floating-point Vedic multiplier, which enhances power efficiency. 

The pipelined tap block design further improves timing, making the proposed architecture 30 times faster 

than logarithmic methods and the DLMS design. Fixed-point computations in DLMS are less efficient, with 

the proposed floating-point blocks achieving 84% power savings. 

 

 

Table 2. Characteristics of proposed PLMS 
Architecture Power (mW) Delay (ns) 

DWMPLMS (Mula et al. [2]) 19.43 3.31 
DLMS (Meher and Park [1]) 10.06 3.28 

DLMS (Fan et al. [21]) 12.56 3.27 

DMPLMS [2] 14.13 3.31 
Proposed (PLMS) 1.067 104.45 

  

 

Table 3. Comparison with existing architectures 
Metric Value 

Number of slices LUT's used 4094 
Number of IO cells used 161 

Device power consumption 1.067 mW 

Operating frequency/timing 9.5 MHz 
Operating timing 104 ns 
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(a) (b) 

 

Figure 7. The graphical: (a) power comparison and (b) timing comparison, with referred algorithms 

 

 

5. CONCLUSION 

This paper proposes an adaptive filter design that leverages the PLMS algorithm, which is applied to 

a 32-bit filter length. The PLMS algorithm is selected due to its ability to achieve a lower mean-square-

deviation (MSD) compared to the traditional LMS algorithm, resulting in better performance. Additionally, 

PLMS offers faster convergence than the DLMS algorithm, making it a more efficient choice in terms of 

area, power, and timing. 

The proposed design replaces the logarithmic approach in existing DWMPLMS and DMPLMS 

architectures with floating-point computation, a Vedic multiplier, and a proportionate gain block. A pipelined 

architecture in the tap block enhances efficiency, while the design includes approximate multipliers, floating-

point adders, and divider blocks. FPGA synthesis shows a 92% power reduction compared to existing 

architectures. Future work focuses on reducing area, improving timing, and fine-tuning output performance. 
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