
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 2, April 2025, pp. 2513~2522

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i2.pp2513-2522 2513

Journal homepage: http://ijece.iaescore.com

Efficient power optimized very-large-scale integration

architecture of proportionate least mean square adaptive filter

Gangadharaiah Soralamavu Lakshmaiah1, Narayanappa Chikkajala Krishnappa2,

Poornima Golluchinnappanahalli Ramappa3, Divya Muddenahally Narasimhaiah4,

Umesharaddy Radder5, Chakali Chandrasekhar6
1Department of Electronics and Communication Engineering, Cambridge Institute of Technology, Bangalore, India

2Department of Medical Electronics Engineering, M.S. Ramaiah Institute of Technology, Bangalore, India
3Department of Electronics and Communication, Sri Venkateshwara College of Engineering, Bangalore, India

4School of Electronics and Communication Engineering, REVA University, Bangalore, India
5Department of Electronics and Communication Engineering, East West Institute of Technology, Bangalore, India

6Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Tirupati, India

Article Info ABSTRACT

Article history:

Received Jul 7, 2024

Revised Nov 25, 2024

Accepted Dec 2, 2024

 The focus on power optimization in embedded systems is especially

important for embedded applications since it has brought in many methods

and factors that are necessary for developing systems that are both power-

and area-efficient. In contrast to the current delayed wavelet μ-law

proportionate least mean square (DWMPLMS) and delayed least mean

square (DLMS) algorithms, this work offers the development of adaptive

filters based on the least mean square (LMS) method, which improves power

and timing performance. In order to improve area and time efficiency, the

proportionate least mean square (PLMS) algorithm's architecture has been

modified to remove delay, add a proportionate gain block, design for a fixed

length, include an approximate multiplier block, and swap out standard

blocks for floating-point adder and divider blocks. According to a power and

temporal comparison with the DWMPLMS and DLMS algorithms, field-

programmable gate array (FPGA) synthesis reduces power usage by 95% for

a 32-bit filter length in PLMS when compared to the above methods.

Keywords:

Delayed least mean square

algorithms

Delayed wavelet μ-law

proportionate least mean square

Field-programmable gate array

Filter

Least mean square

Proportionate least mean square

Very-large-scale integration

This is an open access article under the CC BY-SA license.

Corresponding Author:

Divya Muddenahally Narasimhaiah

School of Electronics and Communication Engineering, REVA University

Kattigenahally, Yelahanka, Bangalore, India

Email: divya.mn@reva.edu.in

1. INTRODUCTION

Adaptive filters adjust their transfer functions based on optimization algorithms to adapt to changes

in the operating environment, making them effective for sparse system identification. Among these, the least

mean square (LMS) adaptive filter is widely used due to its simplicity, avoiding correlation functions and

matrix inversions while offering good convergence performance. However, LMS has limitations, including a

feedback error time lag that hinders pipeline implementation at high sampling rates and sensitivity to input

scaling, complicating learning rate selection.

The delayed least mean square (DLMS) architecture in [1] demonstrated effective error convergence

through MATLAB® Simulink modeling. The proportionate least mean square (PLMS) architecture in [2]

further clarified PLMS fundamentals, enabling enhanced simulations. Although the novel design in [3]

achieved power and timing efficiency, it required more area. This inspired our design, which optimizes area

at a slight timing complexity cost.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2513-2522

2514

Replacing multipliers with logarithmic and anti-logarithmic computations, as discussed in [4],

improved time efficiency but increased power consumption. Thus, we adopted an 8-bit Vedic multiplier from

[5]–[12] for better latency and power performance. Adder selection, informed by [13]–[20], and insights

from systolic architectures in [21]–[29] contributed to our design's faster convergence. Studies [30], [31]

highlighted the accuracy and wide range benefits of floating-point arithmetic, guiding the efficient

implementation of floating-point operations in our design.

2. RESEARCH METHOD

The block diagram shown in Figures 1 (a) and 1(b) represents the block diagram of the adaptive

filter as an unknown system identifier and convergence graph for different algorithm respectively. Both the

adaptive filter as well as the unknown system are given the same inputs. The output that occurs across the

unknown system will be the desired signal 𝑑(𝑛).

The input vector 𝑈(𝑛) is the result of further encoding the input provided by the adaptive filter into

digital binary data. In the filter, the tap length determines the filter's order. Simple convolution is used to

calculate the adaptive filter's output, which will initially have some unknown weights. If there is a

discrepancy between this output and the intended output, it is passed back to the weight update block to

provide new coefficients.

(a) (b)

Figure 1. Analysis and performance evaluation of the adaptive filter system: (a) block diagram of the

adaptive filter illustrating the key components and signal flow and (b) convergence graph comparing the

performance of different algorithms in terms of error reduction over iterations

This process continues to happen till the error signal ideally goes down to zero. If the error signal is

zero it implies that:

a. The output of the adaptive filter is same as that of the output of the unknown system, i.e. 𝑌(𝑛) = 𝑑(𝑛)

(because 𝑒(𝑛) = 𝑌(𝑛) − 𝑑(𝑛)).

b. If 𝑌(𝑛) = 𝑑(𝑛) it suggests that the adaptive filter is producing the same output as the unknown system

for a given input and hence the coefficients of both the unknown system and the adaptive filter are the

same. So therefore, the adaptive filter is said to have identified the unknown system under test.

The mathematical equations that will be used to find out the filter output, the error signal and the updated

weights are as given in Table 1.

Table 1. Adaptive filter equations
Function Equation

Input vector 𝑋(𝑘) = [𝑥(𝑘), 𝑥(𝑘 − 1), , 𝑥(𝑘 − 𝐿 + 1)]𝑇

Filter output 𝑌(𝑘) = 𝑥𝑇(𝑘)𝑊(𝑘)

Error signal matrix 𝐸(𝑘) = 𝑑(𝑘) − 𝑌(𝑘)

Updated weights 𝑊(𝑘 + 1) = 𝑊(𝑘) + 𝛽𝑔(𝑘)𝑋(𝑘)𝐸(𝑘)

Identity matrix 𝑔(𝑘) = 𝐼

Note: 𝑤(𝑘) is set of current weights, 𝛽 is adaptive step size, and 𝑔(𝑘) is gain matrix

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient power optimized very-large-scale integration … (Gangadharaiah Soralamavu Lakshmaiah)

2515

The novel implementations on our design would be: i) A proposed floating point module approach for

the PLMS register transfer level implementation and ii) Implementing an area efficient architecture for PLMS

algorithm based adaptive filter implementation on FPGA's. The PLMS update equation is given by (1):

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝐺(𝑛)𝑢(𝑛)𝑒(𝑛) (1)

The Pt-NLMS family of algorithms iteratively estimate the filter weights

𝑤(𝑛) = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤(𝐿 − 1)(𝑛)]𝑇 (2)

The Gain matrix 𝐺(𝑛) is explained in (3),

𝐺(𝑛) = 𝑑𝑖𝑎𝑔 (𝑔0(𝑛), 𝑔1(𝑛), … . , 𝑔𝐿 − 1 (𝑛)) (3)

and 𝑎 gain factor 𝑔𝑖(𝑛) is assigned to the ith tap in proportion to |𝑤𝑖(𝑛)|

𝑔𝑖(𝑛) =
𝑤(𝑛)

1

𝐿
∑ 𝑤𝑖(𝑛)𝑖=0

𝐿−1

 (4)

For the simplified PLMS algorithm, 𝛾𝑖(𝑛) for each tap is evaluated as

𝛾𝑖(𝑛) = 𝐹[|𝑤𝑖(𝑛)| + 𝜌] (5)

and

𝐹[|𝑤𝑖(𝑛)|] = |𝑤𝑖(𝑛)| (6)

The Pt-LMS algorithm simplifies its predecessors by omitting weighted normalization and simplifying gain

factor evaluation, with a small constant p ensuring minimum gain for inactive coefficients and reducing time

complexity. These changes improve area and power efficiency, but high time complexity remains due to

repeated gain matrix and weight updates. Delayed adaptation addresses this issue, leveraging the unchanged

error gradient despite delays.

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝐺(𝑛 − 𝑀)𝑢(𝑛 − 𝑀)𝑒(𝑛 − 𝑀) (7)

When we compare the results of Pt-LMS with other LMS algorithm we observe that the convergence

performance of Pt-LMS is comparatively better than that of other LMS algorithms and its convergence

performance can be improved further. It is also observed that Pt-LMS is real time flexible and robust. Hence,

we decided to move forward with PLMS.

3. ARCHITECTURE

3.1. Proposed PLMS architecture

Figure 2 shows the proposed PLMS architecture and floating-point adder block respectively. As

illustrated in Figure 2(a); to implement pipelining, the number of taps increases with the order of the filter,

which significantly impacts the area. Additionally, switches are placed after every two taps to manage the

tap-out and gamma function at the corresponding clock phases. While these switches help reduce timing

complexity, their large number contributes to increased area. Instead of connecting the regressor input and

initial weights directly to the taps, they are routed through a switch. Depending on the clock phase, each filter

coefficient and input pass through a floating-point multiplier, which accelerates the multiplication process

and generates the tap-out (n) and gain function. These outputs are directed to switch 2. After all the outputs

are generated from a single tap, switch 1 is activated during one clock phase and switch 2 in the next. When

switch 1 is active, the adder sums the tap-outs, providing the adaptive filter output, and when switch 2 is

active in the following phase, the sum of the weighted functions is obtained.

The inputs to the serial adder block, as shown in Figure 2(b), come from a switch that receives

partial filter outputs and gain factors from the corresponding taps over four successive switching cycles. The

switch sends these tap-outs to the adder only after it has received the partial outputs from all N input samples.

Since the inputs are 32-bit floating-point values, the tap-out, which is the product of the input x and weight

W, also results in a 32-bit floating-point value. Therefore, a 32-bit floating-point adder is required to combine

the partial filter outputs and generate the complete filter output. This architecture employs a 32-bit floating-

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2513-2522

2516

point adder (FPA) due to its ability to handle a wide range of numbers with high precision. Since the IEEE

754 32-bit floating-point format separates the exponent and mantissa, adding two floating-point numbers

involves adding their mantissas, with a specific number of shifts applied to the mantissa of the number with

the smaller exponent.

(a)

(b)

Figure 2. Representation of the proposed architecture components: (a) proposed PLMS architecture

showcasing the pipeline and control mechanism and (b) floating-point adder block used for accurate

computation of weights and updates

Figures 3(a) and 3(b) represent the tap block and error computation block respectively. The tap

block architecture computes the gain factor and partial filter output using a 32-bit floating-point multiplier.

The tap also receives an input, 𝐸(𝑛 − 𝑀), from the error computation block. The system output, 𝑦(𝑛 − 𝑖), is

the sum of the tap outputs from the current and previous iterations. The error signal is subtracted from the

actual output and fed back to the tap block, updating the weights for the next iteration. A serial adder sums

the 𝐿 previous tap outputs and weights for the gain factor and system output.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient power optimized very-large-scale integration … (Gangadharaiah Soralamavu Lakshmaiah)

2517

(a) (b)

Figure 3. Illustration of the key components in the adaptive filter architecture: (a) tap block for managing the

input data and weight updates and (b) error computation block for determining the error signal to refine the

filter's performance

3.2. Floating point modules architecture

We propose efficient floating-point (FP) arithmetic units, including FP addition, subtraction,

multiplication, and division, for fast computation using single-precision IEEE 754 format. This 32-bit format

includes a 1-bit sign (1 for negative, 0 for positive), an 8-bit exponent, and a 23-bit mantissa for high-range

data representation.

𝑋 = (−1𝑠𝑖𝑔𝑛𝑥2 exp(1. 𝑚𝑎𝑛)) (8)

where 𝑠𝑖𝑔𝑛 is sign of the number 𝑋, 𝑒𝑥𝑝 is exponential value of a number, and 𝑚𝑎𝑛 is mantissa value of the

number.

3.2.1. Floating point adder/subtractor

Figure 4 shows the floating-point adder where the larger exponent is taken as common, and the

mantissa of the smaller exponent is left-shifted by the exponent difference before addition. The mantissas are

added, and any carry is added to the exponent while left-shifting the result. The sign bit is determined by

XOR-ing the input signs. The process involves an exponent comparison block to align exponents, a mantissa

block for addition/subtraction based on sign bits, and a normalization block for adjusting the final 32-bit

result. Normalization shifts the mantissa based on carry/borrow, producing the final exponent and mantissa

values.

Figure 4. Floating point adder

3.2.2. Multiplication and division of two floating point value

Figure 5 shows the floating-point multiplier and floating-point divider respectively. The sign bit is

obtained by XOR-ing the input sign bits. The mantissas are processed through a 23-bit adder and a Vedic

multiplier for accuracy, with their results summed by another 23-bit adder. The combined carry from both

adders is used in a shifter block and added to the exponent sum, yielding the final result's exponent and

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2513-2522

2518

mantissa. Complex multiplication of two 32-bit floating-point (FP) values are broken down into simple

module design as shown in Figure 5(a).

𝑋1 = (−1)𝑠𝑖𝑔𝑛1 ∗ (2𝑒1) ∗ (1. 𝑚1) (9)

𝑋1 = (−1)𝑠𝑖𝑔𝑛2 ∗ (2𝑒2) ∗ (1. 𝑚2) (10)

where 𝑋1, 𝑋2 are values expressed in form of single precision floating point format; 𝑠𝑖𝑔𝑛1, 𝑠𝑖𝑔𝑛2 are the

sign of number 𝑋; 𝑒1, 𝑒2 are the exponential value; and 𝑚1, 𝑚2 are the mantissa value.

Complex division of two 32-bit floating-point values is simplified as shown in Figure 5(b). The sign

bit is obtained by XOR-ing the input signs. The second mantissa is subtracted from 24′ℎ80000024 and the

result is multiplied with the first mantissa using a Vedic multiplier. The outputs are added to form the result's

mantissa, while the carry is added to the exponent block for the final result's exponent.

(a)

(b)

Figure 5. Key computational blocks of the floating-point unit: (a) Floating-point multiplier for efficient

multiplication operations and (b) Floating-point divider for precise division computations

4. RESULTS AND DISCUSSION

4.1. MATLAB results

This system was built to analyze any type of input signal which is generated by a signal generator,

the same signal is been passed to unknown system and adaptive system and results in error convergence

effectively. Once we achieved satisfactory results, we started the synthesis. The Simulink diagram can be

seen in Figure 6(a). Figure 6(b) presents the Simulink model results for the adaptive filter, showing the

desired signal, the filter's output, and the error signal. The third graph demonstrates error convergence over

time. Figure 6(c) shows the register transfer language (RTL) schematic of PLMS algorithm using Libero

SOC version 11.9 with FPGA A3P1000L from ProASIC3L series.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient power optimized very-large-scale integration … (Gangadharaiah Soralamavu Lakshmaiah)

2519

(a) (b)

(c)

Figure 6. Comprehensive analysis and implementation of the proposed PLMS architecture: (a) Simulink

model of the proposed PLMS architecture, (b) Simulink result for sine wave demonstrating the system

response, and (c) RTL schematic representing the hardware implementation of the PLMS algorithm

4.2. Synthesis results

Tables 2 and 3 represents the characteristics of proposed PLMS and comparison with existing

architectures respectively. Figures 7(a) and 7(b) show the graphical comparison power-delay comparison and

timing comparison with referred algorithms with existing DLMS and DWMPLMS architectures respectively.

Table 3 shows that the proposed design reduces power consumption by up to 95%, with savings of 95% and

88% compared to the DWMPLMS and DMPLMS architectures, respectively. This efficiency stems from

replacing the logarithmic multiplier with a floating-point Vedic multiplier, which enhances power efficiency.

The pipelined tap block design further improves timing, making the proposed architecture 30 times faster

than logarithmic methods and the DLMS design. Fixed-point computations in DLMS are less efficient, with

the proposed floating-point blocks achieving 84% power savings.

Table 2. Characteristics of proposed PLMS
Architecture Power (mW) Delay (ns)

DWMPLMS (Mula et al. [2]) 19.43 3.31
DLMS (Meher and Park [1]) 10.06 3.28

DLMS (Fan et al. [21]) 12.56 3.27

DMPLMS [2] 14.13 3.31
Proposed (PLMS) 1.067 104.45

Table 3. Comparison with existing architectures
Metric Value

Number of slices LUT's used 4094
Number of IO cells used 161

Device power consumption 1.067 mW

Operating frequency/timing 9.5 MHz
Operating timing 104 ns

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2513-2522

2520

(a) (b)

Figure 7. The graphical: (a) power comparison and (b) timing comparison, with referred algorithms

5. CONCLUSION

This paper proposes an adaptive filter design that leverages the PLMS algorithm, which is applied to

a 32-bit filter length. The PLMS algorithm is selected due to its ability to achieve a lower mean-square-

deviation (MSD) compared to the traditional LMS algorithm, resulting in better performance. Additionally,

PLMS offers faster convergence than the DLMS algorithm, making it a more efficient choice in terms of

area, power, and timing.

The proposed design replaces the logarithmic approach in existing DWMPLMS and DMPLMS

architectures with floating-point computation, a Vedic multiplier, and a proportionate gain block. A pipelined

architecture in the tap block enhances efficiency, while the design includes approximate multipliers, floating-

point adders, and divider blocks. FPGA synthesis shows a 92% power reduction compared to existing

architectures. Future work focuses on reducing area, improving timing, and fine-tuning output performance.

REFERENCES
[1] P. K. Meher and S. Y. Park, “Area-delay-power efficient fixed-point LMS adaptive filter with low adaptation-delay,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 362–371, Feb. 2014, doi:

10.1109/TVLSI.2013.2239321.
[2] S. Mula, V. C. Gogineni, and A. S. Dhar, “Algorithm and VLSI architecture design of proportionate-type LMS adaptive filters for

sparse system identification,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 9, pp. 1750–1762,

Sep. 2018, doi: 10.1109/TVLSI.2018.2828165.
[3] M. O. Sayin, N. D. Vanli, and S. S. Kozat, “A novel family of adaptive filtering algorithms based on the logarithmic cost,” IEEE

Transactions on Signal Processing, vol. 62, no. 17, pp. 4411–4424, Sep. 2014, doi: 10.1109/TSP.2014.2333559.

[4] S. Paul, N. Jayakumar, and S. P. Khatri, “A fast hardware approach for approximate, efficient logarithm and antilogarithm
computations,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2, pp. 269–277, Feb. 2009, doi:

10.1109/TVLSI.2008.2003481.

[5] B. S. Premananda, S. S. Pai, B. Shashank, and S. S. Bhat, “Design and implementation of 8-Bit Vedic multiplier,” International
Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 12, pp. 5877-5882,

Dec. 2013.

[6] U. R, “Area, delay and power comparison of adder topologies,” International Journal of VLSI Design & Communication Systems,
vol. 3, no. 1, pp. 153–168, Feb. 2012, doi: 10.5121/vlsic.2012.3113.

[7] K. Wagner, “Analysis and design of proportionate-type normalized least mean square algorithms,” Physics, 2001.

[8] M. D. Meyer and D. P. Agrawal, “A high sampling rate delayed LMS filter architecture,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 40, no. 11, pp. 727–729, 1993, doi: 10.1109/82.251841.

[9] S. Ramanathan and V. Visvanathan, “A systolic architecture for LMS adaptive filtering with minimal adaptation delay,” in

Proceedings of 9th International Conference on VLSI Design, 1996, pp. 286–289, doi: 10.1109/ICVD.1996.489612.
[10] P. K. Meher and M. Maheshwari, “A high-speed FIR adaptive filter architecture using a modified delayed LMS algorithm,” in

Proceedings - IEEE International Symposium on Circuits and Systems, May 2011, pp. 121–124, doi:

10.1109/ISCAS.2011.5937516.
[11] V. C. Gogineni and S. Mula, “Improved proportionate-type sparse adaptive filtering under maximum correntropy criterion in

impulsive noise environments,” Digital Signal Processing: A Review Journal, vol. 79, pp. 190–198, Aug. 2018, doi:
10.1016/j.dsp.2018.04.011.

[12] S. Mula, V. C. Gogineni, and A. S. Dhar, “Robust proportionate adaptive filter architectures under impulsive noise,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 5, pp. 1223–1227, May 2019, doi:
10.1109/TVLSI.2019.2892383.

[13] S. Mula, V. C. Gogineni, and A. S. Dhar, “Algorithm and architecture design of adaptive filters with error nonlinearities,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2588–2601, Sep. 2017, doi:
10.1109/TVLSI.2017.2702171.

[14] S. Haykin and B. Widrow, Least‐mean‐square adaptive filters. Wiley, 2003.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient power optimized very-large-scale integration … (Gangadharaiah Soralamavu Lakshmaiah)

2521

[15] H. Deng and M. Doroslovački, “Improving convergence of the PNLMS algorithm for sparse impulse response identification,”
IEEE Signal Processing Letters, vol. 12, no. 3, pp. 181–184, Mar. 2005, doi: 10.1109/LSP.2004.842262.

[16] K. C. Ho and S. D. Blunt, “Adaptive sparse system identification using wavelets,” IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol. 49, no. 10, pp. 656–667, Oct. 2002, doi: 10.1109/TCSII.2002.807263.
[17] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive filter part-I: Introducing a novel multiplication cell,” in

Midwest Symposium on Circuits and Systems, Aug. 2011, pp. 1–4, doi: 10.1109/MWSCAS.2011.6026642.

[18] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS adaptive filter part-II: An optimized architecture,” in Midwest
Symposium on Circuits and Systems, Aug. 2011, pp. 1–4, doi: 10.1109/MWSCAS.2011.6026643.

[19] Y. Yi, R. Woods, L. K. Ting, and C. F. N. Cowan, “High speed FPGA-based implementations of delayed-LMS filters,” Journal of

VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 39, no. 1-2 SPEC.ISS., pp. 113–131, Jan. 2005,
doi: 10.1023/B:VLSI.0000047275.54691.be.

[20] L. Da Van and W. S. Feng, “An efficient systolic architecture for the DLMS adaptive filter and its applications,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 4, pp. 359–366, Apr. 2001, doi:
10.1109/82.933794.

[21] L. Fan, C. He, D. Wang, and L. Jiang, “Efficient robust adaptive decision feedback equalizer for large delay sparse channel,”

IEEE Transactions on Consumer Electronics, vol. 51, no. 2, pp. 449–456, May 2005, doi: 10.1109/TCE.2005.1467986.
[22] S. Attallah, “The wavelet transform-domain LMS algorithm: a more practical approach,” IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing, vol. 47, no. 3, pp. 209–213, Mar. 2000, doi: 10.1109/82.826747.

[23] A. H. Sayed, Fundamentals of adaptive filtering. USA: Wiley: Hoboken, 2003.
[24] V. Paliouras and T. Stouraitis, “Logarithmic number system,” Arithmetic Circuits for DSP Applications. Wiley, pp. 237–272,

Aug. 2017, doi: 10.1002/9781119206804.ch7.

[25] P. K. Meher and S. Y. Park, “Critical-path analysis and low-complexity implementation of the LMS adaptive algorithm,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 3, pp. 778–788, Mar. 2014, doi: 10.1109/TCSI.2013.2284173.

[26] W. Ma, D. Zheng, Z. Zhang, J. Duan, and B. Chen, “Robust proportionate adaptive filter based on maximum correntropy criterion

for sparse system identification in impulsive noise environments,” Signal, Image and Video Processing, vol. 12, no. 1,
pp. 117–124, Jun. 2018, doi: 10.1007/s11760-017-1137-0.

[27] R. K. Sarma, M. T. Khan, R. A. Shaik, and J. Hazarika, “A novel time-shared and LUT-less pipelined architecture for LMS

adaptive filter,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 188–197, Jan. 2020, doi:
10.1109/TVLSI.2019.2935399.

[28] L. K. Ting, R. Woods, and C. F. N. Cowan, “Virtex FPGA implementation of a pipelined adaptive LMS predictor for electronic

support measures receivers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 1, pp. 86–94, Jan.
2005, doi: 10.1109/TVLSI.2004.840403.

[29] M. Cornea, “IEEE 754-2008 decimal floating-point for intel®architecture processors,” in Proceedings - Symposium on Computer

Arithmetic, Jun. 2009, pp. 225–228, doi: 10.1109/ARITH.2009.35.
[30] L. Daoud, D. Zydek, and H. Selvaraj, “A survey on design and implementation of floating point adder in FPGA,” in Advances in

Intelligent Systems and Computing, vol. 1089, Springer International Publishing, 2015, pp. 885–892.

[31] A. Ehliar, “Area efficient floating-point adder and multiplier with IEEE-754 compatible semantics,” in Proceedings of the 2014
International Conference on Field-Programmable Technology, FPT 2014, Dec. 2014, pp. 131–138, doi:

10.1109/FPT.2014.7082765.

BIOGRAPHIES OF AUTHORS

Gangadharaiah Soralamavu Lakshmaiah obtained his M.Tech. in digital

electronics and advanced communication from KREC, Surathkal, obtained Ph.D. in the area of

VLSI signal processing from VTU Belagavi. Presently he is working as professor, Department

of Electronics and Communication Engineering, CIT, Bengaluru and Principal Scientist

CCCIR, CIT. His areas of interest are RTL design and design verification, VLSI signal

processing and machine learning. He can be contacted at email: gdhar75@gmail.com.

Narayanappa Chikkajala Krishnappa received Ph.D. from VTU, Belagavi.

He is currently working as professor and H.o.D at the Department of Medical Electronics,

M.S. Ramaiah Institute of Technology, Bengaluru. His research interests include signal and

image processing and control systems. He is the member of ISTE, IETE and BMESI. He is

also a fellow at The Institution of Engineers (India). He can be contacted at email:

c_k_narayanappa@msrit.edu.

https://orcid.org/0000-0002-4087-4381
https://scholar.google.com/citations?user=slhwKGYAAAAJ
https://orcid.org/0000-0003-4796-1258
https://scholar.google.com/citations?user=lTDAXfIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57201853656

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2513-2522

2522

Poornima Golluchinnappanahalli Ramappa received her M.Tech. in electronics

from BMSCE, Bangalore, Ph.D. from VTU Belagavi. She is presently working as professor and

dean in Department of Electronics and Communication Engineering, Sri Venkateshwara

College of Engineering. Bangalore. Her research interests are analog and digital VLSI. She can

be contacted at email: poornima.gr_ece@svceengg.edu.in.

Divya Muddenahally Narasimhaiah received her M.Tech. in electronics from

BMSCE, Bangalore, obtained Ph.D. from VTU, Belagavi. Presently working as assistant

professor in the School of Electronics and Communication Engineering, Reva University

Bengaluru, her areas of interest are aerospace electronics, signal processing and machine

learning. She can be contacted at email: draophd@gmail.com.

Umesharaddy Radder obtained his M.Tech. in VLSI design and embedded

systems, from VTU Belagavi, and Ph.D. in the area of VLSI design from VTU Belagavi in

2006 and 2018 respectively. Presently, he is working as associate professor in the Department

of Electronics and Communication Engineering, East West Institute of Technology, Bengaluru.

His areas of interest are VLSI design for communication, embedded system design with RISCV,

deep learning and machine learning. He can be contacted at email: umeshradder@gmail.com.

Chakali Chandrasekhar obtained his M.Tech. in digital electronics from VTU

Belagavi, and Ph.D. in the area of image fusion and compression from SV University, Tirupathi

in 2003 and 2014 respectively. Presently he is working as professor in the Department of

Electronics and Communication Engineering, Sri Venkateswara College of Engineering,

Tirupati, Andhra Pradesh, India. His areas of interest are image processing and VLSI. He can be

contacted at email: chandra.bti2009@gmail.com.

mailto:draophd@gmail.com
mailto:umeshradder@gmail.com#inbox/_blank
https://orcid.org/0000-0003-4505-9527
https://scholar.google.com/citations?user=agDIo2YAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57193573392
https://orcid.org/0000-0003-2777-8878
https://scholar.google.com/citations?user=Ekgmireaaaaj%26Hl
https://www.scopus.com/authid/detail.uri?authorId=57220412335
https://orcid.org/0000-0001-7904-8370
https://scholar.google.com/citations?user=tLFTGaMAAAAJ%26hl
https://orcid.org/0000-0003-4443-7151
https://scholar.google.com/citations?user=bIy-_joAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57213107899

