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ABSTRACT

The emergence of the social internet of things (SIoT) network has brought forth
distinctive challenges, including node mobility and varying densities, leading
to congestion and hampered network efficiency. To overcome these issues,
a congestion-free routing model for SIoT is proposed. This model combines
the relationship-ordering points to identify the clustering structure (R-OPTICS)
algorithm for intelligent node clustering based on relationships and ordering,
along with a van emde boas tree (vEBT) for efficient path selection. R-OPTICS
enables effective network management by clustering nodes appropriately. The
model’s performance is evaluated using metrics such as Rand-Index (1.5765),
Davies-Bouldin (-0.4305), and Silhouette Coefficient (1.71685) to assess aver-
age goodness values. vEBT identifies optimal paths between clusters, facilitat-
ing smart routing decisions. The primary objective of the model is to enhance
network efficiency and alleviate congestion by intelligently routing data between
clusters. Through extensive simulations, the proposed model outperforms exist-
ing routing methods, resulting in improved efficiency and congestion reduction.
This congestion-free routing model presents a promising solution to address the
unique challenges of SIoT networks, ensuring optimal performance and effec-
tive resource management.
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1. INTRODUCTION
Emergence of the social internet of things (SIoT) within the internet of things (IoT) has spurred the

rapid development of smart objects, aligned with current trends. SIoT involves interconnections between smart
objects established through various relationships [1], such as parental object relationship (POR), co-location
object relationship (CLOR), ownership object relationship (OOR), social object relationship (SOR), and more.
These connections utilize protocols like wireless fidelity (WiFi), Zigbee, Bluetooth, WiFi-Direct, and world-
wide interoperability for microwave access (Wi-MAX), forming a network with both static and mobile nodes.
The mobility of nodes enables unique features for identifying neighbouring nodes.

State of the art: The literature survey comprehensively reviews research in next-gen wireless net-
works (NWNs), IoT, and SIoT. Efficient routing is crucial for supporting delay-sensitive mobile applications
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in NWNs. Yao et al. [1] introduced a machine learning-based routing algorithm outperforming Bellman-Ford
(BF) and Queue-Utilization BF (QUBF) in packet loss, throughput, and delay. Rad et al. [2] analyzed recent
SIoT works, examining components, features, parameters, and challenges, proposing robust evaluation param-
eters. Jafarian et al. [3] focused on trust management, proposing a discriminative-aware trust management
(DATM) system. Sharma et al. [4] explored IoT objectives, enablers for massive machine type communica-
tions (mMTC), and device learning techniques. In IoT, congestion management was addressed by Chowdhury
et al. [5] with non-cooperative gaming for power-efficient congestion control (NGECC). Musaddiq et al. [6]
introduced a Q-learning-based intelligent collision probability inference algorithm for optimal IoT network
performance. Del-Valle-Soto et al. [7] contributed an energy model for wireless sensor networks (WSNs),
accurately estimating energy consumption. Khelloufi et al. [8] explored social relationships among device
owners to enhance service recommendations. Marche et al. [9] concentrated on object queries in SIoT for
efficient application requests. Marietta et al. [10] discussed critical IoT issues, emphasizing optimal routing.
Ganesh et al. [11] presented heterogeneous wireless sensor networks (HWSNs) and introduced protocols to
enhance performance. Noureddine et al. [12] introduced a grid-based routing method for energy efficiency,
validated through MATLAB simulations. Farag et al. [13] proposed a reinforcement-learning framework
based on Q-learning for load balancing in RPL. Abid et al. [14] compared density-based spatial clustering of
applications with noise (DBSCAN) and OPTICS for outlier detection, highlighting DBSCAN’s superior per-
formance. Meghana et al. [15] introduced methods to aggregate SIoT data, with decision tree and artificial
neural network algorithms outperforming. In their work, Marche et al. [16] focused on trust management
in IoT, addressing various trust attacks. Pancaroglu et al. [17] studied load balancing approaches in RPL.
Samizadeh et al. [18] discussed the critical importance of IoT architecture and addressed challenges. In
the context of IoT applications in the 6G era, Goswami et al. [19] highlighted the significance of energy-
efficient routing for multi-access edge computing (MEC) in intelligent transportation systems (ITS) and intro-
duced a hybrid DAI-SOM method to optimize energy consumption and intra-cluster communication. De-
vidas Mandaokar et al. [20] enhances DBSCAN with a partial probability function, boosting cluster ac-
curacy and reducing computational overhead. Their swarm intelligence optimizes density-based algorithms
for better merging, noise reduction, and core point value. Natarajan et al. [21] recommended an upgrad-
able cross-layer routing protocol for cognitive radio (CR) network-based IoT to enhance routing efficiency
and data transmission optimization in reconfigurable networks. Mohana et al. [22] presented classifica-
tion, clustering and navigation simulator (CCNSim), a comprehensive SIoT simulator that incorporated ba-
sic network simulator features alongside advanced AI-based traffic analytics and visualization. Mohana et al.
[23] proposed a feature selection method based on semantic rules and relationship artificial neural networks
(R-ANN) to classify services in SIoT environments, achieving an accuracy rate of 89.62% for various services.
Kaviani and Soltanaghaei et al. [24] introduced congestion and quality of service – aware routing protocol
for low-power and lossy networks (QoS-Aware RPL) (CQARPL), a novel routing protocol for IoT that specif-
ically addressed congestion control and quality of service (QoS) requirements. Yinan et al. [25] reiterated
the importance of energy-efficient routing in IoT and introduced a hybrid DAI-SOM method to optimize en-
ergy consumption and intra-cluster communication. Finally, Ali et al. [26] underscored the significance of
energy-efficient routing in WSNs supporting IoT applications and introduced a multipath routing approach that
outperformed existing methods in terms of efficiency and resilience. The state-of-the-art work highlights the
importance of efficient routing, load balancing, congestion control, trust management, and service recommen-
dation in next-gen wireless networks, IoT, and SIoT, revealing the need for further research and development
in these areas to overcome challenges and enhance the performance of these networks.

Problem in the SIoT network include congestion due to the increasing number of nodes, dynamic
topology from node mobility causing frequent connection failures, and diverse communication protocols for
various relationship types. Efficient routing models are crucial for seamless, congestion-free communication.
Then, contribution to tackle the challenges posed in SIoT routing, we propose a model that combines two
techniques: clustering using the relationship ordering points to identify the clustering structure (R-OPTICS)
algorithm and finding the best path using a van emde boas tree (vEBT). The contributions of this work are
highlighted as follows:
− Proposed a congestion-free routing model using clustering.
− Proposed a modified OPTICS algorithm using the relationship between devices as a metric for clustering.
− Proposed van Emde Boas vEBT algorithm for choosing congestion-free routing in the social internet of

things.
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2. RESEARCH METHOD
2.1. System model

Consider a SIoT network with a random number of objects connected through relationships in an
environment represented by Nx. The SIoT system model SM defined as a set of public and private objects
that are randomly distributed and all are connected in a network Nx. The objects O = 1, 2, ..., n in which
each object is connected through a relationship R using object profiles OP includes the protocols P with device
types DT , service SR, and applications AP . The similar features of objects create relationships among them.
There are ten types of relationships R = R1, R2, . . . , R10. SIoT provides services assuming objects have
decentralized networks to provide services through nearby objects No in various locations LC with a certain
distance D. These objects are identified based on source object Os to destination object Od which helps to
find the congestion-free path of a network using the clustering technique is as shown in (1). Hence the system
model SM is defined in (1),

SM =

n∑
X=1

O(No, Os, Od) : Nx → ∀(O,OP , SR, D, LC , R,DT , AP ) (1)

2.1.1. Problem formulation
The model provides the congestion-free decision model CFD while offering services SR from ap-

plications AP . Congestion avoidance in a network is achieved through clustering techniques. The clustering
model CL is used to train the network Nx, through the relationships R between the objects O from source s
to destination d. Consider a cluster CL having multiple paths p located at some distance d, to find the specific
object with minimum distance path Min(p) and maximum distance path Max(p) for getting services from
other objects in SIoT network is represented in 2.1.1., 2.1.1., and 2.1.1.. To find the congestion-free path, the
objective function is defined as (2),

CFD =

n∑
P=1

CL(Max(p),Min(p)) (2)

subjected to (3),

CL = {No, Op, SR, LC , R,DT , AP } (3)

and,

Max(p) = (Os, Od) Min(p) → (Os, Od) (4)

2.1.2. Problem solution
In (2), CL is the clustering technique that uses the R-OPTICS technique to cluster the neighbour ob-

jects No using objects profiles Op with respect to relationship R, based on protocols P , for service SR of
location LC of given device type DT in applications AP . The R-OPTICS uses two parameters core distance
objects CD and reachability distance object RD. The ϵ is the distance threshold and is calculated using (5).

CD = Min(p)(Os, Od, ϵ) (5)

and

RD = Max(p)(Os, Od, ϵ) (6)

Using (5) and (6) congestion can be avoided by navigating the path between the objects. Therefore, to navigate
the objects by searching nearby connected objects using vEBT algorithm. The vEB tree is a data structure
that supports fast query and update operations on a set of keys. The vEBT technique searches the objects in
each cluster by representing clusters as trees and performing the operations namely insertion, deletion, find
successor, and predecessor.

2.2. Proposed methodology design
The proposed model working procedure is as follows: first input the SIoT data, pre-process the data

for normalizing the data values, then select the features of relationships between the objects, then analyze the
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reachability of objects in a density of SIoT environment using R-OPTICS technique in the data, then analyze
the objects that are in multiple relationships and find the reachability nodes from source to destination objects
in the environment. However, using the vEBT technique, find the path in the clusters of objects to analyze the
maximum and minimum paths for the relationship between objects. Finally find the optimal path between the
objects with multiple relationships in SIoT network. The design of proposed R-OPTICS-vEBT congestion free
routing model is as shown in Figure 1.

Figure 1. Proposed methodology design

2.3. Proposed algorithm
This section presents the proposed algorithm used to find the congestion-free path. The R-OPTICS

algorithm operates through the following steps: Firstly, it computes the distance between every pair of data
points within the dataset. Next, it determines the minimum points parameter (MinPts) and the radius parameter
(Eps). For each data point, it calculates the density of its Eps-neighbourhood, which represents the count of
data points within a distance of Eps from the given point. Additionally, it calculates the reachability distance
for each data point, measuring the minimum distance to a core point within its Eps-neighbourhood. Finally, the
algorithm generates a reachability plot that visualizes the reachability distance of each data point. By analysing
the reachability plot, dense areas within the dataset can be identified. Algorithm 1 shows the detailed steps of
the R-OPTICS algorithm.

Algorithm 1. R-OPTICS Algorithm
Data: Dataset D, Minimum Points (MinPts), Radius (Eps)
Result: Clustering Structure
Function ROPTICS(D, MinPts, Eps):

Compute pairwise distances between data points in D Initialize an empty list of core points
for each data point p in D do

Calculate the Eps-neighborhood NEps(p) of p
if |NEps(p)| ≥ MinPts then

Mark p as a core point
end

end
Initialize an empty list of reachability distances
for each data point p in D do

if p is a core point then
Calculate the density of NEps(p)
for each data point q in NEps(p) do

if q is not processed then
Calculate the reachability distance RD(q, p) of q to p Add RD(q, p) to the list of reachability distances

end
end
Mark p as processed

end
end
Create a reachability plot using the list of reachability distances Analyze the reachability plot to identify dense areas and clusters
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Further, the vEBT algorithm uses the devices clustered by using R-OPTICS algorithm and chooses a
range of values for the distance information to be stored and then divide the range into two halves and store the
distance information for each half in a separate vEB Tree, and continue dividing the range into halves until the
range is small enough to be stored in a single vEBT. To find the distance between two nodes, traverse the vEBT
hierarchy and retrieve the distance information stored at the appropriate level.

3. RESULTS AND DISCUSSION
3.1. Dataset description

The dataset consists of 16,216 devices, of which 14,600 are private objects and 1,616 are public de-
vices. These devices were created in the city of Santander in Spain. Each object has various configurations such
as device id, user id, device type, device brand, and device model. Additionally, the dataset includes the posi-
tion of the adjacency matrix of the objects and the delay between them. The adjacency matrix contains various
relationship types between objects such as POR, CLOR, SIOR, SOR, and SOR2. The dataset also includes ran-
domly generated protocols such as ZigBee, Wi-Fi, blue-tooth low energy (BLE), and Wi-Fi-Direct for various
types of devices, both private and public, and brands of equipment. The dataset has location variables, protocol
types, and object relationships, which include properties such as protocol type, objects, locations, services [21],
[22], [23] applications, device type, distance, and relationships.

3.2. Results
Figure 2 illustrates the simulation area where devices communicate, creating an environment for con-

ducting experiments. The dataset in SIoT, all devices are multivariate which makes more density in the network
present in different distributions [16], [20]. The dataset contains the various device types namely private de-
vices and public devices and its distribution. The devices are connected with different protocol such as wifi,
zigbee, and there are 10 types of relationships between the devices in a network. OPTICS is a density-based
clustering method used to locate the structure of the clusters from which different types and densities of clusters
can be extracted. For finding clusters of different densities in large, high-dimensional datasets, it is useful. It
estimates the clusters and also estimates the noise points. The proposed model creates the order clusters of all
different devices are shown in the Table 1.

Figure 2. Simulation environment

Table 1 presents the training and testing samples of the SIoT dataset, along with the number of clus-
ters obtained and a comparison with various results using OPTICS techniques. The performance metrics used
include the Davies-Bouldin index, silhouette coefficient, and adjusted Rand index. The Davies-Bouldin index
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measures the ratio between cluster scatter and cluster separation, with a lower value indicating better clus-
tering. However, in our dataset, we obtained higher values, indicating that the clusters are quite dense. The
silhouette coefficient measures how well an object matches its own cluster compared to neighbouring clusters.
The average number of clusters obtained is 1813, 1755, 1627, and 1483 for the 60:40, 70:30, 80-20, and 90:10
dataset ratios respectively in the SIoT dataset, as shown in Figure 3. In our dataset, the coefficient is predom-
inantly influenced by neighbouring clusters. The adjusted Rand index yields positive values, indicating a high
similarity between clusters. Figure 4 illustrates the reachability of devices in the network for a dataset ratio of
60:40 in the SIoT dataset of total vehicles ranging from 20,000 to 60,000, Figure 4(a) shows total vehicles of
20,000, Figure 4(b) depicts 30,000 total vehicles, later Figure 4(c) illustrates total vehicles of 50,000, and finally
Figure 4(d) interprets total vehicle reachability of 60,000.

Table 1. SIoT dataset for Test in OPTICS cluster
Dataset Train : Test Devices clusters Davies-Bouldin Index Silhouette Coefficient Adjusted Rand Index

90:10 10,000 376 1.61 -0.40 0.004
25,000 848 1.33 -0.46 0.01
50,000 1745 1.55 -0.46 1.66
75,000 2630 1.62 -0.47 1.36
100,000 3467 1.79 -0.48 1.86

80:20 10,000 376 1.61 -0.40 0.004
25,000 848 1.33 -0.46 0.001
50,000 1745 1.55 -0.46 1.66
75,000 2630 1.62 -0.47 1.36
100,000 3177 1.67 -0.47 -5.72

70:30 10,000 346 1.67 -0.39 0.001
25,000 819 1.33 -0.41 6.51
50,000 1659 1.71 -0.42 1.41
75,000 2431 1.64 -0.44 7.85
100,000 2882 1.65 -0.45 1.16

60:40 10,000 376 1.61 -0.40 0.004
25,000 746 1.36 -0.37 4.9
50,000 1482 1.61 -0.40 2.40
75,000 2228 1.65 -0.40 6.5
10,0000 2586 1.68 -0.42 1.29

The SIoT network’s source and destination devices demonstrate a robust interdependence among di-
verse clusters. To pinpoint congestion-free routes within the SIoT, we employ the vEBT searching technique.
OPTICS clusters fluctuate based on the total device samples in the environment, detailed in Table 1. It is
noted that with an increase in clusters, noise escalates. Each cluster’s performance is gauged by the minimum
verified samples, assessed through connected objects’ reachability. The vEBT method executes search steps
for reaching cluster k in the SIoT network, enhancing navigability. Device connections signal a functional
network, while their absence indicates a failed establishment. Nodes in cluster k are scrutinized to identify the
optimal path for a congestion-free routing protocol. The vEBT path selection involves examining predecessor
and successor nodes for similar protocols and relationships (1 for presence, 0 for absence). Path selection con-
siders device profiling, factoring in positions, protocols, and relationships, ensuring a congestion-free, secure
connection. Clustering aids in the vEBT-driven selection of the shortest path, securing connections in succes-
sive interactions between SIoT destination and source devices as illustrated in Figure 5. The proposed model’s
comprehensive performance is depicted in Figure 6.

3.3. Comparative study
Table 2 presents a comparative study of various routing techniques that integrate machine learning

algorithms. The study undertook a comparative analysis between OPTICS and R-OPTICS, both density-based
clustering techniques utilizing reachability links to cluster points, identifying clusters and outliers in the dataset.
OPTICS with vEBT and R-OPTICS with vEBT were applied to an SIoT dataset, with the latter proposed as the
model for evaluation. The metrics used for evaluation yielded average values: Rand-Index = 1.5765, Davies-
Bouldin = -0.4305, and Silhouette-Coefficient = 1.71685. Notably, R-OPTICS with vEBT showcased superior
performance over OPTICS with vEBT, particularly in terms of loglog(n) on-time reliability.
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Figure 3. Average clusters formed in SIoT dataset for train and test ratio

(a) (b)

(c) (d)

Figure 4. Reachability of various devices in SIoT dataset for train and test ratio 60:40: (a) 20,000 total
vehicle, (b) 30,000 total vehicle, (c) 40,000 total vehicle, and (d) 60,000 total vehicle

Figure 5. Congestion free path obtained in the proposed model using relationship between the devices
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Figure 6. Performance metrics results of proposed model

Table 2. Performance comparison of touting techniques results
Models Accuracy Rand-Index Davies-Bouldin Silhouette-Coefficient
OPTICS 69% - - -

Proposed Model R-OPTICS with vEBT - 1.5765 - 0.4305 1.71685

4. CONCLUSION
The SIoT grapples with challenges related to routing path congestion and node mobility. As node

numbers rise, congestion can hinder data flow efficiency between nodes. Node mobility introduces connection
failures and impacts transmitting node energy consumption. Proposed solutions leverage machine learning,
specifically comparing OPTICS and R-OPTICS clustering techniques integrated with the vEBT structure for
SIoT dataset analysis. Results favor R-OPTICS with vEBT, exhibiting superior on-time reliability (loglog(n))
and outperforming OPTICS with vEBT across Rand-Index, Davies-Bouldin, and Silhouette-Coefficient met-
rics. Future research could expand to larger, diverse SIoT datasets for comprehensive validation and explore
variations in the vEBT structure to enhance scalability and performance with larger datasets.
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