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 Cloud service provider (CSP) offers a huge number of datacenters and 

virtual servers to the users for processing their workloads in an infrastructure 

as a service (IaaS) cloud computing environment. Due to the heterogeneous 

volume of these resources and the immense number of user workloads 

arriving simultaneously in the cloud, it is necessary to use an effective load 

distribution technique for scheduling the resources to achieve high 

performance and high user satisfaction. Service brokering policy and load 

balancing techniques are the two crucial areas to be focused on while 

selecting the datacenters and virtual machines, respectively. In this study, we 

have proposed a dynamic efficient criticality-oriented service brokering 

policy for load allocations among datacenters by considering task criticality, 

datacenter proximity, and traffic, the size of the datacenter, its present load 

and makespan value. The proposed methodology is examined against the 

current policies in the CloudAnalyst simulation tool and the analysis report 

confirms that our proposed policy gives priority to processing the urgent 

loads and chooses the optimum datacenter to diminish the load response 

time, datacenter processing time, minimizes the cost, achieves optimum 

resource utilization and workload balancing among resources. 
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1. INTRODUCTION  

Cloud service providers (CSP) build a cloud computing model such as infrastructure as a service 

(IaaS) to offer large-scale computing resources to the customers with greater flexibility at a low cost and in a 

highly elastic manner, i.e., provide resources according to their needs. IaaS offers resources like datacenters 

(DCs), virtual machines (VMs), random access memory (RAM), storage capacity, network connections and 

databases. Cloud users can scale up or down the resources via the internet on a charge-per-use basis for 

processing their workloads (applications) without worrying about infrastructure maintenance [1]. The IaaS 

cloud servicing provider maintains its computing resources in a large number of heterogeneous DCs in 

several locations. DCs are physical places that are geographically distributed, each containing several virtual 

servers with numerous computing resources. The resources include servers, processing powers, memory 

units, storage capacity, network equipment, and VMs to store and process the user’s workload [2]. IaaS uses 

a feature called server virtualization that allows the sharing of a single physical resource among multiple 

users. Virtualization builds multiple VMs that are software-based machines instantiated on top of each 

https://creativecommons.org/licenses/by-sa/4.0/
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original piece of physical hardware. It avoids overloading or under loading of VMs and wastage of resources 

[3], [4]. Figure 1 depicts the model of the virtualization technique and the IaaS cloud services are deployed in 

various VMs. It offers resources to ensure efficient utilization of resources using fewer infrastructures and 

less cost. It also promotes rapid execution of the user’s applications [5]. 

 

 

 
 

Figure 1. Architecture of virtualization 

 

 

Service brokering and load balancing are the two key techniques used in IaaS cloud environments 

for selecting the DC and VM, respectively. Cloud service brokering is a DC selection technique that selects 

the appropriate DC by incorporating one of the service broker policies (SBP) for routing the consumer’s 

loads to the appropriate DCs. Load balancing (LB) is the resource allocation technique used in IaaS cloud 

computing. LB uniformly allocates the user’s workload over several resources according to their demands in 

an IaaS cloud environment [6], [7]. 

Due to the heterogeneous and dynamic nature of each user load, it is very important to dynamically 

know the current state of the available DC. It is necessary to examine the DC status, which includes its 

availability, capacity, and distance from the user's location and current load for efficient resource 

management. Dynamic scheduling provides efficient resource allocation and it is best suited for an IaaS 

heterogeneous cloud environment with a varied range of DCs and user applications [8]. 

CloudAnalyst is a modelling and simulation tool used in an IaaS cloud environment to assess the 

effectiveness of service broker policies and load balancing policies, and it has been built upon the CloudSim 

tool. CloudAnalyst has a graphical user interface (GUI) feature that shows the simulated results with charts 

and graphs. The cloud analyst divides the whole world into six regions, which contains several user bases 

(UB) and DCs. Each DC contains several virtual servers, and each UB consists of several user loads [9], [10] 

On the grounds of increasing need for cloud services, the varied nature of cloud resources, and the 

exponential rise of workloads, it is challenging to select the optimum DC for a given workload. Improper 

allocation of workloads among DCs worsens the effectiveness of the entire IaaS cloud system. It also 

maximizes load response and processing time, increases cost, and results in inefficient resource utilization. 

[11], [12]. In this regard, service brokering in the IaaS cloud has been thoroughly explored over the past 

couple of decades. Numerous authors have put forth various service brokering policies for DC selection. This 

section highlights a few current research projects on cloud load balancing. 

The service proximity based or closest DC service broker policy (SPB-SBP) services the user's load 

by selecting the DC in the closest region based on network proximity. It estimates the network proximity 

based on the distance between each DC from the user’s locality and selects the DC with the lowest network 

latency. The problem arises when there is multiple DC present in the same closest region and the DC is 

chosen at random, it overloads the nearest DC, and its communication link leads to a high response time for 

user loads [13], [14]. 
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The optimize response time service broker policy (ORT-SBP) first finds the closest DCs using SPB-

SBP and estimates the response time of each DC based on its previous performance. This policy records the 

network delay and response time of each DC that was previously serviced by the DC and sends the traffic to 

the closest DC offering the fastest response time. If the closest DC does not have an optimum response time, 

it picks another DC with a good response time without considering the delay in workload allocation. But this 

policy does not assign any workload to the DC that has not received any loads previously [15], [16]. 

The reconfigure dynamically load (RDL-SBP) policy follows the SPB-SBP for choosing the 

appropriate DC. It also offers elasticity in expanding the number of VMs based on the user’s demand, i.e., 

increasing and decreasing the number of VMs grounded on the workload arriving from the users. This policy 

incurs additional costs and also affects performance due to the increase of VMs [17], [18]. 

The main significant performance evaluation parameters used by the service broker policies are: 

resource utilization refers to how effectively the various resources are utilized by each DC. Makespan or 

completion time is the total time that the DC needs to process a set of loads for its whole execution. It should 

be minimized to improve the resource utilization ratio [19]. Response time is the total amount of transit 

period, waiting time, and processing interval that the DC spends responding to a specific task. For better 

system efficiency, the workload necessities to be distributed among suitable DCs in a way that minimizes 

response time task deadline is a very important parameter of a task that specifies the timeline of the task, 

which indicates when the task must be completed [20], [21]. 

Cost includes the price of the machine and the cost of processing the workload [22]. DC processing 

time is the exact period that the DC needs to process a user's load [23]. Throughput is the amount of 

workload that the DCs process per unit of time [24]. Network latency specifies the distance from the UB to 

the DC. i.e., the delay or amount of time taken to transport the load between the UB and the DC [25]. 

Network traffic represents the amount of workload moving across a DC at any given time [26]. 

The problem with existing policies is that, even though many service broker policies are 

incorporated, workload priority is not considered while selecting the DC itself. It also requires an efficient 

policy to cover almost all the important performance factors like network traffic, response and processing 

time, cost, workload balancing, resource utilization, and makespan while selecting the DC. In this research, 

we focus on choosing high-severity loads and identifying the optimum DC.  

Our research proposes an efficient criticality-oriented service broker policy (ECO-SBP) in an IaaS 

cloud environment, it mainly focuses on selecting the optimum DC and balancing the user’s workload among 

DCs that are scattered in different regions. Here, the original service proximity based (SPB-SBP) has been 

modified by eliminating the random selection of the DC. It also improves the method of choosing the DC by 

reducing the loads response time, DC processing time, and cost and achieving good workload balancing and 

incorporating the dynamic selection of the DC. 

 

 

2. PROPOSED METHOD 

In this research, we have enhanced the existing service proximity-based service brokering policy 

(SPB-SBP) also called as closest DC policy and proposed the ECO-SBP for finding the best DC and 

prioritizing high-severity loads. In the existing SPB-SBP, all the loads are treated equally and scheduled 

according to the order they arrive, i.e., it does not consider the load's completion time and always chooses the 

nearest DC concerning the DC's network latency, leads to high traffic and overloading of some DCs while 

others are idle. If multiple DCs arriving at the same geographical location then this policy randomly chooses 

any one DC. Moreover, this policy is static in nature, it does not consider the current performance of the DC, 

which leads to high response time for certain loads and high processing time taken by the DC, as well as 

increased costs due to the poor allotment of DC. 

The proposed ECO-SBP eradicates the problem of SPB-SBP and focuses primarily on dynamically 

scheduling the user’s loads across multiple DCs in an IaaS heterogeneous cloud environment. The main 

important factors to be considered are task criticality, loads response time, DC processing time, cost, and 

workload balancing. Figure 2 displays the overall architectural functioning of the proposed ECO-SBP policy, 

in which each user’s workload is forwarded to the DC by a DC controller (DCC) using an appropriate service 

broker policy and forwards to VM load balancer to assign the load to the right VM. Once the load is 

processed, the result is sent back to the user. 

The proposed ECO-SBP implements the existing SPB-SBP for locating the closest region DCs in 

terms of network proximity. The proposed ECO-SBP policy operates in two phases, as depicted in Figure 3. 

In the first phase, it chooses the load based on its severity value i.e., the loads to be completed within the 

stipulated time are processed first. In the second phase, it chooses the DC depending on a few factors such as 

network delay, network traffic, DC size, present load, and makespan value. After that, the load is allotted to 

the appropriate DC. 
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Figure 2. Generic framework of proposed ECO-SBP 

 

 

 
 

Figure 3. Phases of proposed ECO-SBP 

 

 

2.1.  Load selection 

Here, the user's loads are divided into critical loads (CL) and non-critical loads (NCL) according to 

time-critical constraints such as severity values, and then it calculates the target time of each load based on 

the expected completion time. Table 1 shows the sample loads with their severity values, types, and target 

time, where UB1L1 represents load L1, which belongs to UB 1. Loads with low severity values are the most 

critical loads, which have a shorter target time and are executed as soon as they are received by the system. 

Non-critical loads have a larger target time that has been kept in the loads queue according to the severity 

value.  

 

 

Table 1. Loads with severity and estimated processing time 
Load number Load severity Load type Load target time (milliseconds) Load execution sequence 

UB1L1 1 CL 5.66 1 

UB1L2 2 CL 7 3 
UB2L1 5 NCL 15 5 

UB3L1 2 CL 6.87 2 

UB3L2 4 NCL 10 4 
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2.2.  DC selection 

The principal objective of the proposed ECO-SBP approach is to selects the entire closest region 

DCs based on network proximity, now, select all the DCs with low network traffic, which is determined by 

the network latency estimated by the number of loads moving across a DC. Now, choose the high-capacity 

DC by determining their size by evaluating the capacity of each VM present in that DC, and find the present 

load of each DC by adding the sizes of all the loads assigned to all the VMs of that DC. Now, find the 

remaining capacity of each DC by deducting the present load from the overall size to obtain the current size 

of the DC. The next step is to determine the makespan value for each DC in the HashMap table, makespan is 

estimated based on the length of time it takes the DC to process a given set of loads. Choose all the DCs 

whose size is greater than the load size and select the one with the lowest makespan value to process the load. 

The ECO-SBP yields a good response and processing time. This approach also aims to reduce the 

overloading of the DC by allocating an appropriate DC based on the load size and also dynamically 

redirecting the non-critical loads to the next closest DC, which has a lower number of current loads. The DC 

network proximity is obtained in (1). 

 

𝐷𝐶𝑛𝑝 = 𝑃𝑑𝑙 + 𝑆𝑑𝑙   (1) 

 

where 𝐷𝐶𝑛𝑝 represents network proximity, 𝑃𝑑𝑙 refers to propagation delay in length and 𝑆𝑑𝑙 refers to 

serialization delay in length. 𝑃𝑑𝑙 = 𝐷/𝑆 where D refers distance i.e., length of the physical link between the 

UB and the DC and S refers to transmission speed. 𝑆𝑑𝑙 = 𝐿𝑠/𝑇𝑟, where 𝐿𝑠 refers to load size (bits) and 𝑇𝑟 

refers to transmission rate (bps). The traffic intensity factor of a DC is the average server or resource 

utilisation over a given time period. The DC traffic intensity factor is formulated as (2). 

 

𝐷𝐶𝑡𝑓 = (𝐿𝑠 ∗ 𝑎)/𝑅  (2) 

 

where 𝐷𝐶𝑡𝑓 refers to the traffic factor of a DC, 𝐿𝑠 refers to a constant load size in that particular DC, a is the 

average rate of load per second, and 𝑅 is the constant transmission rate. The DC threshold is given in (3). 

 

𝐷𝐶𝑡ℎ = 𝐿(𝑀𝑎𝑥𝐶𝑛𝑓𝑖𝑔(𝐷𝐶) + 𝑀𝑖𝑛𝑃𝑙(𝐷𝐶) + 𝑀𝑖𝑛𝑀𝑠(𝐷𝐶))   (3) 

 

where 𝑀𝑎𝑥𝐶𝑛𝑓𝑖𝑔 refers to high configuration DC, 𝑀𝑖𝑛𝑃𝑙 refers to minimum present load and 𝑀𝑖𝑛𝑀𝑠 refers 

to minimum makespan value DC. The DC response time is obtained in (4). 

 

𝐷𝐶𝑟𝑡 = (𝐿𝐷𝑠/(𝐵𝑊 + 𝐷𝐶𝑙)) + 𝐷𝐶𝑝𝑡  (4) 

 

where 𝐿𝐷𝑠 refers to load size, BW refers to bandwidth, 𝐷𝐶𝑙 refers to latency or network transfer delay, and 

𝐷𝐶𝑝𝑡  refers to DC processing time. The DC processing time is obtained from (5).  

 

𝐷𝐶𝑝𝑡 = 𝐷𝐶𝑟𝑡 − (2 ∗ 𝐷𝐶𝑛𝑝)   (5) 

 

where 𝐷𝐶𝑛𝑝 is the network transfer delay and 𝐷𝐶𝑟𝑡 refers the response time. 

 

 

3. METHOD 

3.1. Procedure of ECO-SBP  

The design of the ECO-SBP policy is explained by employing a below procedure to determine every 

step of the process. This procedure explains the two phases of the ECO-SBP policy. In phase 1, it 

demonstrates the way loads are split into critical and non-critical and stored using a HashMap table. In  

phase 2, it shows the selection of an efficient data center based on various factors. 

 

Procedure of ECO-SBP 
Input: UB numbers (UB1, UB2, …, UBn), number of loads L = L1, L2, L3 …. Ln, target time of the load (TTl), severity value of the load 

(SVl), region number of the load (R0, R1, …, R6), Load Size (LSl). DC list (DCIndexList), DC status (network delay, network 

traffic, size, present load, and makespan values).  
Output: DC name (DCnme), response time, processing time and cost. 

Steps: 

a. Create a queue to maintain the user’s loads. A cloudlet is a Gridlet created by the UBs for each user’s load which is received from 
different UBs and each cloudlet contains a unique cloudlet id, load size, UB name, region name, severity value and adds each 

cloudlet. 
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b. The DCC sends each cloudlet’s details to the ECO-SBP by using getGridletStatus(). 
c. The ECO-SBP estimates the target time (TT) for each cloudlet based on each load’s severity value and creates two HashMap tables, 

such as critical load HashMap (CLH) and non-critical load HashMap (NCLH), to keep the CL and NCLs respectively based on the 

target time, arranges the loads in both the HashMap tables from the minimum target time to maximum target time, chooses a load 
from CLH with the minimum TT value, and forwards to DCC. 

d. Using DCList = GridSim.getGridResourceList, the ECO-SBP policy obtains all the available DCs and stores the DC_ID and 

DC_region in the DCHashMap (DCHM) table. 
e. Now, estimate the network proximity of all DCs from the selected loads UB, select all the closest DCs from that UB, estimate the 

network traffic and assigns the threshold value based on the traffic and stores all the non-congested DCs based on the threshold in 

the NewDCHashMap table.  
f. Now, estimate the size and present load of each DC in the NewDCHashMap (NDCHM) table, find the current size and choose all 

the DCs with a current size greater than the load size, update the current size of each DC in the NewDCHashMap table and market it 

as 1 in the DC_Selected field. 
g. Retrieves all the DCs with the DC_selected field is set to1 via getDCCharacteristics, estimates the makespan value and sorts the 

DCs according to their makespan in the NewDCHashMap table. 

h. The ECO-SBP chooses the DC with a low makespan value and allocates the load. The ECO-SBP first allocates all the CLH loads to 
the appropriate DCs and then directs all the NCLH loads to the remaining DCs and updates the DC status. 

i. Repeat the previous procedures until all of the loads have been assigned if further loads come onto the UB. 

j. Stop 

 

3.2. The ECO-SBP pseudo code  

The Pseudo code of the ECO-SBP policy describes the selection of the datacenter for load 

allocations in the CloudAnalyst tool. It shows the calculation of each load's target time using its severity 

value. It also mentions the creation of the HashMap table and how its partitions were made. Finally, the 

selection of the appropriate datacenters according to their proximity, traffic from the userbase, size, current 

allocations, and makespan value is outlined in the Pseudo code. 

 

Pseudo code of the ECO-SBP 
Create Queue Q, CLH, NCLH, DCHM, NDCHM //Create All Hash Map Tables  

For each new load from each UB  

   DCC Do 

   Li_TT <- TT (Li_SV) //Fix Loads Target Time  

   If (Li_SV <= 2) then CLH<-Li_ID 

   Else 

       NCLH<-Li_ID 

   End If End For 

For each load from CLH Do 

   L <- Min (Li_TT)//select load with minimum TT 

End For Return L  

For each DC do 

   DCHM <- Avialble (DC_id, DC_region) //keep all the available DCs into hash map table 

   If (DC_NTdelay < DC_NTdelaythreshold) AND //select all the Closest DC 

   If (DC_NTtraffic < DC_NTtrafficthreshold) then //select all the DCs with less traffic 

       NDCHM = DC_ID 

End If End For. 

For each DC in NDCHM Do 

   DC_CurrentSize = DC_ActualSize – DC_UtilizationSize  

   Update NDCHM 

   If (L_Size < DC_CurrentSize) then DC_Status = 1 

      Find DCMakespan for DC_Status = 1 

   End If End For 

DCselect <- min (DCMakespan) 

Allocate (DCselect, L) 

Return DC_ID. 

 

3.3. Diagrammatic representation of routing loads of ECO-SBP 

Figure 4 illustrates the step-by-step process of routing the loads to the appropriate DC by the 

proposed ECO-SBP policy. All incoming user loads arriving at the UBs are forwarded to the DCC, which in 

turn assigns a unique load id, and arranges them in the load queue with load size, region name, UB name, and 

severity value. The DCC forwards the loads to the ECO-SBP policy, which in turn calculates the target time 

of each load based on the severity value, chooses the minimum target time load, and allocates it to the 

efficient DC concerning the criteria given in the DC proficiency list.  

 

3.4. Performance comparison of proposed ECO-SBP with SPB, ORT and RDL  

The key features of the ECO-SBP policy in comparison to the current SPB-SBP, ORT-SBP, and 

RDL-SBP are shown in Table 2. The proposed ECO-SBP policy gives good performance since it also 

considers additional important factors such as load size, load severity, DC proximity, traffic, size, present 

load, and makespan. This policy also achieves optimum resource utilization and evenly balances the 

workload among the available DCs. 
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Figure 4. Load routing of proposed ECO-SBP 

 

 

Table 2. The performance comparison of proposed ECO-SBP 
Policy 
name 

Load 
size 

Load 
severity 

DC 
latency 

DC 
traffic 

DC 
capacity 

Present 
load DC 

Resource 
utilization 

Workload 
balancing 

SPB NO NO YES YES NO NO NO NO 

ORT NO NO YES YES NO NO NO NO 

RDL NO NO YES YES NO NO NO NO 

ECO YES YES YES YES YES YES YES YES 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Simulation parameters 

In this experiment, the simulation parameter mainly includes the characteristics of DCs, physical 

machines, UBs and VMs. The experiments employed six regions (R0 to R5), twelve UBs (UB1 to UB12), 

five DCs (DC1 to DC5), two physical hosts in each DC and six VMs in each physical host. VM allocation 

policy used is time-shared policy and load balancing algorithms used is round Robin algorithm for VM 

selection. Figure 5 depicts the structure of DCs and physical hardware details of the DC in the CloudAnalyst 

tool and Figure 6 depicts the characteristics of the UBs which include the region number, number of requests, 

and size of the request, peak hours and average peak users. 

 

4.2.  Simulation environment 

The proposed ECO-SBP is implemented in the CloudAnalyst simulation tool, and the experiment is 

done to assess the proposed ECO-SBP performance concerning the DC response and processing time, VM 
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cost, and processing cost with the current policies, namely service proximity-based service broker policy 

(SPB-SBP), optimized response time service brokering policy (ORT-SBP), and reconfigure dynamically with 

the load (RDL-SBP). The new ECO-SBP is implemented in CloudAnalyst service broker policies, as shown 

in Figure 6. 

 

 

 
 

Figure 5. DC configuration 

 

 

 
 

Figure 6. UB properties and proposed ECO-SBP 
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4.3.  Obtained results 

Four testing scenarios were set up by considering various conditions such as varying loads, varying 

number of UBs and number of requests in each UBs and five number of DC and sixty number of VMs as 

shown in Table 3. The thorough outcome of the experiments of each scenario consisting of various service 

brokering policies is summarized in Tables 4, 5, 6 and 7. Each experiment shows the load response time in 

milliseconds, processing time in milliseconds and total cost in dollar value which includes VM cost and also 

the DCs processing cost with round Robin (RR) load balancing strategy.  

 

 

Table 3. Scenario description 
Scenario Number of UBs Number of DC Total VMs Number of loads (Per UB) 

Scenario – 1 6 5 60 5000 

Scenario – 2 8 5 60 12000 

Scenario – 3 10 5 60 17000 
Scenario – 4 12 5 60 20000 

 

 

Table 4. Experimental results of scenario – 1 
Service 

brokering 

policy 

Response time 
(milliseconds) 

DC processing time 
(milliseconds) 

Cost 

Avg Min Max Avg Min Max VM cost Data transfer cost Total cost 

SPB-SBP 203.21 40.56 757.85 130.56 22.10 223.10 1.93 29.59 31.52 
ORT-SBP 210.48 41.34 757.44 135.65 24.89 224.22 2.10 25.89 27.99 

RDL-SBP 213.48 43.56 870.67 140.56 35.43 258.56 3.70 30.43 34.13 

ECO-SBP 196.48 35.43 700.32 125.65 20.43 214.22 1.50 20.43 21.93 

 

 

Table 5. Experimental results of scenario – 2 
Service 

brokering 

policy 

Response time 

(milliseconds) 

DC processing time 

(milliseconds) 

Cost 

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($) 

SPB-SBP 310.34 60.56 854.58 235.10 38.15 332.01 4.17 38.33 42.5 

ORT-SBP 310.10 61.34 859.44 235.50 38.89 324.22 4.40 38.98 43.38 

RDL-SBP 318.10 71.34 887.44 255.50 47.89 374.12 5.10 55.78 60.88 
ECO-SBP 270.89  55.43 810.32 190.89  28.43 318.21 3.60 24.55 28.15 

 

 

Table 6. Experimental results of scenario – 3 
Service 

brokering 
policy 

Response time 

(milliseconds) 

DC processing time 

(milliseconds) 

Cost 

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($) 

SPB-SBP 361.43 82.65 1072.3 375.01 51.10 483.10 6.95 49.95 56.9 

ORT-SBP 360.56 83.34 1571.1 375.87 57.00 463.23 5.30 43.87 49.17 
RDL-SBP 428.32 89.45 1695.2 415.50 59.89 494.22 7.10 55.89 62.99 

ECO-SBP 309.90  65.40 932.5 222.32  38.00 418.22 4.80 29.43 34.73 

 

 

Table 7. Experimental results of scenario – 4 
Service 

brokering 

policy 

Response time 

(milliseconds) 

DC processing time 

(milliseconds) 

Cost 

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($) 

SPB-SBP 523.78 140.6 1123.6 452.11 68.66 443.00 9.73 50.59 60.32 
ORT-SBP 524.96 141.4 1104.9 463.76 69.90 443.03 10.10 50.89 60.99 

RDL-SBP 548.32 199.5 1465.1 500.50 75.89 494.66 12.10 65.89 77.99 

ECO-SBP 454.00  100.0 992.3 322.32  38.02 388.11 7.90 38.43 46.33 

 

 

The charts depicted in Figures 7(a) to 7(c) indicates the visualized form of comparing the results of 

the loads response time, DC Processing time along with the cost of each service brokering policies. It is 

perceived that the proposed ECO-SBP policy shows an improvement in load response time, DC processing 

time and also the cost of executing the load, especially in the case of an increase in the number of loads. The 

ECO-SBP policy chooses the best DC with minimum distance, less traffic, less loaded and minimum 

makespan value for each load arrived in the UB in such a way that it always yields the optimum response 

time, DC processing time, and cost than other policies. 
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Figure 7. Comparison of ECO-SBP policy implemented in CloudAnalyst (a) average response time 

comparison, (b) average datacenter processing time comparison, and (c) cost comparison 

 

 

5. CONCLUSION  

In this research, we proposed and evaluated an ECO-SBP for efficient scheduling of users loads to 

suitable datacenters. In contrast to existing policies, the proposed policy is appropriate for a dynamic, large-

scale heterogeneous IaaS environment. The proposed ECO-SBP is thoroughly assessed in the IaaS cloud 

environment using the CloudAnalyst simulation tool with variable userbase size and datacenter 

characteristics under different simulation scenarios. ECO-SBP is examined with the existing policies and the 

result indicates that the proposed policy improves cloud system performance by picking the appropriate DC 

in the first instance itself, and provides the best response and processing time with a reasonable cost range. 

It ensures workload balancing, maximizes resource utilization, reduces makespan, and prevents DCs from 

overloading or underloading even in case of heavy workloads. 
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