
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 2, April 2024, pp. 2024~2034

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i2.pp2024-2034 2024

Journal homepage: http://ijece.iaescore.com

Efficient criticality oriented service brokering policy in cloud

datacenters

Shanmugapriya Subramanian1, Priya Natarajan2
1PG Department of IT and BCA, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India

2Department of Computer Science, Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women, University of Madras,

Chennai, India

Article Info ABSTRACT

Article history:

Received Jun 29, 2023

Revised Oct 25, 2023

Accepted Nov 29, 2023

 Cloud service provider (CSP) offers a huge number of datacenters and

virtual servers to the users for processing their workloads in an infrastructure

as a service (IaaS) cloud computing environment. Due to the heterogeneous

volume of these resources and the immense number of user workloads

arriving simultaneously in the cloud, it is necessary to use an effective load

distribution technique for scheduling the resources to achieve high

performance and high user satisfaction. Service brokering policy and load

balancing techniques are the two crucial areas to be focused on while

selecting the datacenters and virtual machines, respectively. In this study, we

have proposed a dynamic efficient criticality-oriented service brokering

policy for load allocations among datacenters by considering task criticality,

datacenter proximity, and traffic, the size of the datacenter, its present load

and makespan value. The proposed methodology is examined against the

current policies in the CloudAnalyst simulation tool and the analysis report

confirms that our proposed policy gives priority to processing the urgent

loads and chooses the optimum datacenter to diminish the load response

time, datacenter processing time, minimizes the cost, achieves optimum

resource utilization and workload balancing among resources.

Keywords:

Cloud computing

CloudAnalyst

Datacenter

Infrastructure as a service

Service broker policy

Virtual machine

This is an open access article under the CC BY-SA license.

Corresponding Author:

Shanmugapriya Subramanian

Department of Computer Applications, Dwaraka Doss Goverdhan Doss Vaishnav College, University of

Madras

E.V.R. Periyar High Road, Arumbakkam, Chennai – 600 106, Tamilnadu, India

Email: priyadgvc17@gmail.com

1. INTRODUCTION

Cloud service providers (CSP) build a cloud computing model such as infrastructure as a service

(IaaS) to offer large-scale computing resources to the customers with greater flexibility at a low cost and in a

highly elastic manner, i.e., provide resources according to their needs. IaaS offers resources like datacenters

(DCs), virtual machines (VMs), random access memory (RAM), storage capacity, network connections and

databases. Cloud users can scale up or down the resources via the internet on a charge-per-use basis for

processing their workloads (applications) without worrying about infrastructure maintenance [1]. The IaaS

cloud servicing provider maintains its computing resources in a large number of heterogeneous DCs in

several locations. DCs are physical places that are geographically distributed, each containing several virtual

servers with numerous computing resources. The resources include servers, processing powers, memory

units, storage capacity, network equipment, and VMs to store and process the user’s workload [2]. IaaS uses

a feature called server virtualization that allows the sharing of a single physical resource among multiple

users. Virtualization builds multiple VMs that are software-based machines instantiated on top of each

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient criticality oriented service brokering policy in cloud datacenters (Shanmugapriya Subramanian)

2025

original piece of physical hardware. It avoids overloading or under loading of VMs and wastage of resources

[3], [4]. Figure 1 depicts the model of the virtualization technique and the IaaS cloud services are deployed in

various VMs. It offers resources to ensure efficient utilization of resources using fewer infrastructures and

less cost. It also promotes rapid execution of the user’s applications [5].

Figure 1. Architecture of virtualization

Service brokering and load balancing are the two key techniques used in IaaS cloud environments

for selecting the DC and VM, respectively. Cloud service brokering is a DC selection technique that selects

the appropriate DC by incorporating one of the service broker policies (SBP) for routing the consumer’s

loads to the appropriate DCs. Load balancing (LB) is the resource allocation technique used in IaaS cloud

computing. LB uniformly allocates the user’s workload over several resources according to their demands in

an IaaS cloud environment [6], [7].

Due to the heterogeneous and dynamic nature of each user load, it is very important to dynamically

know the current state of the available DC. It is necessary to examine the DC status, which includes its

availability, capacity, and distance from the user's location and current load for efficient resource

management. Dynamic scheduling provides efficient resource allocation and it is best suited for an IaaS

heterogeneous cloud environment with a varied range of DCs and user applications [8].

CloudAnalyst is a modelling and simulation tool used in an IaaS cloud environment to assess the

effectiveness of service broker policies and load balancing policies, and it has been built upon the CloudSim

tool. CloudAnalyst has a graphical user interface (GUI) feature that shows the simulated results with charts

and graphs. The cloud analyst divides the whole world into six regions, which contains several user bases

(UB) and DCs. Each DC contains several virtual servers, and each UB consists of several user loads [9], [10]

On the grounds of increasing need for cloud services, the varied nature of cloud resources, and the

exponential rise of workloads, it is challenging to select the optimum DC for a given workload. Improper

allocation of workloads among DCs worsens the effectiveness of the entire IaaS cloud system. It also

maximizes load response and processing time, increases cost, and results in inefficient resource utilization.

[11], [12]. In this regard, service brokering in the IaaS cloud has been thoroughly explored over the past

couple of decades. Numerous authors have put forth various service brokering policies for DC selection. This

section highlights a few current research projects on cloud load balancing.

The service proximity based or closest DC service broker policy (SPB-SBP) services the user's load

by selecting the DC in the closest region based on network proximity. It estimates the network proximity

based on the distance between each DC from the user’s locality and selects the DC with the lowest network

latency. The problem arises when there is multiple DC present in the same closest region and the DC is

chosen at random, it overloads the nearest DC, and its communication link leads to a high response time for

user loads [13], [14].

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2024-2034

2026

The optimize response time service broker policy (ORT-SBP) first finds the closest DCs using SPB-

SBP and estimates the response time of each DC based on its previous performance. This policy records the

network delay and response time of each DC that was previously serviced by the DC and sends the traffic to

the closest DC offering the fastest response time. If the closest DC does not have an optimum response time,

it picks another DC with a good response time without considering the delay in workload allocation. But this

policy does not assign any workload to the DC that has not received any loads previously [15], [16].

The reconfigure dynamically load (RDL-SBP) policy follows the SPB-SBP for choosing the

appropriate DC. It also offers elasticity in expanding the number of VMs based on the user’s demand, i.e.,

increasing and decreasing the number of VMs grounded on the workload arriving from the users. This policy

incurs additional costs and also affects performance due to the increase of VMs [17], [18].

The main significant performance evaluation parameters used by the service broker policies are:

resource utilization refers to how effectively the various resources are utilized by each DC. Makespan or

completion time is the total time that the DC needs to process a set of loads for its whole execution. It should

be minimized to improve the resource utilization ratio [19]. Response time is the total amount of transit

period, waiting time, and processing interval that the DC spends responding to a specific task. For better

system efficiency, the workload necessities to be distributed among suitable DCs in a way that minimizes

response time task deadline is a very important parameter of a task that specifies the timeline of the task,

which indicates when the task must be completed [20], [21].

Cost includes the price of the machine and the cost of processing the workload [22]. DC processing

time is the exact period that the DC needs to process a user's load [23]. Throughput is the amount of

workload that the DCs process per unit of time [24]. Network latency specifies the distance from the UB to

the DC. i.e., the delay or amount of time taken to transport the load between the UB and the DC [25].

Network traffic represents the amount of workload moving across a DC at any given time [26].

The problem with existing policies is that, even though many service broker policies are

incorporated, workload priority is not considered while selecting the DC itself. It also requires an efficient

policy to cover almost all the important performance factors like network traffic, response and processing

time, cost, workload balancing, resource utilization, and makespan while selecting the DC. In this research,

we focus on choosing high-severity loads and identifying the optimum DC.

Our research proposes an efficient criticality-oriented service broker policy (ECO-SBP) in an IaaS

cloud environment, it mainly focuses on selecting the optimum DC and balancing the user’s workload among

DCs that are scattered in different regions. Here, the original service proximity based (SPB-SBP) has been

modified by eliminating the random selection of the DC. It also improves the method of choosing the DC by

reducing the loads response time, DC processing time, and cost and achieving good workload balancing and

incorporating the dynamic selection of the DC.

2. PROPOSED METHOD

In this research, we have enhanced the existing service proximity-based service brokering policy

(SPB-SBP) also called as closest DC policy and proposed the ECO-SBP for finding the best DC and

prioritizing high-severity loads. In the existing SPB-SBP, all the loads are treated equally and scheduled

according to the order they arrive, i.e., it does not consider the load's completion time and always chooses the

nearest DC concerning the DC's network latency, leads to high traffic and overloading of some DCs while

others are idle. If multiple DCs arriving at the same geographical location then this policy randomly chooses

any one DC. Moreover, this policy is static in nature, it does not consider the current performance of the DC,

which leads to high response time for certain loads and high processing time taken by the DC, as well as

increased costs due to the poor allotment of DC.

The proposed ECO-SBP eradicates the problem of SPB-SBP and focuses primarily on dynamically

scheduling the user’s loads across multiple DCs in an IaaS heterogeneous cloud environment. The main

important factors to be considered are task criticality, loads response time, DC processing time, cost, and

workload balancing. Figure 2 displays the overall architectural functioning of the proposed ECO-SBP policy,

in which each user’s workload is forwarded to the DC by a DC controller (DCC) using an appropriate service

broker policy and forwards to VM load balancer to assign the load to the right VM. Once the load is

processed, the result is sent back to the user.

The proposed ECO-SBP implements the existing SPB-SBP for locating the closest region DCs in

terms of network proximity. The proposed ECO-SBP policy operates in two phases, as depicted in Figure 3.

In the first phase, it chooses the load based on its severity value i.e., the loads to be completed within the

stipulated time are processed first. In the second phase, it chooses the DC depending on a few factors such as

network delay, network traffic, DC size, present load, and makespan value. After that, the load is allotted to

the appropriate DC.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient criticality oriented service brokering policy in cloud datacenters (Shanmugapriya Subramanian)

2027

Figure 2. Generic framework of proposed ECO-SBP

Figure 3. Phases of proposed ECO-SBP

2.1. Load selection

Here, the user's loads are divided into critical loads (CL) and non-critical loads (NCL) according to

time-critical constraints such as severity values, and then it calculates the target time of each load based on

the expected completion time. Table 1 shows the sample loads with their severity values, types, and target

time, where UB1L1 represents load L1, which belongs to UB 1. Loads with low severity values are the most

critical loads, which have a shorter target time and are executed as soon as they are received by the system.

Non-critical loads have a larger target time that has been kept in the loads queue according to the severity

value.

Table 1. Loads with severity and estimated processing time
Load number Load severity Load type Load target time (milliseconds) Load execution sequence

UB1L1 1 CL 5.66 1

UB1L2 2 CL 7 3
UB2L1 5 NCL 15 5

UB3L1 2 CL 6.87 2

UB3L2 4 NCL 10 4

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2024-2034

2028

2.2. DC selection

The principal objective of the proposed ECO-SBP approach is to selects the entire closest region

DCs based on network proximity, now, select all the DCs with low network traffic, which is determined by

the network latency estimated by the number of loads moving across a DC. Now, choose the high-capacity

DC by determining their size by evaluating the capacity of each VM present in that DC, and find the present

load of each DC by adding the sizes of all the loads assigned to all the VMs of that DC. Now, find the

remaining capacity of each DC by deducting the present load from the overall size to obtain the current size

of the DC. The next step is to determine the makespan value for each DC in the HashMap table, makespan is

estimated based on the length of time it takes the DC to process a given set of loads. Choose all the DCs

whose size is greater than the load size and select the one with the lowest makespan value to process the load.

The ECO-SBP yields a good response and processing time. This approach also aims to reduce the

overloading of the DC by allocating an appropriate DC based on the load size and also dynamically

redirecting the non-critical loads to the next closest DC, which has a lower number of current loads. The DC

network proximity is obtained in (1).

𝐷𝐶𝑛𝑝 = 𝑃𝑑𝑙 + 𝑆𝑑𝑙 (1)

where 𝐷𝐶𝑛𝑝 represents network proximity, 𝑃𝑑𝑙 refers to propagation delay in length and 𝑆𝑑𝑙 refers to

serialization delay in length. 𝑃𝑑𝑙 = 𝐷/𝑆 where D refers distance i.e., length of the physical link between the

UB and the DC and S refers to transmission speed. 𝑆𝑑𝑙 = 𝐿𝑠/𝑇𝑟, where 𝐿𝑠 refers to load size (bits) and 𝑇𝑟

refers to transmission rate (bps). The traffic intensity factor of a DC is the average server or resource

utilisation over a given time period. The DC traffic intensity factor is formulated as (2).

𝐷𝐶𝑡𝑓 = (𝐿𝑠 ∗ 𝑎)/𝑅 (2)

where 𝐷𝐶𝑡𝑓 refers to the traffic factor of a DC, 𝐿𝑠 refers to a constant load size in that particular DC, a is the

average rate of load per second, and 𝑅 is the constant transmission rate. The DC threshold is given in (3).

𝐷𝐶𝑡ℎ = 𝐿(𝑀𝑎𝑥𝐶𝑛𝑓𝑖𝑔(𝐷𝐶) + 𝑀𝑖𝑛𝑃𝑙(𝐷𝐶) + 𝑀𝑖𝑛𝑀𝑠(𝐷𝐶)) (3)

where 𝑀𝑎𝑥𝐶𝑛𝑓𝑖𝑔 refers to high configuration DC, 𝑀𝑖𝑛𝑃𝑙 refers to minimum present load and 𝑀𝑖𝑛𝑀𝑠 refers

to minimum makespan value DC. The DC response time is obtained in (4).

𝐷𝐶𝑟𝑡 = (𝐿𝐷𝑠/(𝐵𝑊 + 𝐷𝐶𝑙)) + 𝐷𝐶𝑝𝑡 (4)

where 𝐿𝐷𝑠 refers to load size, BW refers to bandwidth, 𝐷𝐶𝑙 refers to latency or network transfer delay, and

𝐷𝐶𝑝𝑡 refers to DC processing time. The DC processing time is obtained from (5).

𝐷𝐶𝑝𝑡 = 𝐷𝐶𝑟𝑡 − (2 ∗ 𝐷𝐶𝑛𝑝) (5)

where 𝐷𝐶𝑛𝑝 is the network transfer delay and 𝐷𝐶𝑟𝑡 refers the response time.

3. METHOD

3.1. Procedure of ECO-SBP

The design of the ECO-SBP policy is explained by employing a below procedure to determine every

step of the process. This procedure explains the two phases of the ECO-SBP policy. In phase 1, it

demonstrates the way loads are split into critical and non-critical and stored using a HashMap table. In

phase 2, it shows the selection of an efficient data center based on various factors.

Procedure of ECO-SBP
Input: UB numbers (UB1, UB2, …, UBn), number of loads L = L1, L2, L3 …. Ln, target time of the load (TTl), severity value of the load

(SVl), region number of the load (R0, R1, …, R6), Load Size (LSl). DC list (DCIndexList), DC status (network delay, network

traffic, size, present load, and makespan values).
Output: DC name (DCnme), response time, processing time and cost.

Steps:

a. Create a queue to maintain the user’s loads. A cloudlet is a Gridlet created by the UBs for each user’s load which is received from
different UBs and each cloudlet contains a unique cloudlet id, load size, UB name, region name, severity value and adds each

cloudlet.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient criticality oriented service brokering policy in cloud datacenters (Shanmugapriya Subramanian)

2029

b. The DCC sends each cloudlet’s details to the ECO-SBP by using getGridletStatus().
c. The ECO-SBP estimates the target time (TT) for each cloudlet based on each load’s severity value and creates two HashMap tables,

such as critical load HashMap (CLH) and non-critical load HashMap (NCLH), to keep the CL and NCLs respectively based on the

target time, arranges the loads in both the HashMap tables from the minimum target time to maximum target time, chooses a load
from CLH with the minimum TT value, and forwards to DCC.

d. Using DCList = GridSim.getGridResourceList, the ECO-SBP policy obtains all the available DCs and stores the DC_ID and

DC_region in the DCHashMap (DCHM) table.
e. Now, estimate the network proximity of all DCs from the selected loads UB, select all the closest DCs from that UB, estimate the

network traffic and assigns the threshold value based on the traffic and stores all the non-congested DCs based on the threshold in

the NewDCHashMap table.
f. Now, estimate the size and present load of each DC in the NewDCHashMap (NDCHM) table, find the current size and choose all

the DCs with a current size greater than the load size, update the current size of each DC in the NewDCHashMap table and market it

as 1 in the DC_Selected field.
g. Retrieves all the DCs with the DC_selected field is set to1 via getDCCharacteristics, estimates the makespan value and sorts the

DCs according to their makespan in the NewDCHashMap table.

h. The ECO-SBP chooses the DC with a low makespan value and allocates the load. The ECO-SBP first allocates all the CLH loads to
the appropriate DCs and then directs all the NCLH loads to the remaining DCs and updates the DC status.

i. Repeat the previous procedures until all of the loads have been assigned if further loads come onto the UB.

j. Stop

3.2. The ECO-SBP pseudo code

The Pseudo code of the ECO-SBP policy describes the selection of the datacenter for load

allocations in the CloudAnalyst tool. It shows the calculation of each load's target time using its severity

value. It also mentions the creation of the HashMap table and how its partitions were made. Finally, the

selection of the appropriate datacenters according to their proximity, traffic from the userbase, size, current

allocations, and makespan value is outlined in the Pseudo code.

Pseudo code of the ECO-SBP
Create Queue Q, CLH, NCLH, DCHM, NDCHM //Create All Hash Map Tables

For each new load from each UB

 DCC Do

 Li_TT <- TT (Li_SV) //Fix Loads Target Time

 If (Li_SV <= 2) then CLH<-Li_ID

 Else

 NCLH<-Li_ID

 End If End For

For each load from CLH Do

 L <- Min (Li_TT)//select load with minimum TT

End For Return L

For each DC do

 DCHM <- Avialble (DC_id, DC_region) //keep all the available DCs into hash map table

 If (DC_NTdelay < DC_NTdelaythreshold) AND //select all the Closest DC

 If (DC_NTtraffic < DC_NTtrafficthreshold) then //select all the DCs with less traffic

 NDCHM = DC_ID

End If End For.

For each DC in NDCHM Do

 DC_CurrentSize = DC_ActualSize – DC_UtilizationSize

 Update NDCHM

 If (L_Size < DC_CurrentSize) then DC_Status = 1

 Find DCMakespan for DC_Status = 1

 End If End For

DCselect <- min (DCMakespan)

Allocate (DCselect, L)

Return DC_ID.

3.3. Diagrammatic representation of routing loads of ECO-SBP

Figure 4 illustrates the step-by-step process of routing the loads to the appropriate DC by the

proposed ECO-SBP policy. All incoming user loads arriving at the UBs are forwarded to the DCC, which in

turn assigns a unique load id, and arranges them in the load queue with load size, region name, UB name, and

severity value. The DCC forwards the loads to the ECO-SBP policy, which in turn calculates the target time

of each load based on the severity value, chooses the minimum target time load, and allocates it to the

efficient DC concerning the criteria given in the DC proficiency list.

3.4. Performance comparison of proposed ECO-SBP with SPB, ORT and RDL

The key features of the ECO-SBP policy in comparison to the current SPB-SBP, ORT-SBP, and

RDL-SBP are shown in Table 2. The proposed ECO-SBP policy gives good performance since it also

considers additional important factors such as load size, load severity, DC proximity, traffic, size, present

load, and makespan. This policy also achieves optimum resource utilization and evenly balances the

workload among the available DCs.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2024-2034

2030

Figure 4. Load routing of proposed ECO-SBP

Table 2. The performance comparison of proposed ECO-SBP
Policy
name

Load
size

Load
severity

DC
latency

DC
traffic

DC
capacity

Present
load DC

Resource
utilization

Workload
balancing

SPB NO NO YES YES NO NO NO NO

ORT NO NO YES YES NO NO NO NO

RDL NO NO YES YES NO NO NO NO

ECO YES YES YES YES YES YES YES YES

4. RESULTS AND DISCUSSION

4.1. Simulation parameters

In this experiment, the simulation parameter mainly includes the characteristics of DCs, physical

machines, UBs and VMs. The experiments employed six regions (R0 to R5), twelve UBs (UB1 to UB12),

five DCs (DC1 to DC5), two physical hosts in each DC and six VMs in each physical host. VM allocation

policy used is time-shared policy and load balancing algorithms used is round Robin algorithm for VM

selection. Figure 5 depicts the structure of DCs and physical hardware details of the DC in the CloudAnalyst

tool and Figure 6 depicts the characteristics of the UBs which include the region number, number of requests,

and size of the request, peak hours and average peak users.

4.2. Simulation environment

The proposed ECO-SBP is implemented in the CloudAnalyst simulation tool, and the experiment is

done to assess the proposed ECO-SBP performance concerning the DC response and processing time, VM

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient criticality oriented service brokering policy in cloud datacenters (Shanmugapriya Subramanian)

2031

cost, and processing cost with the current policies, namely service proximity-based service broker policy

(SPB-SBP), optimized response time service brokering policy (ORT-SBP), and reconfigure dynamically with

the load (RDL-SBP). The new ECO-SBP is implemented in CloudAnalyst service broker policies, as shown

in Figure 6.

Figure 5. DC configuration

Figure 6. UB properties and proposed ECO-SBP

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2024-2034

2032

4.3. Obtained results

Four testing scenarios were set up by considering various conditions such as varying loads, varying

number of UBs and number of requests in each UBs and five number of DC and sixty number of VMs as

shown in Table 3. The thorough outcome of the experiments of each scenario consisting of various service

brokering policies is summarized in Tables 4, 5, 6 and 7. Each experiment shows the load response time in

milliseconds, processing time in milliseconds and total cost in dollar value which includes VM cost and also

the DCs processing cost with round Robin (RR) load balancing strategy.

Table 3. Scenario description
Scenario Number of UBs Number of DC Total VMs Number of loads (Per UB)

Scenario – 1 6 5 60 5000

Scenario – 2 8 5 60 12000

Scenario – 3 10 5 60 17000
Scenario – 4 12 5 60 20000

Table 4. Experimental results of scenario – 1
Service

brokering

policy

Response time
(milliseconds)

DC processing time
(milliseconds)

Cost

Avg Min Max Avg Min Max VM cost Data transfer cost Total cost

SPB-SBP 203.21 40.56 757.85 130.56 22.10 223.10 1.93 29.59 31.52
ORT-SBP 210.48 41.34 757.44 135.65 24.89 224.22 2.10 25.89 27.99

RDL-SBP 213.48 43.56 870.67 140.56 35.43 258.56 3.70 30.43 34.13

ECO-SBP 196.48 35.43 700.32 125.65 20.43 214.22 1.50 20.43 21.93

Table 5. Experimental results of scenario – 2
Service

brokering

policy

Response time

(milliseconds)

DC processing time

(milliseconds)

Cost

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($)

SPB-SBP 310.34 60.56 854.58 235.10 38.15 332.01 4.17 38.33 42.5

ORT-SBP 310.10 61.34 859.44 235.50 38.89 324.22 4.40 38.98 43.38

RDL-SBP 318.10 71.34 887.44 255.50 47.89 374.12 5.10 55.78 60.88
ECO-SBP 270.89 55.43 810.32 190.89 28.43 318.21 3.60 24.55 28.15

Table 6. Experimental results of scenario – 3
Service

brokering
policy

Response time

(milliseconds)

DC processing time

(milliseconds)

Cost

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($)

SPB-SBP 361.43 82.65 1072.3 375.01 51.10 483.10 6.95 49.95 56.9

ORT-SBP 360.56 83.34 1571.1 375.87 57.00 463.23 5.30 43.87 49.17
RDL-SBP 428.32 89.45 1695.2 415.50 59.89 494.22 7.10 55.89 62.99

ECO-SBP 309.90 65.40 932.5 222.32 38.00 418.22 4.80 29.43 34.73

Table 7. Experimental results of scenario – 4
Service

brokering

policy

Response time

(milliseconds)

DC processing time

(milliseconds)

Cost

Avg Min Max Avg Min Max VM cost ($) Data transfer cost ($) Total cost ($)

SPB-SBP 523.78 140.6 1123.6 452.11 68.66 443.00 9.73 50.59 60.32
ORT-SBP 524.96 141.4 1104.9 463.76 69.90 443.03 10.10 50.89 60.99

RDL-SBP 548.32 199.5 1465.1 500.50 75.89 494.66 12.10 65.89 77.99

ECO-SBP 454.00 100.0 992.3 322.32 38.02 388.11 7.90 38.43 46.33

The charts depicted in Figures 7(a) to 7(c) indicates the visualized form of comparing the results of

the loads response time, DC Processing time along with the cost of each service brokering policies. It is

perceived that the proposed ECO-SBP policy shows an improvement in load response time, DC processing

time and also the cost of executing the load, especially in the case of an increase in the number of loads. The

ECO-SBP policy chooses the best DC with minimum distance, less traffic, less loaded and minimum

makespan value for each load arrived in the UB in such a way that it always yields the optimum response

time, DC processing time, and cost than other policies.

Int J Elec & Comp Eng ISSN: 2088-8708

 Efficient criticality oriented service brokering policy in cloud datacenters (Shanmugapriya Subramanian)

2033

Figure 7. Comparison of ECO-SBP policy implemented in CloudAnalyst (a) average response time

comparison, (b) average datacenter processing time comparison, and (c) cost comparison

5. CONCLUSION

In this research, we proposed and evaluated an ECO-SBP for efficient scheduling of users loads to

suitable datacenters. In contrast to existing policies, the proposed policy is appropriate for a dynamic, large-

scale heterogeneous IaaS environment. The proposed ECO-SBP is thoroughly assessed in the IaaS cloud

environment using the CloudAnalyst simulation tool with variable userbase size and datacenter

characteristics under different simulation scenarios. ECO-SBP is examined with the existing policies and the

result indicates that the proposed policy improves cloud system performance by picking the appropriate DC

in the first instance itself, and provides the best response and processing time with a reasonable cost range.

It ensures workload balancing, maximizes resource utilization, reduces makespan, and prevents DCs from

overloading or underloading even in case of heavy workloads.

REFERENCES
[1] R. Tasneem and M. A. Jabbar, “An insight into load balancing in cloud computing,” in International Conference on Wireless

Communications, Networking and Applications, 2022, pp. 1125–1140, doi: 10.1007/978-981-19-2456-9_113.

[2] A. Khodar, V. E. Mager, I. Alkhayat, F. A. Jebur Al-Soudani, and E. N. Desyatirikova, “Evaluation and analysis of service broker

algorithms in cloud-analyst,” in 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering
(EIConRus), Jan. 2020, pp. 351–355, doi: 10.1109/eiconrus49466.2020.9039187.

[3] S. Talwani et al., “Machine-learning-based approach for virtual machine allocation and migration,” Electronics, vol. 11, no. 19,

Oct. 2022, doi: 10.3390/electronics11193249.
[4] S. Wiriya, W. Wongthai, and T. Phoka, “The enhancement of logging system accuracy for infrastructure as a service cloud,”

Bulletin of Electrical Engineering and Informatics (BEEI), vol. 9, no. 4, pp. 1558–1568, Aug. 2020, doi: 10.11591/eei.v9i4.2011.

[5] H. Shukur, S. Zeebaree, R. Zebari, D. Zeebaree, O. Ahmed, and A. Salih, “Cloud computing virtualization of resources allocation
for distributed systems,” Journal of Applied Science and Technology Trends, vol. 1, no. 3, pp. 98–105, Jun. 2020, doi:

10.38094/jastt1331.

[6] M. A. Shahid, M. M. Alam, and M. M. Su’ud, “Performance evaluation of load-balancing algorithms with different service broker
policies for cloud computing,” Applied Sciences, vol. 13, no. 3, Jan. 2023, doi: 10.3390/app13031586.

[7] M. A. Elmagzoub, D. Syed, A. Shaikh, N. Islam, A. Alghamdi, and S. Rizwan, “A survey of swarm intelligence based load

balancing techniques in cloud computing environment,” Electronics, vol. 10, no. 21, Nov. 2021, doi:
10.3390/electronics10212718.

[8] S. Raghuwanshi and S. Kapoor, “The new service brokering policy for cloud computing based on optimization techniques,”

International Journal of Engineering and Techniques, vol. 4, no. 3, pp. 481–488, 2018.

0

100

200

300

400

500

600

1 2 3 4

A
ve

ra
ge

 R
e

sp
o

n
se

Ti

m
e

(m
s)

Scenario

Respose Time

SPB-SBP

ORT-SBP

RDL-SBP

ECO-SBP 0

100

200

300

400

500

600

1 2 3 4

A
ve

ra
ge

 D
at

ac
e

n
te

r
P

ro
ce

ss
in

g
Ti

m
e

(m
s)

Scenario

Datacenter Processing Time

SPB-SBP

ORT-SBP

RDL-SBP

ECO-SBP

0

20

40

60

80

100

1 2 3 4

C
o

st
 in

 $

Scenario

Total Cost (VM and DC Cost)

SPB-SBP

ORT-SBP

RDL-SBP

ECO-SBP

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2024-2034

2034

[9] C. Jittawiriyanukoon, “Evaluation of load balancing approaches for Erlang concurrent application in cloud systems,”

TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 4, pp. 1795–1801, Aug. 2020, doi:
10.12928/telkomnika.v18i4.13150.

[10] A. Y. Ahmad and A. Y. Hammo, “A comparative study of the performance of load balancing algorithms using cloud analyst,”

Webology,” Webology, vol. 19, no. 1, pp. 4898–4911, Jan. 2022, doi: 10.14704/web/v19i1/web19328.
[11] P. M. Rekha and M. Dakshayini, “Dynamic cost-load aware service broker load balancing in virtualization environment,”

Procedia Computer Science, vol. 132, pp. 744–751, 2018, doi: 10.1016/j.procs.2018.05.086.

[12] M. A. Khan, “Optimized hybrid service brokering for multi-cloud architectures,” The Journal of Supercomputing, vol. 76, no. 1,
pp. 666–687, Oct. 2019, doi: 10.1007/s11227-019-03048-5.

[13] B. Nayak, B. Bisoyi, and P. K. Pattnaik, “Data center selection through service broker policy in cloud computing environment,”

Materials Today: Proceedings, vol. 80, pp. 2218–2223, 2023, doi: 10.1016/j.matpr.2021.06.185.
[14] M. Al-Tarawneh and A. Al-Mousa, “Adaptive user-oriented fuzzy-based service broker for cloud services,” Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 2, pp. 354–364, Feb. 2022, doi: 10.1016/j.jksuci.2019.11.004.

[15] A. Sankla, “Analysis of service broker policies in cloud analyst framework,” Journal of Advance Research in Computer Science
& Engineering, vol. 2, no. 4, pp. 32–37, Apr. 2015, doi: 10.53555/nncse.v2i4.456.

[16] A. I. El Karadawy, A. A. Mawgoud, and H. M. Rady, “An empirical analysis on load balancing and service broker techniques

using cloud analyst simulator,” 2020 International Conference on Innovative Trends in Communication and Computer
Engineering (ITCE), Feb. 2020, doi: 10.1109/itce48509.2020.9047753.

[17] T. Menakadevi, “An optimum service broker policy for selecting data center in cloud analyst,” International Journal of Research

in Engineering and Technology, vol. 05, no. 09, pp. 76–84, Sep. 2016, doi: 10.15623/ijret.2016.0509011.
[18] P. Rani, R. Chauhan, and R. Chauhan, “An enhancement in service broker policy for cloud-analyst,” International Journal of

Computer Applications, vol. 115, no. 12, pp. 5–8, Apr. 2015, doi: 10.5120/20201-2450.

[19] A. A. A. Alkhatib, A. Alsabbagh, R. Maraqa, and S. Alzubi, “Load balancing techniques in cloud computing: Extensive review,”
Advances in Science, Technology and Engineering Systems Journal, vol. 6, no. 2, pp. 860–870, Apr. 2021, doi:

10.25046/aj060299.
[20] K. Balaji, “Load balancing in cloud computing: Issues and challenges,” Turkish Journal of Computer and Mathematics Education

(TURCOMAT), vol. 12, no. 2, pp. 3077–3084, Apr. 2021, doi: 10.17762/turcomat.v12i2.2350.

[21] A. Abuhamdah and M. Al-Shabi, “Hybrid load balancing algorithm for fog computing environment,” International Journal of
Software Engineering and Computer Systems, vol. 8, no. 1, pp. 11–21, Jan. 2022, doi: 10.15282/ijsecs.8.1.2022.2.0092.

[22] A. Kazeem Moses, A. Joseph Bamidele, O. Roseline Oluwaseun, S. Misra, and A. Abidemi Emmanuel, “Applicability of MMRR

load balancing algorithm in cloud computing,” International Journal of Computer Mathematics: Computer Systems Theory,
vol. 6, no. 1, pp. 7–20, Dec. 2020, doi: 10.1080/23799927.2020.1854864.

[23] R. B. Reddy and M. Indiramma, “Efficient throttled load balancing algorithm to improve the response time and processing time in

data center,” Concurrency and Computation: Practice and Experience, vol. 34, no. 23, Jul. 2022, doi: 10.1002/cpe.7208.
[24] J. M. Shah, K. Kotecha, S. Pandya, D. B. Choksi, and N. Joshi, “Load balancing in cloud computing: Methodological survey on

different types of algorithm,” 2017 International Conference on Trends in Electronics and Informatics (ICEI), May 2017, doi:

10.1109/icoei.2017.8300865.
[25] M. Vinoth Kumar, K. Venkatachalam, M. Masud, and M. Abouhawwash, “Novel dynamic scaling algorithm for energy efficient

cloud computing,” Intelligent Automation & Soft Computing, vol. 33, no. 3, pp. 1547–1559, 2022, doi:

10.32604/iasc.2022.023961.
[26] X. Fu, C. Zhang, J. Chen, L. Zhang, and L. Qiao, “Network traffic based virtual machine migration in cloud computing

environment,” 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),

Mar. 2019, doi: 10.1109/itnec.2019.8729184.

BIOGRAPHIES OF AUTHORS

Shanmugapriya Subramanian received the MCA degree and M.Phil. in

computer science from Madurai Kamaraj University, Madurai. Currently, she is an assistant

professor at the PG Department of Computer Applications, DDGDVC, Chennai, India. She is

currently pursuing her PhD in Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for

Women, Chennai. Her research interests include networking, artificial intelligence, machine

learning, and internet of things in addition to cloud computing. She can be contacted at email:

priyadgvc17@gmail.com.

Priya Natarajan received is a technically skillful academician, currently she is

working as an associate professor at the research Department of Computer Science in

Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women, Tamil Nadu, India for

more than 15 years. She holds a PhD from Bharathiar University, Coimbatore. She qualified

the NET examination. She is an expert in teaching artificial intelligence, machine learning,

data mining, and soft computing. She can be contacted at email: drnpriya2015@gmail.com.

https://orcid.org/0000-0002-2047-3871
https://scholar.google.com/citations?hl=en&user=SFrHllIAAAAJ
https://www.scopus.com/results/authorNamesList.uri?sort=count-f&src=al&sid=2f0d16134cdf18b3e8d089302680b166&sot=al&sdt=al&sl=44&s=AUTHLASTNAME%28S%29+AND+AUTHFIRST%28SHANMUGAPRIYA%29&st1=S&st2=SHANMUGAPRIYA&orcidId=&selectionPageSearch=anl&reselectAuthor=false&activeFlag=true&showDocument=false&resultsPerPage=20&offset=1&jtp=false¤tPage=1&previousSelectionCount=0&tooManySelections=false&previousResultCount=0&authSubject=LFSC&authSubject=HLSC&authSubject=PHSC&authSubject=SOSC&exactAuthorSearch=false&showFullList=false&authorPreferredName=&origin=searchauthorfreelookup&affiliationId=&txGid=be40189a1a8939049a0fca9e85e12e92
https://orcid.org/0000-0002-1302-9465
https://scholar.google.com/citations?user=VfzMU-QAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57213735583

