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 In this paper, a hand pose estimation method is introduced that combines 

MobileNetV3 and CrossInfoNet into a single pipeline. The proposed 

approach is tailored for mobile phone processors through optimizations, 

modifications, and enhancements made to both architectures, resulting in a 

lightweight solution. MobileNetV3 provides the bottleneck for feature 

extraction and refinements while CrossInfoNet benefits the proposed system 

through a multitask information sharing mechanism. In the feature extraction 

stage, we utilized an inverted residual block that achieves a balance between 

accuracy and efficiency in limited parameters. Additionally, in the feature 

refinement stage, we incorporated a new best-performing activation function 

called “activate or not” ACON, which demonstrated stability and superior 

performance in learning linearly and non-linearly gates of the whole 

activation area of the network by setting hyperparameters to switch between 

active and inactive states. As a result, our network operated with 65% 

reduced parameters, but improved speed by 39% which is suitable for 

running in a mobile device processor. During experiment, we conducted test 

evaluation on three hand pose datasets to assess the generalization capacity 

of our system. On all the tested datasets, the proposed approach 

demonstrates consistently higher performance while using significantly 

fewer parameters than existing methods. This indicates that the proposed 

system has the potential to enable new hand pose estimation applications 

such as virtual reality, augmented reality and sign language recognition on 

mobile devices. 
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1. INTRODUCTION 

Hand pose estimation is the first step for various natural hand related interactions such as human-

machine interaction, hand gesture recognition, and virtual space interaction which delivers greater user 

experience. Hand pose estimation allows users to manipulate virtual objects with direct natural hands instead 

of using wearable gadgets controlled via 2D interfaces. Indeed, there have been considerable research efforts 

in this domain for the past two decades. Hand pose estimation has been proven to be natural with the advent 

of holographic display [1].  

https://creativecommons.org/licenses/by-sa/4.0/
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Several approaches have been presented in the literatures to address challenges of this research 

domain with different objectives in place; some of the remarkable objectives are remote surgery [2], hand 

gesture recognition such as in automotive industry [3], sign language recognition [4], traffic sign analysis and 

in virtual space interaction such as augmented reality (AR) and virtual reality (VR). The advent of depth 

sensors [5], [6], advance in vision algorithms, and increase in processing power have revolutionized the 

research domain making it possible for vision based approach to comes into the mainstream of hand pose 

estimation especially for the AR systems where wearable glove or mask is not possible, primarily for casual 

usage and mobile applications. Knowing this, leading smart phone manufacturers have begun integrating a 

diverse array of depth sensors into their latest models, thereby expanding accessibility to VR and AR for 

users across the globe. For instance, Samsung included 3D time of flight (ToF) depth sensor in galaxy S23 

ultra, Apple Inc. integrated direct (D-ToF) in the iPhone 13 to 15 series and had also introduced structured 

light (SL) depth sensor to iPhone X, and Huawei has started using the same type of sensor on P30 pro model. 

As the availability of these sensors is increasing, the scope of applications utilizing depth data is also 

expanding at a rapid pace. 

Recently, deep learning has been deemed the gold standard in computer vision, hand pose 

estimation being one of them. Based on the task requirement perspective, a deep learning based approach to 

hand pose estimation generates joint coordinates directly from its fully connected layers [7], [8] or creates a 

probability heatmap of each joint following its location [9], [10]. Both approaches pass through complex 

stages from pre-processing to final pose estimates which require large computational resources along the 

way. This makes most algorithms to be confined to standard computers which are computationally expensive 

to run smoothly on mobile devices or other handheld devices. This work presents lightweight network 

(LightWeightNet) hand pose estimation (HPE), a hand pose estimation based on convolutional neural 

network finetuned and optimized to mobile phone processors to minimize the computational cost and allow 

mobile phone users enjoy an immersive experience. The first attempt was the work of [11], where a 

CrossInfoMobilenet was presented replacing a computational critical CrossinfoNet [12]. Herein, we present 

an improved version of CrossInfoMobileNet with an additional depth-wise separable convolutions which 

greatly lowers the computational cost of a general convolutional neural network (CNN) model used in 

MobileNet3 [13]. We further add a multi-spectral attention layer prior to its fully connected layer to reveal 

more frequent domain information and hence delivers the best performance of the network. Lastly, we 

pruned several parameters as explained in section 2 so that a lightweight HPE could run smoothly on a 

mobile phone when the hand is placed between 45° to 90° Infront of a hand-held device, as displayed in 

Figure 1. 

 

 

 
 

Figure1. Set up of the developed hand pose estimation system 

 

 

From the Figure 1, a hand was set at the initial position of the interacting device i.e., mobile phone. 

Hand configuration allows rotation on three axes in ranges x, y, z with respect to realistic positions. This 

further network improvement presented in this paper has significantly increased both the performance of the 

network and the accuracy of the HPE system. To demonstrate the performance of the proposed approach, a 

thorough evaluation was conducted on the three often used publicly available hand pose datasets. The gist of 

our work is presented in the summary below: i) Integrating the latest version of MobileNetV3 [13] to 

CrossinfoNet [11] along with multi-spectral attention mechanism in one pipeline while retaining multi-
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domain information during parameter reduction and hence improve performance; ii) Transforming a rectified 

linear unit (ReLU) activation to activate or not (ACON) activation for additional performance; and  

iii) Improving the whole training procedure of the network to cover additional information from the available 

data while using few parameters to allow a network to run in mobile devices framework. 

The rest of the paper is organized: section 2 introduces the method we use, approaches to hand pose 

estimation based on the LightWeightNet architecture, our modifications and evaluation of the proposed 

architecture with the recent approaches on public benchmark datasets. Section 3 concludes the paper. 

 

 

2. METHOD  

In this paper, an architecture based on modelling human hand kinematics and morphology is 

described. This architecture is based on a model-based approach and is a good choice since it allows logical 

divisions between different parts of the hand such as fingers and palm. It is therefore possible to extract 

multiple regions per finger as in [5], to locate different finger functions while considering hand kinematic 

constraints. The foundation of this architecture comes from the previous hand model-based approaches that 

utilizes residual network (ResNet) blocks throughout its architecture [14]. To expand its usefulness [6], draws 

inspiration from previous hand model-based approaches and utilizes ResNet block to perform a multitask 

information sharing mechanism. Afterwards, Xiong et al. [15] applied multitask information sharing 

approach to human pose estimation where two fully trained convolutional neural network were fused with 

different resolutions to improve accuracy. However, training deep neural network has been time and memory 

consuming, making it impossible to apply to mobile devices. 

In mobile devices application, it is imperative to reduce the number of deep neural network (DNN) 

model parameters to achieve a lesser memory usage while maintain promising performance. In an effort to 

reduce the numbers of parameters, SqueezeNet [16] succeeded to achieve AlexNet [17] level accuracy with 

50 times lesser parameters. Thereafter large bodies of work presented LightWeightNet [18], [19] with small 

models attempting to make them suitable for mobile devices. Ge et al. [20] pioneered to propose a weighted 

average network that utilized few numbers of parameter but could attain desired accuracy. Their network 

provides the best performance in terms of inference speed and model size. The Ge’s network achieved a 

small size by significantly reducing the parameter count to less over two million. Approximately 66% of 

these parameters were allocated to the latent heat regression network, while the feature extraction network 

utilized roughly half a million parameters. Thereafter, Liu et al. [21] proposed a regression network 

containing similar features and an additional fingertip refinement module using neighboring points of the 

similar finger location. In achieving parameter reduction, Ge et al. [22] proposes a modified PointNet 

network to estimate 3D hand joint positions from a 3D point cloud.  

In recent literature, optimization is conducted by minimizing the number of multiply-add (MAD) 

operations instead of directly reducing the number of parameters of the network. This opens a new way of 

reducing network size of different models to suit mobile devices platform. The most recent CNN with mobile 

backbones is from the MobileNetV3 network developed by [13]. The MobileNet architecture has advanced 

intensively in the last 3 years and since then, three versions have been released [13], [18], [23]. 

The architecture is modular as it is for ResNet that’s means the number of layers and blocks can be adjusted 

to control the performance and accuracy of the network. In the next section we explain how we explore 

MobileNetV3 adjust some layers to fit with our requirements, optimize and present it in a very lightweight 

form while maintaining intended accuracy. 

 

2.1.  The LightWeightNet architecture 

The LightWeightNet was developed from the original CrossInfoNet [11], with feature extraction 

performed using ResNet-50 residual blocks [14]. The extracted features accounts for 61% of the multiply-add 

operations of the entire network. Since those residual blocks were not designed to specifically run on mobile 

devices, Du et al. [11] replaced them by a more recent and more efficient design; i.e., MobileNetV3 [13]. In 

their paper, they utilized less multiply-add operations by 79% and less parameters by 28% compared to 

CrossInfoNet version. This paper presents a newly developed feature extractor for LightWeightNet which 

comes as an improvement of CrossInfoMobileNet [13]. The CrossInfoMobileNet is chosen because of its 

success to utilize 70% less multiply-add operations (70.2×106 vs. 74.4×106) and 27% less parameters 

compared to CrossInfoNet version. 

 

2.2.  Proposed approach 

Herein, we propose a LightWeightNet version of CrossInfoMobileNet suitable for running in a 

mobile device called LightWeightNet model presented in Figure 2. The model attempts to address the 

problem of accurate hand joint location of a human hand via hand pose estimation. The first part of the 
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Figure comprises a feature extraction module, in which heat-maps are incorporated as constraints to enhance 

the learning of feature maps and obtain all initial joint features.  

 

 

 
 

Figure 2. LightWeightNet overview showing feature extraction, feature refinement and joint regression 

stages which an input hand depth is passing before joint positioning 

 

 

The subsequent section involves a feature refinement module, which further breaks down the task 

into two sub-tasks: one focusing on estimating the palm joints and the other on estimating the finger joints. 

The whole process can be summarized as follows; Given a preprocessed hand depth image, a ResNet is 

primarily used to encode the input depth and generate individual hand frame embeddings. Afterwards, a 

transformer encoder learns the contextual sequential both temporal and angular information as in many recent 

literatures [10], [24], [25] on computer vision applications. Then the transformer generates 2D hand joint 

locations as an offset. The 2D joint estimate is converted to 3D hand poses by the regression layer connected 

directly to fully connection layer which maps the hand and the joint position to produce the desired output. 

Specifically, a fully connected layer takes the input as a set of features extracted from the hand depth 

image and produces the output as a set of predicted joint angles or coordinates that define the pose of the 

human hand. By using a fully connected layer as the final layer of the network, the model can learn to map 

the high-dimensional input features to the low-dimensional output pose space. In the next sub-sections, the 

main components of lightweight pose estimator are discussed in details. 

 

2.3.  Network architecture 

The whole network pipeline is presented in Figure 2. This network is a newly developed architecture 

obtained by integrating CrossInfoNet and MobileNetV3 into one pipeline. The architecture generally 

comprises of three components: feature extraction, feature refinement and joint regression. It combines the 

structural design of both CrossInfoNet and MobileNetV3 as in [11] but we made further modification from 

the feature extraction stage to build a more efficient architecture as explained in the subsequent sections. 

The modified architecture has an improved performance of approximately 1.5 times compared to recent 

CrossInfoMobileNet. 

 

2.4.  Feature extraction 

Recently, the MobileNet architectures demonstrated remarkable efficiency and outstanding 

performance in many vision based tasks with a minimal data volume than classical network backbone, such 

as ResNet [14]. In this study, the local and global high dimensional information present in the input depth 

data are efficiently extracted using a series of residual block with top-down approach as in many recent deep 

learning and neural network literatures [16], [26]. We completely redesigned feature extractor backbone to 

ensure a reduced weight of the network and achieve the superior accuracy. In feature extraction stage, we 

firstly utilize an inverted residual block to achieve a balance between accuracy and efficiency in limited 
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parameters as shown in Figure 3. We leverage an inverted residual block bottleneck consisting of input, and 

extension. Our design leverages 5×5 kernels instead of 7×7 used in literature [27]–[29], to guarantee the light 

weighted network while retaining feature information contrary to many applied MobileNetV3 series [13]. 

We then replace ReLU activation with the new ACON activation function which has lesser computational 

requirement and hence increases speed of model training while ensures transformed parameters retains its 

features. Finally, we integrate the model with a co-ordinate attention mechanism module before 1×1 

convolution at the end of bottleneck, instead of the squeeze-and-excitation SE block used by literature 

[30]–[32]. The inclusion of coordinate attention mechanism module enhances the reading of joint features in 

the pose estimator, surpassing the performance of the conventional spatial attention mechanism modules, 

such as SE-block or convolutional block attention module (CBAM). 

 

 

 
 

Figure 3. Feature extractor part of the proposed network 

 

 

Figure 3 presents feature extractor of the LightWeightNet. Each block represents the output tensor 

of each layer. The thickness represents the number of channels in 2D and the last two blocks are tensors 

processed by the co-ordinate and multispectral attention mechanism. To this end, our architecture 

demonstrated superior memory efficiency and experimental outcomes compared to the traditional residual 

modules. Moreover, our architecture leverages the feature map connectivity to further enhance the 

capabilities of the feature extractor module. By establishing effective connections to the feature maps, we are 

able to extract and integrate information more efficiently, leading to improved performance in hand feature 

extraction. This feature map connectivity plays a crucial role in achieving better results compared to 

traditional approaches relying solely on residual modules. 

 

2.4.1. ACON activation 

The ACON activation function is a relatively new activation function proposed in 2021 by the 

research team [33]. ACON stands for "active convolutional networks," and it is designed to improve the 

performance of convolutional neural networks (CNNs) by addressing some of the limitations of existing 

activation functions, such as ReLU, parametric rectified linear unit (PReLU), and Swish. The ACON 

activation function has been shown to be effective in improving the performance CNNs on various computer 

vision tasks, including 3D hand pose estimation. The recent study by Xiong et al. [15] proposed the use of 

the ACON activation function and they achieved promising results. Motivated by the function 

𝑚𝑎𝑥( 𝑥1, 𝑥2, 𝑥3. . . 𝑥𝑛) that defines the range of a maximum value of specific n parameters, Tompson et al. 

[34] utilized ACON activation to determine a new smooth and differentiable approximation function. In this 

paper, we define ACON function transformation with an improved transformation parameter by (1). 

 

𝑆𝛽(𝑥1, . . . , 𝑥𝑛) =
∑ 𝑥𝑖

𝑛
𝑖=1 𝑒𝛽𝑥𝑖

∑ 𝑒𝛽𝑥𝑖𝑛
𝑖=1

 (1) 

 

where 𝛽 is a transformation parameter. Transformative parameters behave inversely proportional with the 

opposite extremities. For example, when 𝛽 approaches infinity, the scaling factor 𝑆𝛽 attains its maximum 

value. Similarly, when 𝛽 approaches 0, 𝑆𝛽 approaches arithmetic mean. Now considering its behavior, an 

addition structure from the commonly used activation functions such as linear activation are substituted to the 
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general activation function 𝑆𝛽. The basic structure for linear activation is given as 𝑚𝑎𝑥( 𝜂𝑎(𝑥), 𝜂𝑏(𝑥)), 

where 𝜂𝑎,𝑏(𝑥) represents a linear function such as ReLU function with states 𝑚𝑎𝑥( 𝑥, 0). Then an 

appropriate smooth differentiable function of 𝑚𝑎𝑥( 𝜂𝑎(𝑥), 𝜂𝑏(𝑥)) is constructed and simplified as in [31] to 

obtain (2). 

 

𝑆𝛽(𝜂𝑎(𝑥), 𝜂𝑏(𝑥)) = 𝜂𝑎(𝑥) − 𝜂𝑏(𝑥)𝜎[𝛽(𝜂𝑎(𝑥) − 𝜂𝑏(𝑥))] + 𝜂𝑏(𝑥) (2) 

 

where 𝜎 is the sigmoid function. Substituting 𝜂𝑎(𝑥) = 𝑥 and 𝜂𝑏(𝑥) = 0, the approximate fitting of the ReLU 

function can be seen as 𝑆𝛽(𝑥, 0) = 𝑥𝜎(𝛽𝑥) which is same as swish function [25]. This function was defined 

as ACON-A function by the work of Wan et al. [26]. With this regard, it is alleged that additional maximum 

based activation function of the ReLU activation functions can also be transformed into the ACON family. 

For example, using PReLU function 𝑓(𝑥) = 𝑚𝑎𝑥( 𝑥, 0) + 𝑝. 𝑚𝑖𝑛( 𝑥, 0) where p is the learnable parameter 

with initial value of 0.25. If we considering two learnable parameters, 𝑝1 and 𝑝2 the ACON function is given 

as (3): 

 

𝑓𝐴𝐶𝑂𝑁 = 𝑆𝛽(𝑝1𝑥, 𝑝2𝑥) = (𝑝1 − 𝑝2)𝑥𝜎[𝛽(𝑝1 − 𝑝2)𝑥] + 𝑝2𝑥 (3) 

 

by strategically tuning hyperparameters to toggle between active and inactive states, this activation function 

effectively learns the linearity and non-linearity gate across the entire activation function range of a network. 

Therefore, the ACON activation function can be referred to as a combination of a sigmoid function and a 

linear function with learnable parameters. The sigmoid function scales the input x based on its statistics, 

while the linear function applies a shift and scaling to the output.  

The parameters 𝑝1, 𝑝2 and beta, are learned during the training process, which allows the network to 

adaptively scale the input based on its statistics and improve its performance. Choosing ACON activation is a 

commendable decision for the following reasons; Firstly, it introduces an additional learnable parameter, w, 

that enables the network to adaptively scale the input based on its statistics. This helps to reduce the impact 

of outliers and improves the overall robustness of the network. Secondly, the ACON activation function 

allows the network to learn different scaling factors for positive and negative values of the input. This can be 

useful for tasks where the input has a skewed distribution or where the positive and negative values have 

different meanings. Thirdly, the ACON activation function can be easily integrated into existing CNN 

architectures without requiring major changes. It can be used as a drop-in replacement for existing activation 

functions, such as ReLU, PReLU, and Swish. Finally, the ACON activation function has been shown to 

improve the performance of CNNs on several benchmark datasets, including ImageNet, CIFAR-10, and 

CIFAR-100. It has been shown to outperform existing activation functions on tasks that require high model 

capacity or where the input has a skewed distribution. 

 

2.5.  Joint regression 

Joint regression is the final stage of the lightweight hand pose estimation system aiming at 

estimating the location of each joint in a hand, in this case finger joints and a palm. The input for joint 

regressor as in is the finger feature map with tensor size 𝐹𝑚𝐹 ∈ ℝ168×6×6 and the palm feature map with size 

𝐹𝑚𝑃 ∈ ℝ168×6×6, and the output is a refined feature map. This refined feature map is formed as a 

combination of palm and finger joints to obtain a single unified prediction of the entire hand joints as in [23]. 

For easy of processing, each feature map is firstly flattened from a ℝ168×6×6 into ℝ6048 before it is sent to 

fully connected layer with ACON activation to produce an output product of a vector size 640 which is same 

as in [11]. During experiments, we noticed that lowering the vector size to 640 has the same results as the 

original 1024. However small size has significantly reduced complexity and computation time. Further 

splitting of the feature map both for the finger joints and palm joints in the fully connected layers produces a 

palm joint prediction of size ℝ63 and a finger joint prediction of size ℝ15×3 respectively. Therefore, joint 

regression stages leave the hand joints that are of vector size of 1280, 640 features from the palm and 640 

from the finger joints respectively. The final predicted hand joints of size ℝ21×3 is finally passed to fully 

connected layer which locate all the 21 joints in place. 

 

2.6.  Transfer learning 

Deep learning techniques, specifically CNNs, have an advantage over traditional methods in that 

they can be reused for similar tasks. We utilized a transfer learning approach to confirm the general usability 

of our model. Transfer training has a similar workflow to initial training, with the exception that the first four 

layers of the model are pre-trained, and the output layer is not. We uptake the advantage of transfer learning 

in deep learning to adopt some of the layers of MobileNet, drop others and apply to our presented HPE 
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domain. To this end, the transfer learning strategy was applied to evaluate the general use representation of 

the trained model. 

 

2.7.  Experiments 

Our experiments are based on the Tensorflow2.4.0 framework, cuda11.1, 11400F CPU and 

RTX3090 GPU. Our network was trained batch-wise using Adam optimizer with a learning rate of 10-3, and 

a decay rate of 0.00001. During training, the best accuracy was recorded when the epoch size reached 256. 

We use NYU [35], imperial college vision lab (ICVL)  [36] and Microsoft Research Asia (MSRA) [37] 

datasets for validation. Given its strong scalability and extensibility, we conducted experiment under the 

conditions specified by Du et al. [11], training with 256 epochs and evaluating our results in comparison to 

the latest advancement in the field. We demonstrate the effectiveness of our methods in ablation studies. On 

the first round, we train our network on the MSRA [37] dataset. The training results which include training 

error, and the finest epoch were recorded. The experimental architectures of our LightWeightNet architecture 

were compared to the closest method CrossInfoMobileNet and the results of the testing errors are depicted in 

Figure 4. 

 

 

 
 

Figure 4. Mean squared error computed after each iteration during training 

 

 

From Figure 4, it can be observed that the proposed LightweightNet is more stable during training 

process of the chosen subject of MSRA dataset compared to both CrossinfoNet and the CrossInfoMobileNet. 

This proves that the use of ACON produces improved output than ReLU and H-Swish as proposed by  

Du et al. [11]. The improved stability of the ACON is attributed to its unique feature of performing adaptive 

learning of which fixed activation such as ReLU and H-Swish cannot (best viewed in color). 

 

2.7.1. Datasets 

In this section, we present three datasets that were utilized in our experiments. These datasets have 

been widely used by recent researchers [11], [38]–[41], and as a result, we will conduct a comprehensive 

comparison with other works on these three datasets to assess the performance of our proposed system. 

The first dataset, NYU, is a publicly available dataset released by New York University [34]. It comprises 

72,757 training sets and 8,252 testing sets of RGB-D images captured using the structured light-based sensor 

PrimeSense Carmine 1.09 from three different viewpoints. Each frame in this dataset is annotated with 

precise ground truth hand pose configurations and exhibits a wide range of pose variations. For our 

experiment, we solely utilize the depth data from a single camera. In contrast, the Imperial College Vision 

Lab (ICVL) dataset, provided by the ICVL, was captured using an Intel Creative Interactive Gesture Camera. 

This publicly available dataset [35] comprises approximately 180,000 depth frames in the training set, 

featuring diverse hand poses recorded from 10 different subjects. The test set consists of two sequences, each 

containing around 700 frames. Each hand pose in the dataset is annotated with 16 joint coordinates. 

The depth images in this dataset are of high quality, with few or no missing depth values, and exhibit sharp 

outlines with low noise levels. Despite a recent report highlighting limited pose variability and potential 
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annotation inaccuracies [41], the ICVL dataset remains highly suitable and optimal for hand pose estimation 

systems. Microsoft Research Asia (MSRA) dataset [37], consists of approximately 76,000 depth frames 

captured using a time-of-flight camera. This dataset includes sequences from 9 subjects, with each subject 

dataset containing 17 gestures. Notably, the MSRA dataset contains data from 9 subjects obtained from a 

different source, and it excels particularly in the evaluation of finger joints. 

 

2.7.2. Evaluation metrics 

 To assess the accuracy of the proposed system's estimation results, we employ two distinct 

evaluation criteria. The first metric measures the percentage of successful frames, while the second metric 

evaluates the mean error for each joint of the entire hand. There criteria have been used in recent many Hand 

pose estimation approaches: 

− The fraction of the sample error distance within a specified threshold. This metric calculates the 

percentage of successful frames where the error distance for each joint falls below the defined threshold. 

It is important to note that this criterion may be more susceptible to ambiguity, as a single incorrect joint 

estimation can influence the overall evaluation of the hand pose. 

− Mean error distance of various joints, along with their corresponding average. This criterion is commonly 

used in the literature on hand pose estimation [40]–[42] due to its simplicity in calculating joint errors. It 

provides valuable insights into the overall accuracy of the system by measuring the average error distance 

across different joints. 

 

2.7.3. Performance analysis 

The performance analysis of the proposed systems is presented through comparison to closely 

related state-of-the art architectures with their different variants in Table 1. The results are from the trained 

MSRA datasets, and it includes the following items; average mean joint error (Error), number of neurons 

(Neurons), number of architecture parameters (Parameters). As shown in Table 1, the first row displays the 

results obtained from CrossInfoNet, while the subsequent rows present the results from CrossInfoMobileNet. 

These rows include the plain architecture as well as variations with dropout (d) implemented in the joint 

regressor of their fully connected layers. In the last row, our architecture, LightWeightNet, is presented. From 

the table, it can be inferred that LightWeightNet is half the size of CrossInfoNet and 10% smaller than 

CrossInfoMobileNet. Despite this size reduction, LightWeightNet achieves the same level of accuracy as its 

predecessors on the MSRA dataset. For a more comprehensive comparison of our method with other state-of-

the-art techniques, please refer to subsection 2.8. 

 

 

Table 1. Performance overview of contending architectures and their variants 
Architecture Neurons Errors (mm) Parameters Size (MB) 

CrossInfoNet 1024 8.19 23,936,648 91.48 
CrossInfoMobileNet 640 8.19 10,768,376 41.31 

CrossInfoMobileNet-d0.4 640 8.48 10,768,376 41.31 

CrossInfoMobileNet-1024 1024 8.19 16,765,304 64.22 
CrossInfoMobileNet-512 512 8.25 8,900,472 34.18 

CrossInfoMobileNet-128 128 8.41 3,689,976 14.30 

CrossInfoMobileNet-64 64 8.52 2,878,904 11.22 
LightWeightNet 640 8.17 8,880,801 36.04 

 

 

2.8.  Quantitative analysis 

Qualitatively, our approach's performance is assessed on three publicly available datasets 

specifically designed for hand pose estimation. To evaluate our method, we primarily consider recently 

published works that are closely related to our research. For evaluation, we employ well-established 

evaluation metrics discussed in subsection 2.7.2. These metrics have been widely used in the literature, 

including in works such as [36], [37], and [42] to evaluate hand pose estimation. The values reported in the 

respective papers or measured from the accompanying graphs, if available, are presented in Table 2. 

 

 

Table 2. Comparison of mean error distance for the state-of-art methods on three datasets 
Algorithm ICVL NYU MSRA 

HandPointNet [22] 6.9 10.5 8.5 

V2V-PoseNet [42] 6.28 8.42 7.59 
CrossInfoMobileNet [11] 7.33 12.71 8.19 

SHPR-Net [6] 7.22 10.78 7.76 

LightWeightNet 7.02 10.07 6.9 
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2.8.1. Error analysis on NYU datasets 

Although the test results for CrossInfoMobileNet in NYU were not reported, we experimented to 

see its performance and compare it with the presented LightWeightNet. The test results are presented in 

Figure 5. We opted to only compare the two baselines because of the similarity in our approaches. On the 

first few samples both our architecture and CrossInfoMobileNet [12] performed well with insignificant 

differences, however as the number of samples increased, our proposed method exhibited superior 

performance compared to the competing state-of-the-art architectures. For instance, when evaluating the test 

samples based on the maximum joint error below a specified threshold, our method achieved a remarkable 

96% accuracy at a threshold level of 40 mm. In the Figure 5, the fraction of test samples whose distance 

between all estimated joints and ground truth is below a given threshold are presented (best viewed in color). 

. 

 

 
 

Figure 5. Comparison of the state-of-the-art methods on NYU dataset 

 

 

2.8.2. Error analysis on ICVL 

Similarly, on ICVL, again we request our readers to be aware that, CrossInfoMobileNet [11] did not 

provide the test results on ICVL, but we utilize the shared model to test its performance in ICVL so we test 

our hypothesis. The test results for all the three competing literatures are presented in Figure 6. Generally, 

and as in NYU, our proposed system outperformed both contending architectures especially when the 

number of samples are few. 

 

 

 
 

Figure 6. Comparison of the state-of-the-art methods on ICVL dataset (best viewed in color) 
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2.8.3. Error analysis on MSRA 

Figure 7 demonstrates the mean joint error for each joint on MSRA dataset. We request our reader 

to note that testing was conducted only for the first subject as in [11] so that we can present a fair result. Our 

method LightWeightNet outperforms both other methods on the plotted metric indicating that it is lighter and 

more suitable for mobile devices. For example, when the error threshold is 20mm, the proportions of good 

frames for our method is about 98% better than CrossInfoMobileNet [11] which attains 96%, and 

CrossInfoNet which attain 94%. The closeness of performance between our method and CrossInfoMobileNet 

[11] is because of the optimization and training methods both approaches considered. 

 

 

 
 

Figure 7. Comparison of the state-of-the-art methods on MSRA dataset (best viewed in color) 

 

 

3. CONCLUSION 

We presented our optimal approach for a hand pose estimation system suitable for running on a 

mobile device application. We showed that with a smaller number of parameters, over 38.6% less, we can 

still attain similar or better accuracy than the non-optimal methods in the literature. The development of 

lightweight hand pose estimation models for mobile devices has significant potential for various applications 

such as mobile gaming, augmented reality, virtual reality, and more importantly sign language recognition. 

With the increasing demand for more sophisticated human-computer interfaces, the ability to detect hand 

poses accurately and efficiently on mobile devices is becoming more critical. The results presented in this 

paper demonstrate the feasibility of using lightweight deep-learning models for real-time hand pose 

estimation on mobile devices. Such models can achieve high accuracy while requiring relatively low 

computational resources, making them suitable for deployment on mobile devices with limited processing 

power. Moving forward, further research can explore the potential for integrating these models with other 

mobile applications and evaluating their performance in different real-world scenarios. Achieving precise 

regression of finger joints offers crucial cues for accurate joint regression, resulting in reduced errors and 

improved accuracy in hand estimation. With this information future research should include large-scale 

benchmark datasets that can enable data-driven model development and foster advancements in the hand 

pose estimation domain, explore further optimization techniques such as compression methods, and 

quantization techniques, which will aid in reducing model size while maintaining or improving accuracy. 

By pursuing these directions, we can further advance the HPE domain and enhance the overall user 

experience in various human-computer interactions, enabling its integration into a wide range of practical 

applications. 
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