
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 2, April 2024, pp. 2274~2281

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i2.pp2274-2281 2274

Journal homepage: http://ijece.iaescore.com

Auto retry circuit breaker for enhanced performance in

microservice applications

E. Punithavathy1, N. Priya2
1Department of Computer Applications, Madras Christian College, Chennai, India

2Research Department of Computer Science, Shrimathi Devkunvar Nanalal Bhatt Vaishnav College for Women, Chennai, India

Article Info ABSTRACT

Article history:

Received Jun 23, 2023

Revised Nov 5, 2023

Accepted Nov 29, 2023

 Cloud-hosted distributed systems are much more resilient to failure.

Resilience is the key factor in avoiding cascading failures in microservice

architectures, where circuit-breaker, retry, bulkhead, and rate-limiter patterns

are implemented. Through the implementation of these patterns, availability

and reliability factors can be greatly improved. Circuit-breaker emphasizes a

fail-fast mechanism, so it is highly recommended. Although they are

beneficial, some factors, such as configuration, need to be improved to

increase the system's throughput. In this paper, an approach called auto retry

circuit breaker (ARCB) is implemented, which is a modified version of

existing patterns of circuit breaker, and it has been found that the throughput

of the system can be increased by 36% when compared to the existing

manual circuit breaker pattern.

Keywords:

Auto-retry circuit breaker

Resilience

Retry

Timeout

Resilience This is an open access article under the CC BY-SA license.

Corresponding Author:

E. Punithavathy

Department of Computer Applications, Madras Christian College

Chennai, India

Email: punithavathy@mcc.edu.in

1. INTRODUCTION

Cloud computing has become popular due to its vast performance in distributed systems. The most

prominent factors of distributed systems are flexibility in expanding the operations, capability in

withstanding the failures, and its distributed content delivery both for a nominal user and for an organization

[1]. In order to satisfy the demands of cloud based distributed systems, there formed an architectural pattern

called microservice, which is specialized for its decentralized nature [2]–[4]. Although it is quite useful in

developing suitable applications, they need to be concentrated towards its resiliency nature [5].

One of the most demanding factors for applications to survive in the field of cloud is their resilience

nature. Fault or failure might lead an application into an unreliable state, further evolving as cascading failure

[6]. Failures are usually classified into two categories; they are transient faults and non-transient faults. The

faults that could recover by themselves can be called transient faults, whereas faults that require external help

to recover can be called non-transient faults. It is stated that cloud-based environments usually suffer from

transient faults. All the cloud application designs should focus on these fault-tolerant features, which could

avoid cascading outages. The end users might not be sure whether they are connected to the system all the

time due to the connection problem that exists in the network [7]. Whenever there is a problem with the

network or the services, it is notified by the error messages such as status 500-internal server error, status

503-service unavailable and status 504-gateway timeout errors [8]. The current developing trends of any

application include this fault-tolerant model, stating that even though the application is successful it must be

tolerant towards its failure cases. This feature decides the survival of the application in many cases [9].

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

Auto retry circuit breaker for enhanced performance in microservice applications (E. Punithavathy)

2275

To survive the failures of applications, which are hosted in cloud-distributed systems, resilience

patterns were used. The term resilience can be defined as the ability of the system to regain its original

condition after an unpredicted degradation [10]. Resilience characteristic is achieved in a microservice

architecture by using the patterns such as circuit-breaker, retry, bulkhead, and rate limiter patterns [11]–[13].

Out of all the patterns, the circuit breaker is the most often used technique. It is a type of recovery technique,

which is used at the time of repeated failure to avoid cascading of failures [14]. The essential components of

circuit breakers are their parameters (timeout, number of failures, failure threshold, and number of calls), states

(closed, half-open and open), and the most important error handling method or alternate actions [15]–[17]. As

shown in Figure 1, this pattern is similar to the circuit breaker switch pattern used in electrical applications.

The second popular resiliency pattern is retry. This pattern does not include states such as circuit

breakers. This pattern will exponentially or periodically bombard the application programming interface

(API) with, request calls to the preferred service to get to know about the working of those services. The calls

will be sent based on the number of retries specified in the configuration of the service [18]. As shown in

Figure 2, this pattern is used for retrying the requests, based on the number of retries the user specifies which

might lead to overhead issues, if not configured properly.

Figure 1. Circuit breaker diagram [18]

Figure 2. State diagram of retry pattern

Even though these patterns are widely used, all these patterns are implemented with manual

configurations. The developer without knowing the nature of transient failure conditions, a random value was

configured in circuit breaker and retry pattern properties. This causes the problem of accelerated breaking

and recoverability issues while using the wrong values in the waiting or open state of the service, which leads

to poor performance of the service. The concept of circuit breaker is to isolate the service for a period of time

to recover whenever it is down. In other cases, if services are working fine and the problem exists with the

network, using the manual circuit breaker might be a bad idea because it makes the working service idle for a

long period of time [19]. The retry pattern is one of the most used patterns in distributed cloud applications,

for repeating tries [20], [21]. But the retry pattern with repeated retries also fails to solve the problem of

resiliency and give a complete solution. The main objective of resiliency is to assure fault tolerance by

increasing the availability and redeemability towards its failure state, during its execution. But the existing

patterns with misconfigured values, fail to recognize the nature of failures.

To overcome this problem, a novel approach called auto retry circuit breaker (ARCB) pattern is

implemented. This pattern incorporates the states used in circuit breaker with a modification in addition to the

timeout strategy. Here, the ARCB pattern incorporates an auto approach in spite of manual physical

configuration and retries were done to check the functionality of the services. The objective of this pattern is to

reduce the issues related to the throughput of the service, and the availability demand in the existing scenario.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2274-2281

2276

2. PROPOSED ALGORITHM

In the proposed algorithm, circuit breakers are automatically switched between states. The properties

of existing circuit breakers are used and along with that time taken for request is calculated. The manual

configurations are modified with respect to the time-taken strategy. The parameters used in the proposed

algorithm are failure_count to count the number of failures, States which consists of two states such as closed

and open, an initial value is set as closed, and limit, which is used to check the threshold value of failures.

This proposed model comes with two phases. The first phase is done if the limit value does not exceed the

failure limit. A closed-state algorithm is the first phase here.

Algorithm 1. ARCB-closed state
Step 1: Set 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡 = 0 (count number of failures)
Step 2: Set 𝑆𝑡𝑎𝑡𝑒 = 𝑐𝑙𝑜𝑠𝑒𝑑 (indicates whether it is closed or open)

Step 3: Set 𝑙𝑖𝑚𝑖𝑡 as 𝑎𝑣𝑔_𝑙𝑖𝑚𝑖𝑡 (maximum failures allowed during closed state)
Step 4: if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then return 𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑓_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
 else if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 then 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡 + 1 and
Step 5: execute fallback method

Step 6: if 𝑓𝑎𝑖𝑙𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡 >= 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑙𝑖𝑚𝑖𝑡 then

a) Set 𝑆𝑡𝑎𝑡𝑒 = 𝑜𝑝𝑒𝑛
b) Call ARCB-open

Step 7: For each client requests that is received during the open state

execute fallback method

In the second phase of the algorithm, the State value is changed from closed to open, it uses an auto-

retry concept based on request time taken. Based on the obtained response time, the waiting time is

calculated and the next request is retried by the system. The main role of this proposed method is creating

lightweight requests by the system and sending them to the service, to know the status of the circuit breaker.

Algorithm 2. ARCB-open
Step 1: if 𝑆𝑡𝑎𝑡𝑒 == 𝑜𝑝𝑒𝑛, then find 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 of the last request.

Step 2: if 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 >= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑖𝑚𝑖𝑡 then generate auto request after (𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑡𝑖𝑚𝑒/2)

 else if (𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 <= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑙𝑖𝑚𝑖𝑡) then generate auto request after (
𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑡𝑖𝑚𝑒

2
) + 1 𝑚𝑠

Step 3: if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑠𝑡𝑎𝑡𝑢𝑠 == 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
a) 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
b) return 𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑓_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

Step 4: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑢𝑛𝑡 is greater than 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑙𝑖𝑚𝑖𝑡 then 𝑠𝑡𝑎𝑡𝑒 = 𝑐𝑙𝑜𝑠𝑒𝑑

Once the required service requests yield a successful response, the state value changes to closed.

The algorithm for the closed state will perform its processing and reset all parameters to their initial values.

Similarly, if the service yields an unsuccessful response or an error response, the state remains in an open

state, and the auto-retry process will continue until it receives a successful response.

3. METHOD
This ARCB pattern was implemented in a microservice application, which includes two services

such as product service and variant service. This microservice application was built using active server pages

or ASP.Net core using C#. This is a simple microservice application, which gets a request from a client,

querying the product details. Figure 3 explains the overall architecture of this microservice application.

The request is forwarded to the product service through the API, and consecutively, the request is

forwarded to the variant service from the product service to get the external details of the product, such as

description, and price. The product service contains information such as product ID and name. Whereas the

variant service consists of external information about the product such as its product ID, price, description,

and expiration. The product service sends the request to the variant service with the input parameter product

ID. If the product ID of the product service and the product ID of the variant service gets matched, the

corresponding information is posted back to the client as a response. The libraries used to implement the

circuit breaker are Polly libraries. Resilience patterns are implemented using these libraries [22]. The

applications are hosted and deployed on Azure websites. Using Postman, API requests are generated and sent

to the services. Postman specializes in creating hypertext transfer protocol (HTTP) requests and provides an

option to save the request and response [23]. To control the path of data, a single gateway is used for all

services [24]. The API involves a request that uses parameters as a querying entity to get some results from

the service [25]. Both the existing circuit breakers and ARCB are implemented, and their performance is

observed with the execution of these services. When compared with the existing pattern, the ARCB pattern

duration is much faster than that of the circuit breaker pattern.

Int J Elec & Comp Eng ISSN: 2088-8708

Auto retry circuit breaker for enhanced performance in microservice applications (E. Punithavathy)

2277

In this proposed concept of ARCB, the three states of the circuit breaker are reduced to two states.

They are the combination of circuit breaker and retry patterns, where the retry operation with a modified

algorithm is implemented in an open state. Here no manual parameters are required instead the requests are

sent automatically based on the analyzed time duration of failed requests. Normal circuit breakers use the

concepts of timeout and parameters set; the circuit breaker will start to function. The timeouts were

calculated for both success and failure calls. Any request, that takes a long duration will eventually be

considered to be a failure. So, we measure the time taken for each request. An average time is set for each

request, if the given request takes greater than the average time then it is considered to be a failure. Figure 4

explains the behavior of the ARCB pattern, which is modified from the existing circuit breaker pattern.

Figure 3. Microservice application architecture

Figure 4. State diagram of ARCB

3.1. Closed to open state

Initially, ARCB will begin in a closed state. If all API request calls receive a successful response,

the state will eventually be closed, as shown in Figure 5. If there is a problem with the duration of the

response or failure response, the failure threshold will be increased. Once the failure threshold reaches its

limits, the state is shifted to an Open state. In the Open state, the ARCB actual functioning is done by

generating auto retries.

Figure 6 shows the response received for a given request during the working of a closed state in the

ARCB pattern. As per the given request, the details regarding the product are retrieved from the variant

service. Based on the successful response obtained from variant service, the state remains closed.

Figure 5. Sequential diagram of the closed state

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2274-2281

2278

Figure 6. Screenshot of the response received in a closed state

3.2. Open state

During the open state, the API request from the client will not be forwarded to the required service.

Instead, an error handling method or a fallback method is returned as a response to the client. Meanwhile, the

ARCB will send auto requests to the required service, on the basis of the last request duration. The ARCB

will check for the response, if they reach the average time or failure response again, the request is again

retried after the specified number of seconds. In order to avoid the overloading of requests, the duration is

measured. If the duration is greater than the average time then the next auto request will be forwarded at half

the duration. If the duration of a request is less than the average time, but the response is a failure then the

next auto request is forwarded at half plus the duration. While the state is open, the user's requests are

ignored and in response to that, a fallback method will be executed for each request. Whereas, lightweight

request calls are generated by the system and sent to the service.

Figure 7 shows an error message from the screenshot, which is normally used at times of failure

conditions when a circuit breaker is not used. It also noted that the state value remains closed, so the ARCB

has not started its action, since the failure_counter has not reached its limits. If the failure_counter value

exceeds the limit, state value is changed to open and ARCB comes in to action.

Figure 7. Error screenshot using postman API

Int J Elec & Comp Eng ISSN: 2088-8708

Auto retry circuit breaker for enhanced performance in microservice applications (E. Punithavathy)

2279

3.3. Open to closed

Once the auto requests are sent to the service, it returns either a successful response or a failed

response. If the response status is a success, then the success counter is incremented. If the success_Counter

values are greater than the prescribed limit, the state of the ARCB is changed to closed. When the ARCB is

in a closed state, it behaves like an existing circuit breaker until the response time is within the specified

time. During this state all the counter values are reset to zero.

Till they get a successful response, the state will function in open mode, if they get a successful

response then the success threshold will get increased. If they reach their success limits, then eventually they

are moved to the closed state. And the values of the parameter will be reset to the initial value. The diagram

from Figure 8, explains the processing of requests in the open state of ARCB. Similarly, Figure 9 presents a

screenshot of the working state of the ARCB pattern in the closed state.

Figure 8. Sequential diagram of an open state in ARCB

Figure 9. Working of open state in ARCB

4. RESULTS AND DISCUSSION

The existing patterns of circuit breakers and the ARCB pattern were implemented in a microservice

project, and the results were analyzed. When using circuit breaker patterns in the application, all the

parameters are assigned initial values, and the response time is recorded during their failure states. Similarly,

the ARCB was implemented without any manual configurations, and the responses were recorded.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 2274-2281

2280

In Table 1, an average of ten requests duration and their timings were noted in their failure states.

The timing value proves that while using ARCB the duration of execution can be highly reduced due to this

automation. The average value of the ARCB timings is 36% less when compared with the time duration

obtained from manual service side circuit breaker. Similarly, Figure 10 represents an analysis of both circuit

breaker and ARCB, which proves that execution duration of ARCB is faster when compared with the manual

configuration of circuit breaker.

Table 1. Average processing duration in circuit breaker and auto-retry circuit breaker
Requests Manual CB average timings in ms ARCB average timings in ms

1-10 172 55

10-20 64 50

20-30 13 13
30-40 15 10

40-50 38 18

50-60 84 39
60-70 67 35

70-80 29 11

80-90 77 40
90-100 12 11

Figure 10. Analysis of ARCB and circuit breaker time duration in ms

5. CONCLUSION

This paper proposes a new algorithm for improvising the fail-fast mechanism in existing circuit

breaker. It also proposes the changes of manual parameters to auto generate requests in an open state. The

main goal of this work is to reduce the concept of manual parameter values in the property section. Analysis

is done by implementing ARCB and existing circuit breaker patterns in a microservice application. Results

proved the efficiency of ARCB is 36% faster, when compared with the existing circuit breaker. In the future,

the ARCB is planned to be expanded for both service mesh concept with side car policy, which is widely

used in complex applications.

REFERENCES
[1] S. Shetty, C. Kamhoua, L. Njilla, “Front matter,” in Blockchain for Distributed Systems Security, Wiley, 2019.

[2] G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs. microservice architecture: a performance and scalability
evaluation,” IEEE Access, vol. 10, pp. 20357–20374, 2022, doi: 10.1109/ACCESS.2022.3152803.

[3] M. Baboi, A. Iftene, and D. Gîfu, “Dynamic microservices to create scalable and fault tolerance architecture,” Procedia Computer

Science, vol. 159, pp. 1035–1044, 2019, doi: 10.1016/j.procs.2019.09.271.
[4] M. Villamizar et al., “Infrastructure cost comparison of running web applications in the cloud using AWS lambda and monolithic

and microservice architectures,” in Proceedings - 2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing, CCGrid 2016, May 2016, pp. 179–182, doi: 10.1109/CCGrid.2016.37.

[5] D. Richter, M. Konrad, K. Utecht, and A. Polze, “Highly-available applications on unreliable infrastructure: microservice

architectures in practice,” in 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-
C), Jul. 2017, pp. 130–137, doi: 10.1109/QRS-C.2017.28.

[6] L. J. Jagadeesan and V. B. Mendiratta, “When failure is (not) an option: reliability models for microservices architectures,” in

2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Oct. 2020, pp. 19–24, doi:

10.1109/ISSREW51248.2020.00031.

Int J Elec & Comp Eng ISSN: 2088-8708

Auto retry circuit breaker for enhanced performance in microservice applications (E. Punithavathy)

2281

[7] Z. Li, Q. Lu, L. Zhu, X. Xu, Y. Liu, and W. Zhang, “An empirical study of cloud API issues,” IEEE Cloud Computing, vol. 5,
no. 2, pp. 58–72, Mar. 2018, doi: 10.1109/MCC.2018.022171668.

[8] M. I. P. Salas and E. Martins, “Security testing methodology for vulnerabilities detection of XSS in web services and WS-

security,” Electronic Notes in Theoretical Computer Science, vol. 302, pp. 133–154, Feb. 2014, doi: 10.1016/j.entcs.2014.01.024.
[9] A. van Hoorn, A. Aleti, T. F. Dullmann, and T. Pitakrat, “ORCAS: efficient resilience benchmarking of microservice

architectures,” in 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Oct. 2018,

pp. 146–147, doi: 10.1109/ISSREW.2018.00-10.
[10] K. Yin and Q. Du, “On representing resilience requirements of microservice architecture systems,” International Journal of

Software Engineering and Knowledge Engineering, vol. 31, no. 6, pp. 863–888, Jun. 2021, doi: 10.1142/S0218194021500261.

[11] M. R. S. Sedghpour and P. Townend, “Service mesh and eBPF-powered microservices: a survey and future directions,” in 2022
IEEE International Conference on Service-Oriented System Engineering (SOSE), Aug. 2022, pp. 176–184, doi:

10.1109/SOSE55356.2022.00027.

[12] C. Santana, L. Andrade, F. C. Delicato, and C. Prazeres, “Increasing the availability of IoT applications with reactive microservices,”
Service Oriented Computing and Applications, vol. 15, no. 2, pp. 109–126, 2021, doi: 10.1007/s11761-020-00308-8.

[13] A. Palliwar and S. Pinisetty, “Using gossip enabled distributed circuit breaking for improving resiliency of distributed systems,” in

2022 IEEE 19th International Conference on Software Architecture (ICSA), 2022, pp. 13–23, doi: 10.1109/ICSA53651.2022.00010.
[14] H. H. Addeen, “A dynamic fault tolerance model for microservices architecture,” Electronic Theses and Dissertations, South

Dakota State University, 2019.

[15] Falahah, K. Surendro, and W. D. Sunindyo, “Circuit breaker in microservices: state of the art and future prospects,” IOP
Conference Series: Materials Science and Engineering, vol. 1077, no. 1, Feb. 2021, doi: 10.1088/1757-899X/1077/1/012065.

[16] S. Vergara, L. Gonzalez, and R. Ruggia, “Towards formalizing microservices architectural patterns with event-B,” in Proceedings

- 2020 IEEE International Conference on Software Architecture Companion, ICSA-C 2020, Mar. 2020, pp. 71–74, doi:
10.1109/ICSA-C50368.2020.00022.

[17] J. Carnell and I. H. Sánchez, Spring microservices in action, 2nd ed. 2017.

[18] F. Gutierrez, “Microservices,” in Spring Boot Messaging, Apress, 2017, pp. 179–192.
[19] S. Beck, “Simulation-based evaluation of resilience antipatterns in microservice architectures,” University of Stuttgart, 2018.

[20] M. R. Saleh Sedghpour, C. Klein, and J. Tordsson, “An empirical study of service mesh traffic management policies for

microservices,” in Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering, Apr. 2022,
pp. 17–27, doi: 10.1145/3489525.3511686.

[21] S. Frank, L. Wagner, A. Hakamian, M. Straesser, and A. van Hoorn, “MiSim: a simulator for resilience assessment of

microservice-based architectures,” in 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security
(QRS), Dec. 2022, pp. 1014–1025, doi: 10.1109/QRS57517.2022.00105.

[22] Christian Horsdal Gammelgaard, “Building applications,” in Microservices in .NET Core: with examples in Nancy, Simon and

Schuster, 2017, pp. 263–285.
[23] M. Shershneu and A. Oskin, “Postman platform for API development in the mobile application ‘musicians of Russia’,” in

Materials of XII Junior Researchers’ Conference, 2020, pp. 128–131.

[24] H. F. Martinez, O. H. Mondragon, H. A. Rubio, and J. Marquez, “Computational and communication infrastructure challenges for
resilient cloud services,” Computers, vol. 11, no. 8, Jul. 2022, doi: 10.3390/computers11080118.

[25] K. CEBECİ and Ö. KORÇAK, “Design of an enterprise level architecture based on microservices,” Bilişim Teknolojileri Dergisi,

vol. 13, no. 4, pp. 357–371, Oct. 2020, doi: 10.17671/gazibtd.558392.

BIOGRAPHIES OF AUTHORS

E. Punithavathy received B.Sc. degrees in computer science in the year 2009 and

MCA degree from Anna University, in 2012 respectively. She has presented papers in

international conferences. She has been an assistant professor in Madras Christian College,

Chennai since 2013. Her research interests include cloud computing, software engineering.

She can be contacted email: Punithavathy@mcc.edu.in.

N. Priya a technically skilled academician having more than 15 years of teaching

experience. She completed both her UG and PG degrees with distinction. She was awarded

Ph.D from Bharathiar University Coimbatore. She has been serving as the head of UG

Department of Computer Application from 2004 to 2019 in SDNB Vaishnav College for

Women, Chennai. She has also been a member of the Academic Audit and review panel in

other institutions. She has chaired several sessions in International Conferences. She has

published and presented more than 20 research articles and completed many NPTEL courses.

She is a recognized research supervisor under the University of Madras. Her research areas

include data mining, image processing, neural networks, network programming and fuzzy

logic. Currently she is working as associate professor in the PG Department of Computer

Science, SDNB Vaishnav College for Women, Chennai. She can be contacted at email:

drnpriya2015@gmail.com.

mailto:punithavathy@mcc.edu.in
https://orcid.org/0000-0001-8764-9416
https://scholar.google.com/citations?user=PuM3270AAAAJ&hl=en
https://orcid.org/0000-0002-1302-9465
https://scholar.google.com/citations?user=VfzMU-QAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57213735583

