
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 1, February 2024, pp. 819~829

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i1.pp819-829  819

Journal homepage: http://ijece.iaescore.com

Generate fuzzy string-matching to build self attention on

Indonesian medical-chatbot

Wiwin Suwarningsih, Nuryani
Research Center for Data and Information Sciences, National Research and Innovation Agency, Bandung, Indonesia

Article Info ABSTRACT

Article history:

Received Jun 22, 2023

Revised Jul 25, 2023

Accepted Oct 20, 2023

 Chatbot is a form of interactive conversation that requires quick and precise

answers. The process of identifying answers to users’ questions involves

string matching and handling incorrect spelling. Therefore, a system that can

independently predict and correct letters is highly necessary. The approach

used to address this issue is to enhance the fuzzy string-matching method by

incorporating several features for self-attention. The combination of fuzzy

string-matching methods employed includes Jaro Winkler distance +

Levenshtein Damerau distance and Damerau Levenshtein + Rabin Carp. The

reason for using this combination is their ability not only to match strings

but also to correct word typing errors. This research contributes by

developing a self-attention mechanism through a modified fuzzy string-

matching model with enhanced word feature structures. The goal is to utilize

this self-attention mechanism in constructing the Indonesian medical

bidirectional encoder representations from transformers (IM-BERT). This

will serve as a foundation for additional features to provide accurate answers

in the Indonesian medical question and answer system, achieving an exact

match of 85.7% and an F1-score of 87.6%.

Keywords:

Fuzzy string matching

Indonesian medical

Low resource language

Self-attention

Transformers

This is an open access article under the CC BY-SA license.

Corresponding Author:

Wiwin Suwarningsih

Research Center for Data and Information Sciences, National Research and Innovation Agency

Tower 2 Floor 5, Sangkuriang street 21 Bandung, West Java, Indonesia

Email: wiwin.suwarningsih@brin.go.id

1. INTRODUCTION

The simulation of conversations and interactive communication between humans and mobile

devices through text has become widely known to the public. This interactive system is commonly referred to

as chatbot. Knowledge is embedded in the system to identify sentences and determine appropriate answers

during the question-and-answer process. The chatbot utilizes various string-matching methods, such as

Bruteforce [1], [2], Knuth Morris Pratt (KMP) [3], [4], Boyer Moore (BM) [5], [6], and regular expression

[7] to perform word searches and obtain correct and valid answers.

However, a weakness of the string-matching method is its inability to tolerate typos because it relies

on exact matching algorithms that require exact string matches [8], [9]. This means that the algorithm must

match the string pattern exactly regardless of the words in the pattern. For example, when searching for the

pattern “saya sakit” (meaning “I am sick”) in the texts “saya sakit tapi masih suka makan” (meaning “I am

sick but still like to eat”) and “saya orang sakit” (meaning “I am a sick person”), the system will only

identify the first text as containing the pattern “saya sakit” while ignoring the second text. The search feature

in chatbot systems is common and essential for every application [10], [11]. This feature allows users to find

information that may be challenging to locate because of the large amount of data in the knowledge base,

which often contains similar word and sentence patterns [12], [13]. Hence, there is a need for an inexact

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 819-829

820

method with a high level of error tolerance; one such method is fuzzy string matching [14]. This concept

involves searching for identical or closely related strings in a container or dictionary. Widely used fuzzy

string-matching methods include Levenshtein distance [15], [16], Damerau-Levenshtein [17], [18], hamming

[19], [20], and fuzzy logic [21].

The process of searching for text in documents by comparing two strings using a Levenshtein

distance matrix is highly supportive of obtaining string matches [18]. This is achieved by analyzing each

character defined in the matrix and determining the maximum value as the ratio of text similarity [15].

Similar letters were then grouped, and the weight difference between the groups was reduced [22]. Improving

accuracy involves calculating the hash distance between texts being compared [23]. However, the

string-matching system based on Levenshtein distance still lacks the ability to correct word errors. The

Damerau-Levenshtein distance [18] is a method that addresses this issue. The Damerau-Levenshtein distance

is capable of handling complex spelling variations [24], correcting spelling errors in password phrases that

involve symbol and number combinations [19], and identifying a sequence of correction operations between

two adjacent strings [20]. By reducing unnecessary string comparisons and avoiding duplicate outputs,

accuracy can be improved [25], enabling quick prediction of letter corrections. Letter prediction and

correction were supported using the inference rules in the fuzzy method. This method predicts words that fail

to be recognized in speech recognition [21] and conversation systems [22]. Applying the fuzzy method using

dynamic inference and modification of word feature structures presents an opportunity to enhance the reliability

of natural language processing (NLP) in chatbot systems. In this study, we propose the construction of self-

attention by generating a fuzzy string-matching model with modified word feature structures.

The contributions of this paper are as follows: i) building self-attention based on fuzzy string

matching, ii) establishing Indonesian medical bidirectional encoder representations from transformers

(IM-BERT), and iii) constructing an Indonesian medical dataset, which is a low-resource language. The

uniqueness of the Indonesian language includes the usage of multiple languages within a single interrogative

sentence, such as Indonesian combined with English or regional languages like Javanese, Sundanese, and

Betawi. Additionally, Indonesian exhibits the presence of out-of-vocabulary language elements, including

slang, word abbreviations, and Indonesianized English.

The main contents of this study are as follows. Section 2 describes the method, which includes the

acquisition of data, preprocessing, comparison of the combination of fuzzy string matching, building

self-attention, and an overview of IM-BERT. Section 3 presents the results and discussion and covers

experimental results from multiple perspectives. Section 4 summarizes the research work of this study and

clarifies directions for future research.

2. METHOD

We build a framework as shown in Figure 1 to implement the self-attention generation method using

fuzzy string matching for dynamic inference in the IM-BERT model. First, online news was collected by

crawling Indonesian online news portals and stored in a database. Preprocessing, conversion, and

classification were then used to compare the fuzzy string-matching methods. In the final stage, a combined

fuzzy string model was used to generate the self-attention model, which was stored in the database to form

the IM-BERT model. A comprehensive explanation of each procedure is provided below.

Figure 1. The system framework

Int J Elec & Comp Eng ISSN: 2088-8708 

Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot (Wiwin Suwarningsih)

821

2.1. Data acquisition

The input data for our study consisted of articles about coronavirus disease 2019 (COVID-19)

news obtained through crawling results from various sources such as Indonesian twitter, Indonesian

Wikipedia, Jakarta News (https://www.thejakartapost.com), Okezone (https://news.okezone.com), Antara

(https://www.antaranews.com), Kumparan (https://kumparan.com), Tribune (https://www.tribunnews.com).

These articles were processed and converted into an appropriate format for use as input data for our

knowledge-based system. The dataset comprised 99,315 sentences, which were divided into 70% training

data and 30% testing data. The dataset contained various sentence types. Various basic words, prefixed

words, suffixed words, affixed words, conjunctions, pre-positions, and Indonesian standard words. Phrases

consisting of multiple languages (e.g., “good pagi” meaning “good morning”, “congrat ya” meaning

“congratulations”). Out-of-vocabulary (OOV) words such as slang or “alay” (e.g., “curhat” meaning “a

shoulder to cry on,” “woles” meaning “relaxed,” “jutek” meaning “bitchy,” “lebay” meaning “excessive”),

Indonesianized English words (e.g., “ausam” meaning “awesome,” “perigut” meaning “very good,”

“tengkyu” meaning “thank you,” “polis” meaning “police,” “donwori” meaning “don’t worry”).

2.2. Data preprocessing

Text preprocessing, conversion, and classification are crucial steps for handling NLP tasks. Data

preprocessing is conducted to address issues that may hinder data processing, primarily because of the

inconsistent format of a significant portion of the collected crawled data. Given the diverse nature of data, an

initial processing stage for standardizing language is highly necessary. For instance, Indonesianized English

words such as “donwori” (meaning “don’t worry”) require conversion to overcome data inconsistencies.

These steps involve converting the text into an appropriate format and categorizing it based on predetermined

classes. After the conversion is completed, the subsequent step involves text classification, which entails

grouping or categorizing the data according to predetermined rules, using Indonesian medical terms.

2.3. Comparing the combination of fuzzy string-matching method

To achieve optimal results, we compared different combinations of fuzzy methods: i) Levenshtein

Damerau distance + Jaro Winkler distance and ii) Jaro Winkler distance + Rabin Carp. The purpose of this

comparison was to determine the combination that yielded the highest percentage and add complexity to

improve the results. The combination with the highest result was then used for dynamic inference to support

the application of the self-attention method, similar to the bidirectional encoder representations from

transformer (BERT) language model. This approach aims to support the development of IM-BERT by

modifying the standard fuzzy method and incorporating self-attention features. The fuzzy comparison

method involves several processes: i) Checking the Indonesian sentence patterns, ii) checking bulk

documents, iii) continuous development of the dictionary to update and expand existing vocabularies, and iv)

automatic replacement of word suggestions to immediately correct misspelled words.

2.3.1. Levensten Damerau distance versus Jaro Winkler distance

The Damerau-Levenshtein distance function operates on finite strings from the alphabet and returns

an integer. The distance matrix is calculated based on strings S1, S2, and S3, and it satisfies certain conditions:

i) non-negativity: 𝑑(𝑆1, 𝑆2) ≥ 0; ii) non-degeneracy: 𝑑(𝑆1, 𝑆2) = 0 if and only if 𝑆1 = 𝑆2; iii) symmetry:

𝑑(𝑆1, 𝑆2) = 𝑑(𝑆2, 𝑆1); iv) triangle inequality: 𝑑(𝑆1, 𝑆2) + 𝑑(𝑆2, 𝑆3) ≥ 𝑑(𝑆1, 𝑆3). The sorting process in the

Damerau-Levenshtein distance involves determining the smallest value for each error. On the other hand, the

Jaro-Winkler distance algorithm utilizes a different sorting process compared to the Damerau-Levenshtein

distance. In the Jaro-Winkler distance algorithm, words are considered similar when the distance value is

one, whereas in the other three algorithms, words are considered similar when the distance value is zero.

We combined the Damerau-Levenshtein distance and Jaro-Winkler distance algorithms as shown in

Figure 2 to detect spelling mismatches in Indonesian words and transform words, including OOV words and

multilanguage phrases. When a mismatch is detected between the spelling of a document and the spelling in

the Indonesian medical dictionary and OOV dictionary, the system displays correct word suggestions using

the Jaro-Winkler distance algorithm. Based on the displayed word choices, the misspelled words in the script

were corrected by selecting an appropriate word solution. If no more spelling errors were found, the

document was considered valid.

2.3.2. Jaro Winkler distance versus Rabin-Karp

The Jaro-Winkler distance algorithm is commonly used to measure the similarity between two

strings and is often employed to detect plagiarism cases in documents [26], [27]. This algorithm is faster and

more efficient for short strings owing to its effective quadratic-runtime complexity. The Jaro-Winkler

distance algorithm involves three steps: i) calculating the length of the strings [28], ii) determining the

https://www.thejakartapost.com/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 819-829

822

number of similar characters between the two strings [29], and iii) determining the number of transpositions

[30]. The Jaro-Winkler distance (𝑑𝑗) is calculated using (1) for two strings, s1 and s2:

dj =
1

3
x (

m

s1
+

m

s2
+

m−t

m
) (1)

where 𝑚 is the number of similar characters, 𝑠1 is the length of string-1, 𝑠2 is the length of string-2, and t is

the number of transpositions.

The Rabin-Karp algorithm utilizes the hash method for performing multiple searches [31]. The steps

involved in Rabin-Karp include: i) removing punctuation marks from the document and converting the text to

lowercase for the search; ii) dividing the texts into grams with a predefined k-gram value; iii) calculating the

hash value using the rolling hash function for each gram, following the formula: h=c1*bk-1|c2*bk-2 |...| ck-1*b|

ck; iv) identifying matching hash values between two texts; and v) determining the similarity between two

pieces of text using Dice’s similarity coefficient equation.

𝑆 =
2∗𝑐

𝐴+𝐵
 (2)

where S represents the similarity value, C represents the same k-gram value of the text being compared, A

represents the number of k-grams in the first text, and B represents the number of k-grams in the second text.

We combined the two Jaro-Winkler distance algorithms and the Rabin-Karp algorithm as shown in Figure 3

by dividing the tasks into text inputs. The single-pattern text input was processed using the Jaro-Winkler

distance. Multiple-pattern text inputs and OOV text were processed using the Rabin-Karp algorithm.

Figure 2. Combination of Damerau Levenshtein distance with Jaro-Wingkler

Figure 3. Combination of Rabin-Karp with Jaro-Wingkler

Int J Elec & Comp Eng ISSN: 2088-8708 

Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot (Wiwin Suwarningsih)

823

2.4. Building self attention by generating fuzzy string-matching models

The combination of fuzzy string-matching methods aims to perform text classification while

accounting for additional noise in the form of spelling errors [27]. The input data generated from the text

classification results are used for the self-attention process [21]. The stages for building self-attention have

been adapted from previous studies. The interaction stages between the inputs are illustrated in Figure 4.

Figure 4. Interaction process between n inputs

As shown in Figure 4, several n inputs were generated from the selection results using a

combination of fuzzy string-matching methods. The following stages involve the interactions between these

inputs. The initial stage involves preparing the inputs by determining n inputs and m dimensions, resulting in

n×m dimensions. The second step was the initialization of the input weights as the key, query, and value. In

this study, we used a neural network to adjust the weights. The weights were assigned small numbers and

then initialized using a random Gaussian distribution. This initialization was performed only once before the

training.

The third step involves calculating the attention scores for Input-1 using the key representation for

Input-1. We then applied the same set of weights to obtain the key representations for Input-2 and Input-3

and performed the same to obtain the value representation for each input. To accelerate this process, we add a

bias vector to the matrix product. In the fourth step, we calculated the attention score for Input-1 by taking

the dot product between the queries of Input-1 and all keys, including itself. With n key representations, we

obtained attention scores. It is worth noting that we used only queries from Input-1. This step is known as dot

product attention and is one of the several scoring functions. Other scoring functions include scale-point

products and additives/concats.

The fifth step involves calculating the softmax function, which acts as the last activation function of

the neural network. It normalizes the network output into a probability distribution based on the predicted

output classes [32]. The standard softmax function is defined within the range of K [0, 1] and can be

expressed using (3).

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1, … , 𝐾 𝑎𝑛𝑑 𝑧 = (𝑧1, … 𝑧𝐾) ∈ 𝑅𝐾 (3)

The sixth step involved multiplying the scores with the values. We determined the maximum

attention score for each input and multiplied it by the corresponding value, resulting in n alignment vectors,

known as weighted values. The seventh step involved adding the weighted values to obtain Output-1. We

took all weighted values and added them element-wise, resulting in a vector [x, y, z] as Output-1. This was

based on the query representation of Input-1 interacting with all the other keys, including itself. The last step

was to repeat steps 4–7 for Input-2 and Input-3, producing Output-2 and Output-3, respectively.

2.5. Model overview IM-BERT

The self-attention mechanism used in this study, as depicted in Figure 4, was employed to capture

global context information, and handle dynamic inference processes when capturing distant word features

stored in the dictionary. The self-attention mechanism focuses on the target word and calculates the weight of

dependence within a sentence. This approach helped alleviate distance-related issues between words in the

sentence.

The main architecture of the proposed model is shown in Figure 5. In Figure 5(a), the model process

of IM-BERT consists of three components: i) the text classification process, which handles additional noise

in the form of spelling errors and OOV words. ii) The self-attention module allows inputs to interact with

each other (“self”) and determine which inputs require more attention (“attention”). The output represents the

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 819-829

824

aggregate of these interactions and scores generated from the n-input process. iii) Once the interaction

process between inputs is complete, it is necessary to determine which inputs receive the most attention. This

was achieved by calculating the maximum aggregate value of the interaction and attention scores.

In Figure 5(b) explain the simulation process for the pre-training task on input data, focusing on the

comparison of two words, “midtest” and “meaning.” This stage serves to illustrate the process of fuzzy string

matching and distance calculation using the combination of models we employ. In this illustration,

Figure 5(b) demonstrates the simulation process using Damerau-Levenshtein + Jaro-Winkler distance for

similarity text process and count of distance process. The next step is determining inputs; attention involves

considering input values, keys, queries, and outcomes, all of which are represented as vectors. The model

proceeds by calculating the output as a weighted sum of these input values. Each value’s weight is

determined by a function that is compatible with the initial query and the corresponding key value.

(a)

(b)

Figure 5. Model architecture of IM-BERT (a) model process of IM BERT and (b) simulation process using

IM-BERT model

Int J Elec & Comp Eng ISSN: 2088-8708 

Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot (Wiwin Suwarningsih)

825

3. RESULTS AND DISCUSSION

3.1. The results of the comparison of the combination of fuzzy string-matching methods to find answers

This section presents the results of training and testing data using a combination of fuzzy string

methods. This stage was performed to determine the best combination for matching words. The discussion

consists of two combinations: i) the combination of the Levenshtein–Damerau distance + the Jaro-Winkler

distance, and ii) the Rabin-Karp distance + the Jaro-Winkler distance.

3.1.1. Combination of Damerau Levenshtein distance with Jaro-Winkler distance (DL-JW)

The combination of the Damerau-Levenshtein distance and Jaro-Winkler distance involved dividing

the functions as follows: The Damerau-Levenshtein distance performed word comparison by focusing on five

types of errors: i) insertion of a letter or character, for example, “compny” was inserted 1 letter into

“company”; ii) Deletion of a letter or character, for instance, the word “companye” was deleted by

“company”; iii) Substitution of a letter with another letter, for example the word “compani” was replaced

with “company”; iv) the sequential swapping of letters, for instance “cumpany” by changing the letters to

“company” by changing the letters in this study, we added one type of error handling, that is; v) replacing

words included in OOV with standard words.

The results of the Damerau-Levenshtein distance process were then compared with the spelling of

each token using the Jaro-Winkler distance algorithm. The principle is to compare the query token with the

list of words in the database. If there was a match, the processed word was considered correct, and the

proximity distance was not calculated. If there was a discrepancy, the processed word was considered

incorrect and the distance between the words in the database was calculated. A larger proximity value

indicated a higher similarity between the compared words, whereas a smaller proximity value indicated less

similarity. Out-of-vocabulary words were converted into standard words using a special OOV word

dictionary.

The optimal use of these two algorithms helped detect inconsistencies in the spelling of Indonesian

words (in Twitter texts or documents) compared to the data sources in the dictionary. The Damerau-

Levenshtein distance algorithm corrects incorrect words and provides word suggestions based on the closest

(smallest) distance between the spelling of the document and the spelling in the Indonesian dictionary. On the

other hand, the Jaro-Winkler distance algorithm provides the correct word solution based on the high distance

value obtained by comparing the word's spelling in the document with the word in the Indonesian dictionary.

3.1.2. Combination of Rabin Carp with Jaro-Winkler distance (RC-JW)

The second combination involves dividing the functions as follows. The Jaro-Winkler distance

measures the similarity between two strings and detected sentences estimated to be the same as other

sentences in the data dictionary. The higher the Jaro-Winkler distance between the two strings, the more

similar they were. On the other hand, the Rabin-Karp algorithm was used to search for multiple patterns and

out-of-vocabulary words in a combination of multilanguage sentences (Indonesian + regional language or

Indonesian + English).

The Jaro-Winkler distance algorithm is effective in approximate string matching and produces

accurate results for matching two short strings. This combination aims to overcome the limitations of the

Rabin-Karp algorithm in the single-pattern search process by combining it with the Jaro-Winkler algorithm.

The merging process involved preprocessing and forming K-gram data, followed by calculating the hash

value of each K-gram using the Rabin-Karp algorithm. Subsequently, the Jaro-Winkler algorithm is used to

find the same hash value and calculate the percentage level of similarity.

3.2. String matching training and testing results

In the experiments conducted on the combination of fuzzy string-matching algorithms, the aim was

to evaluate the performance of the combination during both training and testing phases. The training data

consisted of 76,213 sentences, whereas the testing data comprised 23,102 sentences. The training process

utilized appropriate hardware and software to generate the optimal models.

The dataset used for training and testing contained a variety of sentences, including basic words,

prefixed words, suffixed words, affixed words, conjunctions, prepositions, Indonesian standard words,

phrases consisting of multiple languages, and out-of-vocabulary words. The training and testing of this

combination of fuzzy string-matching algorithms involved the detection and correction of inappropriate

Indonesian vocabularies. Corrections were made by providing correct word solutions, which involved

processes such as replacement, exchange, insertion, deletion of characters, and transformation of OOV words

from incorrect terms to correct ones.

Based on the data presented in Table 1, it can be concluded that the combination of the

Rabin-Carp + Jaro-Winkler distance algorithm outperformed the combination of the Damerau Levenshtein

distance + Jaro-Winkler distance during both training and testing. Further analysis revealed that the dataset

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 819-829

826

used in the study exhibited a wide variety of sentence patterns, with a higher number of single patterns than

multiple patterns. The Rabin-Carp + Jaro-Winkler distance algorithm showed a superior ability to transform

words containing out-of-vocabulary (OOV) terms, as it required fewer steps in detecting and correcting

incorrect and inappropriate words. The algorithm’s use of k-Gram and determination of word weights

facilitated the relevance judgment process, ensuring that the suggested words generated by the algorithm

were appropriate. Additionally, the prefix scale value and length of the prefix provided indicators of

character similarities and the number of similarities between the compared sentences.

Table 1. The results of string matching with a combination of fuzzy methods
Combination Method Training Result Testing Result

Delete Add Change Swap Transform Delete Add Change Swap Transform

DL-JW Distance 0.74 0.89 0.70 0.71 0.72 0.80 0.92 0.80 0.79 0.75

RC-JW Distance 0.79 0.90 0.77 0.78 0.76 0.83 0.95 0.82 0.82 0.80

3.2.1. Determining the answers using self attention

The self-attention mechanism we built was used to determine the answers to Indonesian Medical

question answering by weighting the possessed knowledge. In designing the question-answering training

algorithm, the Rabin-Carp + Jaro-Winkler distance algorithm was employed to facilitate implementation. The

knowledge weighting process consisted of the following steps: i) applying the Rabin-Carp + Jaro-Winkler

distance ranking algorithm, ii) preprocessing the knowledge input, iii) initializing the knowledge using the

Rabin-Carp + Jaro-Winkler distance algorithm, and iv) selecting the knowledge with the highest result.

After obtaining the knowledge with the highest weight, an assessment was performed using the

IM-BERT question-answering model. The answering scoring process involved: i) assigning scores to the

answers; ii) providing the IM-BERT question answering model with the input knowledge obtained through

crawling; iii) initializing the IM-BERT question-answering (QA) model pipeline and tokenizer; and iv)

processing the knowledge in the model and adding the candidate answers to an array. The answer collection

was based on the highest score obtained from the IM-BERT question-answering model.

The answer-taking process follows these stages: i) ranking the candidate answers, ii) inputting the

candidate answer array, and iii) sorting the candidate answers based on the highest score. Once the answers

were obtained, it was necessary to evaluate the IM-BERT question-answering model. The evaluation utilized

the k-fold algorithm with a statistical approach, including the following steps: i) providing input to the

IM-BERT QA model using SQuAD data version 1.1, ii) filtering the SQuAD data based on question types,

iii) evaluating the questions based on their types using k-fold, and iv) putting the evaluation results in JSON

format.

3.2.2. Training the IM-BERT model

Once IM-BERT was pretrained with the available dataset, the training process was initiated. Prior to

the training, the dataset was divided into three categories: training, validation, and testing. Owing to the large

size of the datasets, loading them all into memory at once can overwhelm the system’s memory capacity and

slow down the program. To overcome this, a data loader is employed to efficiently manage the memory and

enhance the training speed. The data loader, a function in PyTorch, acts as an iterator that combines the

dataset and samples. Because the dataset was divided into three parts, three data loaders were utilized: one

for training, one for validation, and one for testing.

During the training stage, BERT was fine-tuned by adjusting its hyperparameters. Most of the

hyperparameters used for fine-tuning BERT remained the same as those used in regular BERT training. The

hyperparameters employed in BERT training included: i) Batch size, which determines the number of

samples entered the network before weight adjustment; and ii) Epoch, which represents the number of times

the network processes the entire dataset. An epoch is completed when all instances have passed through the

network during both forward and backward passes; iii) The learning rate, which determines the magnitude of

weight changes in the neural network. A higher learning rate facilitates faster gradient movement towards

optimal values.

3.2.3. Baseline

As a baseline for our proposed BERT architecture, we compared it with other architectures such as

robustly optimized BERT approach (RoBERTa) and a lite BERT (ALBERT) using our existing dataset. The

training process for Indonesian language models tends to be time-consuming because of limited resources.

Therefore, we conducted a comprehensive training (referred to as “Long Training”) for RoBERTa and

ALBERT. The loss results during training showed a “trough” caused by changes in the corpus distribution.

Int J Elec & Comp Eng ISSN: 2088-8708 

Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot (Wiwin Suwarningsih)

827

This change occurred when transitioning from the Wikipedia corpus, which typically employs a standard

language, to the Twitter corpus. The Twitter corpus is the result of web scraping and contains language-

specific classifications. However, this corpus has the drawback of including inappropriate or offensive words

commonly found on gambling websites and free forums. In our testing, the token dictionary size used

approximately 30,000 sub-tokens for both the sentence piece and byte-level byte-pair encoding (BPE)

methods.

3.2.4. Test results and discussion of self attention on the IM-BERT model

After training the model for approximately 30% of the agreed-upon steps, it exhibited a promising

performance. When tested on the same dataset used in the previous model, there was an improvement of

around 2%-4% in the exact match (EM) and F1 metrics (the harmonic mean of precision and recall). Thus, at

the 30% trained model stage, the model achieved an EM performance of 84.6% and F1 performance of

86.2%. These results indicate that the model surpassed the performances of the RoBERTa and ALBERT

models, which served as our baseline during the initial progress. It is worth noting that these performance

metrics continued to increase as the model was trained further until it reached 100% completion.

The string-change operation was utilized to calculate the number of modifications required to assess

the similarity between strings. The number of differences was determined by summing up the changes made

during each operation. Three operations were used to modify strings: i) deletion operation: removing

characters from a word to align it with the target string (T) in relation to the source string (S); ii) insertion

operation: adding a character at a specific index to align the source string (S) with the target string (T); and

iii) exchange operation, that is, replacing a character to align the source string (S) with the target string (T).

The testing process for the string-change operation was used to evaluate the performance of the implemented

research. These performance values can serve as references for future research and system development. In

our system testing, we employed EM and F1-score test metrics. The EM test metric measures the ratio of

correctly calculated answers that matches the answers in the data. In contrast, the F1-score test metric

combines precision and recall. Furthermore, we applied K-Fold cross-validation to determine the best EM

and F1-Score values from various data combinations. The data-sharing ratio used was 80% for the training

data and 20% for the development data.

Based on the data presented in Table 2, the performance of the proposed IM-BERT model exhibited

relatively good results compared to the baseline model. During the training process, RoBERTa outperformed

the proposed IM-BERT model. This was expected because RoBERTa was specifically designed to handle

Indonesian datasets. However, during testing, IM-BERT showed superior performance compared with

RoBERTa, albeit with a small difference in values.

One factor contributing to the lower performance of the proposed language model was the

occurrence of a drastic drop in the loss value, referred to as the “Trough” phenomenon. This occurred

because some data had similar structures, making it easier for the model to make accurate predictions. The

fluctuating loss value did not indicate a decrease in the capacity of the neural network. This was primarily

due to loading the corpus data sequentially instead of randomly, which was necessitated by the limited

resources. Consequently, the corpus had to be loaded into separate parts rather than all at once. Certain

improvements must be made to the proposed BERT model. First, the string-matching implementation process

needs enhancement to enable more effective self-attention, which simplifies the significant transformation

processes. In addition, there is a need to incorporate knowledge related to COVID-19. At the time of writing

this document, there were limited freely accessible Indonesian language data on COVID-19, in contrast to the

availability of scientific research data on COVID-19 in English. Translating knowledge directly from English

to Indonesian without proper curation by linguists could lead to misunderstandings and misperceptions.

Table 2. Proposed comparison table of IM-BERT with baseline
Method Training Testing

EM F1 EM F1

IM-BERT 84.6% 86.2% 85.7% 87.6%

ABERTA 84.1% 85.9% 85.1% 86.9%

RoBERTa 84.7% 86.3% 85.6% 87.5%

4. CONCLUSION

The combination of the Rabin-Karp algorithm with the Jaro-Winkler distance algorithm

demonstrated higher accuracy than the combination of the Damerau-Levenshtein distance algorithm and the

Jaro-Winkler distance algorithm. The use of k-grams in the Rabin-Karp algorithm and the complementary

similarity processes of these two algorithms contributed to the generation of appropriate words or sentences.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 819-829

828

Furthermore, the fuzzy string-matching model with the modified word feature structure successfully utilized

a combination of the Rabin-Karp algorithm and the Jaro-Winkler distance algorithm. This was evident in the

formation of the self-attention mechanism, which is the IM-BERT language model capable of analyzing

words with various singular and plural sentence patterns. The performance of IM-BERT was evaluated using

metrics such as EM, with a score of 85.7% and F1-score of 87.6%, surpassing the baseline model by 0.1%.

ACKNOWLEDGEMENTS

The author expresses gratitude to the Research Center for Data and Information Sciences, National

Research and Innovation Agency (BRIN), for providing facilities during the manuscript development

process.

REFERENCES
[1] A. Seongyong, H. Hong, H. Kim, J.-H. Ahn, D. Baek, and S. Kang, “A hardware-efficent multi-character string matching

architecture using brute-force algorithm,” in 2009 International SoC Design Conference (ISOCC), 2009, pp. 464–467, doi:

10.1109/SOCDC.2009.5423922.

[2] A. M. A. Ibrahim and M. E. Mustafa, “Comparison criteria between matching algorithms texts application on (horspool’s and
brute force algorithms),” Journal of Advanced Computer Science and Technology, vol. 4, no. 1, Apr. 2015, doi:

10.14419/jacst.v4i1.4283.
[3] P. Manikandan and D. Ramyachitra, “PATSIM: Prediction and analysis of protein sequences using hybrid Knuth-Morris Pratt

(KMP) and Boyer-Moore (BM) algorithm,” Gene, vol. 657, pp. 50–59, May 2018, doi: 10.1016/j.gene.2018.02.069.

[4] D. Shapira and A. Daptardar, “Adapting the Knuth-Morris-Pratt algorithm for pattern matching in Huffman encoded texts,”
Information Processing & Management, vol. 42, no. 2, pp. 429–439, Mar. 2006, doi: 10.1016/j.ipm.2005.02.003.

[5] Z. Xiong, “A composite Boyer-Moore algorithm for the string matching problem,” in 2010 International Conference on Parallel

and Distributed Computing, Applications and Technologies, Dec. 2010, pp. 492–496, doi: 10.1109/PDCAT.2010.58.
[6] R. Rahim, A. S. Ahmar, A. P. Ardyanti, and D. Nofriansyah, “Visual approach of searching process using Boyer-Moore

algorithm,” Journal of Physics: Conference Series, vol. 930, Dec. 2017, doi: 10.1088/1742-6596/930/1/012001.

[7] O. Sychev, “Open-answer question with regular expression templates and string completion hinting,” Software Impacts, vol. 17,
Sep. 2023, doi: 10.1016/j.simpa.2023.100539.

[8] D. Belazzougui and M. Raffinot, “Approximate regular expression matching with multi-strings,” Journal of Discrete Algorithms,

vol. 18, pp. 14–21, Jan. 2013, doi: 10.1016/j.jda.2012.07.008.
[9] S. ShabnamHasan, F. Ahmed, and R. Surovi Khan, “Approximate string matching algorithms: a brief survey and comparison,”

International Journal of Computer Applications, vol. 120, no. 8, pp. 26–31, Jun. 2015, doi: 10.5120/21247-4048.

[10] R. Rodriguez-Torrealba, E. Garcia-Lopez, and A. Garcia-Cabot, “End-to-end generation of multiple-choice questions using text-
to-text transfer transformer models,” Expert Systems with Applications, vol. 208, Dec. 2022, doi: 10.1016/j.eswa.2022.118258.

[11] C. Zhai and S. Wibowo, “A systematic review on cross-culture, humor and empathy dimensions in conversational chatbots: the

case of second language acquisition,” Heliyon, vol. 8, no. 12, Dec. 2022, doi: 10.1016/j.heliyon.2022.e12056.
[12] N. A. I. Omoregbe, I. O. Ndaman, S. Misra, O. O. Abayomi-Alli, and R. Damaševičius, “Text messaging-based medical diagnosis

using natural language processing and fuzzy logic,” Journal of Healthcare Engineering, pp. 1–14, Sep. 2020, doi:

10.1155/2020/8839524.
[13] X. Wang, H. Zhang, and Z. Xu, “Public sentiments analysis based on fuzzy logic for text,” International Journal of Software

Engineering and Knowledge Engineering, vol. 26, pp. 1341–1360, Nov. 2016, doi: 10.1142/S0218194016400076.

[14] J. P. Carvalho, F. Batista, and L. Coheur, “A critical survey on the use of fuzzy sets in speech and natural language processing,” in
2012 IEEE International Conference on Fuzzy Systems, Jun. 2012, pp. 1–8, doi: 10.1109/FUZZ-IEEE.2012.6250803.

[15] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, pp. 1091–1095, Jun. 2007, doi: 10.1109/TPAMI.2007.1078.
[16] J. Faes, J. Gillis, and S. Gillis, “Phonemic accuracy development in children with cochlear implants up to five years of age by

using Levenshtein distance,” Journal of Communication Disorders, vol. 59, pp. 40–58, Jan. 2016, doi:

10.1016/j.jcomdis.2015.09.004.
[17] Y. Chaabi and F. A. Allah, “Amazigh spell checker using Damerau-Levenshtein algorithm and N-gram,” Journal of King Saud

University-Computer and Information Sciences, vol. 34, no. 8, pp. 6116–6124, Sep. 2022, doi: 10.1016/j.jksuci.2021.07.015.

[18] C. Zhao and S. Sahni, “String correction using the Damerau-Levenshtein distance,” BMC Bioinformatics, vol. 20, Jun. 2019, doi:
10.1186/s12859-019-2819-0.

[19] T.-T.-Q. Tran, T.-C. Phan, A. Laurent, and L. DrOrazio, “Improving hamming distance-based fuzzy join in MapReduce using

bloom filters,” in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2018, pp. 1–7, doi: 10.1109/FUZZ-
IEEE.2018.8491658.

[20] S. D. Galbraith and L. Zobernig, “Obfuscated fuzzy hamming distance and conjunctions from subset product problems,” in

Theory of Cryptography, Springer International Publishing, 2019, pp. 81–110.
[21] M. Pota, M. Esposito, and G. De Pietro, “Learning to rank answers to closed-domain questions by using fuzzy logic,” in 2017

IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul. 2017, pp. 1–6, doi: 10.1109/FUZZ-IEEE.2017.8015745.

[22] D. Castells-Rufas, “GPU acceleration of Levenshtein distance computation between long strings,” Parallel Computing, vol. 116,
Jul. 2023, doi: 10.1016/j.parco.2023.103019.

[23] M. Li, G. Wang, S. Liu, and J. Yu, “Multi-keyword fuzzy search over encrypted cloud storage data,” Procedia Computer Science,

vol. 187, pp. 365–370, 2021, doi: 10.1016/j.procs.2021.04.075.
[24] J. E. J. Aben, A. C. Timmermans, F. Dingyloudi, M. M. Lara, and J.-W. Strijbos, “What influences students’ peer-feedback

uptake? Relations between error tolerance, feedback tolerance, writing self-efficacy, perceived language skills and peer-feedback

processing,” Learning and Individual Differences, vol. 97, Jul. 2022, doi: 10.1016/j.lindif.2022.102175.
[25] S. McKeown and W. J. Buchanan, “Hamming distributions of popular perceptual hashing techniques,” Forensic Science

International: Digital Investigation, vol. 44, Mar. 2023, doi: 10.1016/j.fsidi.2023.301509.

Int J Elec & Comp Eng ISSN: 2088-8708 

Generate fuzzy string-matching to build self attention on Indonesian medical-chatbot (Wiwin Suwarningsih)

829

[26] R.-D. Li, H.-T. Ma, Z.-Y. Wang, Q. Guo, and J.-G. Liu, “Entity perception of two-step-matching framework for public opinions,”
Journal of Safety Science and Resilience, vol. 1, no. 1, pp. 36–43, Sep. 2020, doi: 10.1016/j.jnlssr.2020.06.005.

[27] D. Chang, M. Ghosh, S. K. Sanadhya, M. Singh, and D. R. White, “FbHash: A new similarity hashing scheme for digital

forensics,” Digital Investigation, vol. 29, pp. S113–S123, Jul. 2019, doi: 10.1016/j.diin.2019.04.006.
[28] A. Bouguettaya et al., Eds., Web information systems engineering-WISE 2017, vol. 10569, Cham: Springer International

Publishing, 2017.

[29] S. C. Cahyono, “Comparison of document similarity measurements in scientific writing using Jaro-Winkler distance method and
paragraph vector method,” IOP Conference Series: Materials Science and Engineering, vol. 662, no. 5, Nov. 2019, doi:

10.1088/1757-899X/662/5/052016.

[30] I. Ahamed, M. Jahan, Z. Tasnim, T. Karim, S. M. S. Reza, and D. A. Hossain, “Spell corrector for Bangla language using
Norvig’s algorithm and Jaro-Winkler distance,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 10, no. 4, pp.

1997–2005, Aug. 2021, doi: 10.11591/eei.v10i4.2410.

[31] A. P. U. Siahaan et al., “Combination of levenshtein distance and rabin-karp to improve the accuracy of document equivalence
level,” International Journal of Engineering and Technology, vol. 7, no. 2.27, Jun. 2018, doi: 10.14419/ijet.v7i2.27.12084.

[32] A. B. Khoir, H. Qodim, B. Busro, and A. R. Atmadja, “Implementation of rabin-karp algorithm to determine the similarity of

synoptic gospels,” Journal of Physics: Conference Series, vol. 1175, Mar. 2019, doi: 10.1088/1742-6596/1175/1/012120.

BIOGRAPHIES OF AUTHORS

Wiwin Suwarningsih graduated from her bachelor’s degree at informatics

program, Adityawarman Institute of Technology Bandung in 1996. She got her master’s

degree in 2000 at the informatics study program and doctoral degree in 2017 at the School of

Electrical and Informatics Engineering, Bandung Institute of Technology. Currently, she works

at the Research Center for Data and Information Sciences, National Agency of Research and

Innovation (BRIN, Indonesia). Her research interests are artificial intelligence, computational

linguistics, Indonesian natural language processing and text mining, information retrieval and

question answering systems. Since 2017, she has a project about the Indonesian medical

information retrieval using deep learning to support of high-quality medical information. One

of the study’s objectives is to provide early detection system for chili varieties. She can be

contacted at email: wiwin.suwarningsih@brin.go.id.

Nuryani graduated from her bachelor’s degree at Computer Science, Gadjah

Mada University (UGM) in 2003. She got her master’s degree at electrical engineering,

Bandung Institute of Technology (ITB) in 2013. Currently, she is a doctoral candidate of the

School of Electrical and Informatics Engineering, Bandung Institute of Technology and works

at the National Agency of Research and Innovation (BRIN, Indonesia). Her research interests

are computer network, deep learning, and natural language processing especially in sentiment

analysis. She can be contacted at email: nury012@brin.go.id.

https://orcid.org/0000-0003-0155-6329
https://scholar.google.co.id/citations?hl=id&user=3LVqnv4AAAAJ&view_op=list_works&is_public_preview=1
https://www.scopus.com/authid/detail.uri?authorId=56516977800
https://www.webofscience.com/wos/author/record/3919537
https://orcid.org/0000-0003-3159-4780
https://scholar.google.com/citations?hl=en&user=6X-YGH8AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57217684602
https://www.webofscience.com/wos/author/record/JHT-3756-2023

