
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 3, June 2024, pp. 3187~3196 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i3.pp3187-3196      3187  

 

Journal homepage: http://ijece.iaescore.com 

Deep learning and quantization for accurate and efficient multi-

target radar inference of moving targets 
 

 

Nyasha Ernest Mashanda1, Neil Watson1, Robert Berndt2, Mohammed Yunus Abdul Gaffar3 
1Department of Statistical Sciences, Faculty of Science, University of Cape Town, Cape Town, South Africa 

2Radar and Electronic Warfare, Defence and Security, Council for Scientific and Industrial Research, Pretoria, South Africa 
3Department of Electrical Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, 

Cape Town, South Africa 
 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 14, 2023 

Revised Sep 3, 2023 

Accepted Sep 12, 2023 

 

 Real-time, radar-based human activity and target classification is useful for 

wide-area ground surveillance. However, the feasibility of deploying deep 

learning (DL) models in radar-based systems with limited computational 

resources remains unexplored. This paper investigated the effect of 

quantization on model throughput and accuracy for deployment in radar 

systems. A seven-layer residual network was proposed to classify ground-

moving targets and achieved a test accuracy of 87.72%. The model was then 

quantized to 16-bit and 8-bit precision, resulting in a 3.8 times speedup in 

inference throughput, with less than a 0.4% drop in test and validation 

accuracy. The results showed that quantization can improve inference 

throughput with a negligible decrease in target classification accuracy. The 

increase in throughput and reduction in computational expense that comes 

with quantization promotes the feasibility of the deployment of DL models 

in systems with limited computational resources. The findings of this paper 

hold significant promise for the successful use of quantized models in 

modern radar systems, while adhering to stringent size, weight and power 

consumption constraints. 
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1. INTRODUCTION 

Human activity and target classification has gained interest in recent years due to its applications in 

indoor and outdoor surveillance systems for health monitoring [1], border control [2] and security [3]. 

Different sensor systems have been used for classification, including cameras [4], Lidar [5] and radar [6]. 

Unlike cameras or Lidar, the performance of a radar sensor is less sensitive to varying weather conditions and 

different levels of light [7]. Furthermore, radar offers a more extended detection range than optical sensors 

[6] and can detect targets behind opaque objects [8]. These advantages make radar more suitable for outdoor 

surveillance systems to curb illegal activities such as poaching, smuggling and livestock theft. 

Traditionally researchers have used various techniques to extract pre-defined features for 

classification from radar data. Examples of such pre-defined features include those related to the physical 

characteristics of the target [9] and discrete cosine transform coefficients [10]. The features were then used 

for classification using support vector machines [11] or random forests [12]. This feature estimation and 

extraction process is highly dependent on human experience and domain knowledge, which makes it 

susceptible to human error. The advent of deep learning (DL) has allowed an alternative approach to solving 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:nyashamash001@gmail.com


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 3, June 2024: 3187-3196 

3188 

the classification problem. DL models enable the automatic identification and extraction of features, which 

enhances the feasibility of developing a radar-based classification system. 

Recent research has shown more complex DL models being used to improve radar-based 

classification accuracy. In one of the first works, Kim and Moon [13] used a three-layer convolutional neural 

network (CNN) to achieve a classification accuracy of 90.9% on seven human activities. Subsequently, 

another investigation [14] developed a convolutional auto-encoder which yielded an accuracy of 94.20% on 

12 human activities. Recently, Du et al. [15] utilized a ResNet18 model to achieve an accuracy of 95.43% on 

a six-class human activity dataset. The ResNet18 model had 11 million trainable parameters which makes it 

computationally expensive to run for inference purposes. This challenge is compounded in an outdoor setting 

using hardware that has size, weight, power and cost limitations, in addition to stringent latency 

requirements. Therefore, real-time inference in such environments necessitates careful consideration of a 

model’s computational complexity and associated performance trade-offs. 

In image classification, researchers have proposed various ways to compress DL models to reduce 

their computational requirements, including quantization [16], pruning [17] and knowledge distillation [18]. 

The deployment of DL models in radar systems requires computational efficiency, especially in systems with 

limited resources. In surveillance systems, target classification should be done accurately and within a limited 

specified time interval. The ability to maintain high accuracy is important to achieve practically useful real-

time radar-based classification using hardware that has limited computational resources. There has been 

limited work on optimizing the size of models to improve the inference time for radar-based classification. 

Thus, the original contribution of this paper is to investigate how quantization affects both the classification 

accuracy and throughput of a DL model utilized for the purpose of classifying radar data. 

 

 

2. METHOD 

2.1.  Problem definition 

Moving targets illuminated by radar signals return frequency-modulated signals through the Doppler 

effect. The Doppler effect is used to estimate the radial velocity of a moving target using (1). 

 

𝑓𝑑 ≈
2𝑣 ∙ 𝑓𝑐

𝑐
  (1) 

 

where 𝑓𝑑  and 𝑓𝐶  are the Doppler and carrier frequencies, respectively, 𝑣 is the target radial velocity, and 𝑐 is 

the speed of light. 

A target’s radial velocity and that of its moving parts can be observed over time in spectrograms as 

micro-Doppler signatures. The micro-Doppler signatures for targets with different motion patterns, such as 

walking and running are visually distinct [9]. As a result, CNNs have been used to automatically classify 

moving targets with different motion patterns based on their Doppler signatures in [13], [19], [20]. 

 

2.2.  Data collection and pre-processing 

A C-band, phased array, pulse-Doppler radar was used for data collection. The radar operated at a 

center frequency of 5.45 GHz, a pulse repetition frequency of 10 kHz and a pulse bandwidth of 25 MHz. 

Using the radar, the following activities were measured: one human walking, one human running, two 

humans walking within 1 meter apart, moving vehicles, clutter and noise with no moving targets, and a  

25 cm diameter metallic sphere swinging towards and away from the radar. The ranges of the targets were 

between 175 meters and 1,400 meters. Baseband in-phase and quadrature samples collected from measuring 

activities were pulse-compressed [21], beamformed [22] and then decimated to an effective pulse repetition 

frequency of 714 Hz. Decimation was performed because the Doppler bandwidth provided by 10 kHz was 

much wider than needed. 

A notch filter was then applied to the data to attenuate clutter returns and returns from stationary 

objects. Spectrograms were created from the filtered data using the short-time Fourier transform (STFT). 

Three parameters were considered in computing the STFT: window type, overlap and length. In order to 

strike an optimal balance between frequency and time resolution in the resulting spectrogram, a Hamming 

window function with a 50% overlap was selected. The STFT procedure commenced by partitioning each 

signal into smaller windows utilizing the Hamming window function. Following this, the discrete Fourier 

transform was independently applied to each of these windows. Thus, the STFT of a signal 𝑥[𝑘] was given as 

(2): 

 

𝑋𝑆𝑇𝐹𝑇[𝑚, 𝑛]  =  ∑ 𝑥[𝑘]𝑔[𝑘 − 𝑚]𝑒−𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1
𝑘=0   (2) 
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where 𝑔[𝑘] denotes an N-point window function, 𝑚 was the time index, and 𝑛 was the frequency index. A 

spectrogram was created by applying the modulus of the STFT result. 

 

𝑆[𝑚, 𝑛] = |𝑋𝑆𝑇𝐹𝑇[𝑚, 𝑛]|2 (3) 

 

The selection of the optimal window length, or coherent processing interval (CPI), is a critical 

aspect of STFT computation. Increasing the CPI with in-phase samples enhances the signal-to-noise ratio 

(SNR) [23], thereby improving spectrogram signal quality. However, as the coherent processing length 

encompasses out-of-phase samples, the SNR decreases [23], leading to a decline in spectrogram signal 

quality. Hence, the peak signal-to-noise ratio (PSNR) from each spectrogram class was used to select the 

optimal window length. 

In order to determine the optimal PSNR, a methodological approach was adopted, involving the 

random selection of five spectrograms from each class, followed by the computation of the class average 

PSNR. The findings, as depicted in Figure 1, revealed that, for the majority of classes, the average PSNR 

exhibited negligible enhancement beyond a CPI of 0.18 seconds, which corresponded to a window size of 

128. Consequently, a window size of 128 was deemed appropriate for spectrogram computation, as the 

adoption of longer CPIs failed to yield substantial SNR improvements that could sufficiently justify the 

associated increase in computational complexity. 

 

 

 
 

Figure 1. Average PSNR vs. CPI for each activity 

 

 

A sliding window was used to segment the computed spectrogram, similar to the approach taken in 

[20]. The overlapped segmentation process serves as a form of data augmentation [24] which promotes 

enhanced generalization and reduces overfitting in models trained on the data. Each segment was 4 seconds 

long resulting in spectrograms of size 128 by 45 samples. Figure 2 shows extracted spectrograms of the six 

classes in the data. It was observed that the micro-Doppler signatures of the different targets were visually 

unique. Thus, they contained a rich source of information for DL techniques to perform target classification. 

A total of 17,939 spectrogram segments were generated from the measured data. The vehicle class 

had the most segments (4,443) while the sphere swing class was the least represented, with 2,049 examples. 

The segments were split 70%/15%/15% into the train, validation and test datasets on a per-class basis using 

the time of day at which they were recorded. Spectrogram segments were divided with respect to the time of 

recording to avoid leakage of highly correlated spectrograms into the validation and test sets. 

 

2.3.  Network architecture 

Two CNNs shown in Figure 3 were considered in this study. The first CNN used a standard CNN 

architecture with convolutional, max-pooling and fully connected layers. Global average pooling (GAP) was 

applied after the final convolutional layer. The second CNN used residual connections across convolutional 

layers and GAP after the final convolutional layer. 
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Figure 2. Spectrogram segments of the six classes extracted from spectrograms 

 

 

 
 

Figure 3. Architecture of model 1 (left) and 2 (right) 
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The input to each CNN was a 128 by 45 two-dimensional spectrogram. In each convolutional layer, 

the input was convolved with matrices of weights. Batch normalization [25] was applied to the convolution 

output to normalize the data to zero mean and unit variance. The rectified linear unit activation function, as 

described by Nair and Hinton [26], was employed as a non-linear transformation on the normalized output to 

generate feature maps. Subsequently, max-pooling, a technique utilized for achieving spatial invariance in the 

context of feature extraction, was applied, as outlined by Scherer et al. [27]. This technique enables the 

identification of features regardless of their specific locations within the input data. Thereafter, GAP was 

applied to the output of the convolutional and max-pooling layers to mitigate against overfitting and 

potentially improve the classification performance of the CNN [28]. The output was then flattened before 

feeding to the fully connected layers to be classified. 

The second model had residual connections which skipped two layers (i.e., a residual block) thereby 

creating a shortcut connection [29]. The shortcut was an element-wise addition of the input to the output of 

the residual block. This helps to mitigate the vanishing gradient problem which causes accuracy degradation 

as more layers are added to a network [30]. 

 

2.4.  Post-training quantization 

The model that exhibited the highest accuracy was subjected to post-training quantization (PTQ) 

[31], a process that reduces the precision for weights and activations within a trained neural network. Lower 

precision allows efficient use of computational resources and a consequent increase in inference speed [32]. 

The equation (4) was used to quantize 32-bit floating point (FP32) parameter values to 16-bit floating point 

(FP16) parameter values: 

 

𝑥𝑞 = 𝐻𝑎𝑙𝑓(𝑥) (4) 

 

where x is the original FP32 value to be quantized, 𝑥𝑞  is the quantized FP16 value, 𝐻𝑎𝑙𝑓(𝑥) is a function that 

converts the FP32 value x to its FP16 representation using a bit-level transformation. This transformation 

involves converting the 32-bit single-precision sign, exponent, and significant bits to a 16-bit half-precision 

format, which has reduced precision compared to FP32 but retains the same bit pattern. Quantization from 

FP32 to 8-bit integer (INT8) was performed using (5). 

 

𝑥𝑞 = 𝑐𝑙𝑖𝑝 ( 
𝑥𝑓

∆
 ) (5) 

 

where xf is a floating-point value, ∆ is the step size, ⌊·⌉ is a function that applies a rounding policy to round 

rational numbers to representable values in each precision, for example, rounding to integers in INT8 

quantization, clip is a function that clips outliers that fall outside of the dynamic range of a given precision 

and xq is the quantized value. 

Equation (6) was used to compute the step size (∆): 

  

∆=
𝑞𝑟𝑎𝑛𝑔𝑒

𝑁
  (6) 

 

where 𝑞𝑟𝑎𝑛𝑔𝑒  is the size of the quantization range and is determined from the distribution of values to be 

mapped to lower precision. 𝑁 is the number of representable values in each precision. For example, for an 

INT8 precision N is 256. Values outside of the quantization range were clipped to the thresholds. 

Quantization range setting is an important step in determining the step size, which is crucial for 

minimizing errors during quantization. There are several methods for determining the quantization range, 

including max and cross-entropy methods [33]. The max method uses the maximum absolute value of 

observed floating point values, but it is sensitive to outliers and may cause excessive rounding errors. The 

cross-entropy method clips outlier values to increase the resolution of inlier values, reducing rounding errors. 

Therefore, cross-entropy was used for quantization range setting with an input of randomly selected 

spectrogram segments as a calibration dataset as recommended in [31]. 

 

 

3. RESULTS AND DISCUSSION 

All experiments were carried out on a laptop running Ubuntu 18.04, with an Nvidia GTX 1650 GPU 

and Intel Core i5-9300H (2.40 GHz) processor. The models were trained using PyTorch [34] in FP32. Nvidia 

TensorRT [35] was used for model optimization and quantization. Model optimization was achieved through 

layer and tensor fusion, kernel auto-tuning and parallel stream execution. Quantization was applied using 

TensorRT libraries for FP16 and INT8 quantization. 
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3.1.  Model training and hyper-parameters 

Each model applied batch normalization with a momentum of 0.1 and epsilon of 10−5 to achieve fast 

training. Rectified linear unit was used as an activation function. Stochastic gradient descent [36] and 

adaptive moment estimation (Adam) [37] were considered for optimization using different learning rates 

from 0.1 to 10−5 in orders of 10. Adam led to the best validation accuracy results using a learning rate of 10−4 

for the proposed models. Furthermore, decreasing Adam’s learning rate by 50% after every ten epochs 

improved the validation accuracy and helped the models converge. 

Early stopping [38] was also applied to help prevent the models from over-fitting after observing no 

improvement in validation loss for 20 epochs. Various batch sizes were also considered in training both 

models, including 16, 32, 64, 128, and 256. It was found that a batch size of 32 resulted in the highest 

accuracy. Table 1 summarizes the results obtained from the two CNN models. Model 2 achieved a validation 

accuracy of 92.90% on the validation data which was 6 percentage points higher than the validation accuracy 

of model 1. The better performance was likely due to the existence of residual connections, which facilitated 

the addition of more layers to the network to learn more abstract features without degrading its performance 

[29]. 

 

 

Table 1. Accuracy results of models 1 and 2 
Model Number of parameters Training accuracy (%) Validation accuracy (%) 

Model 1 19 206 96.14 86.84 
Model 2 56 454 96.69 92.90 

 

 

Figure 4 shows that model 2 achieved a test accuracy of 95% for all classes, except for the one 

human walking and two humans walking classes. An analysis of the misclassified spectrograms of the one 

human walking class revealed that most of the misclassified spectrograms had micro-Doppler signatures with 

a relatively low SNR. This was due to some of the single human data being measured at the furthest range 

(1,400 meters) of all recordings. The weak micro-Doppler returns made it difficult to distinguish features 

between these two classes, resulting in a degradation in accuracy. 

 

 

 
 

Figure 4. The confusion matrix of model 2 on test data 
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It is noteworthy that the test accuracy achieved by model 2 in human activity classification was 

surpassed by the models presented in [14] and [39], both of which attained accuracies exceeding 90%. This 

observed discrepancy could be attributed to the specific focus of the aforementioned studies on short-range 

distances, typically under 5 meters, thereby leading to more favorable conditions with high SNR. 

Consequently, better-quality spectrograms are generated for the classification task. 

The two models were further compared using ten-fold cross-validation. In cross-validation, the 

training and validation data were combined, and the test data was excluded from the process. The combined 

data was divided into ten folds. The model was trained on nine folds in each training session, using the left-

over fold for validation. Model 1 and model 2 achieved 91.32% and 93.02% average cross-validation 

accuracy, respectively. Therefore, model 2 was chosen as the best model as it showed better predictive 

performance. 

 

3.2.  Effect of quantization on throughput 

PTQ was applied to Model 2 based on a PyTorch floating point 32-bit (PFP32) model. Thereafter, 

the effect of PTQ on throughput and accuracy was investigated. The PFP32 model was optimized by 

TensorRT and then quantized to FP16 and INT8, resulting in the following models: 

a. TFP32 - The TensorRT optimized FP32 model. 

b. TFP16 - TensorRT optimized FP16 model. 

c. TINT8 - TensorRT optimized INT8 model. 

Quantization was performed using a calibration dataset of 84 randomly selected spectrogram 

segments from each of the six classes to make a total of 504 examples. To measure the throughput of the four 

models, 1,000 batches of spectrograms were used. Batch sizes of 16, 32, 64, 128 and 256 were considered. 

The formula used to calculate throughput was as (7): 

 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡 =
𝑁

𝑇
 (𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚𝑠/𝑠) (7) 

 

where 𝑁 is the total number of classified spectrograms and 𝑇 is the total time taken to complete inference. 

The results in Figure 5 show an increase in throughput as the batch size increased. This was because 

bigger batch sizes allow more spectrograms to be processed in parallel, leading to higher throughput. 

However, the throughput plateaued for a batch size greater than 128 due to limitations on the number of 

parallel processes that can be run using the available computational resources. Figure 5 also shows that the 

PFP32 model had the lowest throughput among the four models. The PFP32’s highest throughput was 5,000 

spectrograms/s using a batch size of 256. Quantizing the TensorRT optimized model to INT8 precision 

resulted in the highest speed gain of 3.8 times from 10,000 spectrograms/s to 38,000 spectrograms/s using a 

batch size of 256. 

 

 

 
 

Figure 5. Data throughput vs. batch size and quantization precision 
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It is worth noting that the INT8 model throughput is lower compared to the 5.7 to 7.3 times found in 

[32] using MobileNet on the CIFAR10 and FashionMNIST datasets. This difference can be explained by the 

fact that different models manifest distinct throughout improvements due to their architectural characteristics 

and input data as shown in [32]. 

Furthermore, it is pertinent to consider the potential for enhancing model throughput by the adoption 

of specialized processors optimized for low-precision wide vector arithmetic. Remarkably, the findings in 

[16] elucidate a speedup of up to 10 times when employing the Qualcomm digital signal processor equipped 

with hexagon vector extensions (HVX). Such dedicated processors tailored to low-precision computations 

thus hold promise for bolstering model throughput in practical deployment scenarios. 

 

3.3.  Effect of quantization on accuracy 

After calculating throughput, the accuracy of the four models was compared on the validation and 

test sets to assess how quantization affected the performance of the model. The accuracy results are 

summarized in Table 2. Quantization resulted in a negligible decrease in accuracy in both the validation and 

test data. INT8 quantization had a larger accuracy drop compared to FP16 in both datasets. The maximum 

percentage drop was 0.33% on the validation data and 0.38% on the test data. The percentage drop in 

accuracy was higher for the INT8 model than the FP16 model because of an increase in information loss 

when moving from 32-bit to 8-bit precision (as opposed to 16-bit precision). Furthermore, the drop in 

accuracy was lower than the 1% experienced by MobileNet in [32] which is plausibly due to the different 

model architectures and input datasets considered. 

 

 

Table 2. Comparison results of model 2 with different precisions at a batch size of 256 
Model Validation 

accuracy (%) 

Test accuracy 

(%) 

Latency 

(µs/spectrogram) 
Throughput 

(spectrogram/s) 

PFP32 92.90 87.72 200 5 000 

TFP32 92.90 87.72 100 10 000 
TFP16 92.75 87.70 48.8 20 500 

TINT8 92.57 87.34 26.3 38 000 

  

 

4. CONCLUSION 

This study presented a residual network model tailored specifically for outdoor radar-based human 

activity and target classification using spectrograms. Through the process of quantization, the model’s 

inference speed experienced a notable enhancement, while maintaining a negligible loss in accuracy. The 

achieved accuracy of 87.72% on the test data exemplifies the model’s efficacy in accurate activity 

identification, underscoring its potential value in practical applications. Although challenges were observed 

in the misclassification of the human walking class, the model’s overall capacity to discriminate between 

human activity and non-activity is an encouraging outcome. 

Future investigations should prioritize addressing the misclassification issue to fortify the model’s 

performance within this specific class, thereby elevating its suitability for real-world deployment in outdoor 

surveillance scenarios. Notably, quantization from 32-bits to 8-bits yielded compelling results, manifesting a 

significant quadrupling of throughput, while incurring less than 0.4% reduction in accuracy. Moreover, the 

potential for further speed enhancements through the utilization of specialized hardware emphasizes the 

model’s feasibility and efficiency in practical deployment contexts. 

In essence, this research makes an important contribution by demonstrating that radar-based 

classification models in outdoor surveillance systems can be effectively optimized via quantization, thereby 

enhancing inference speed while maintaining high accuracy. Such a finding holds profound implications for 

the feasibility and viability of deploying radar-based models within these critical settings. The findings of this 

paper, together with the potential use of specialized inference hardware, hold significant promise for the 

successful use of DL techniques in modern radar systems, while adhering to stringent size, weight and power 

consumption constraints. 
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