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 Proteins have been shown to perform critical activities in cellular processes 

and are required for the organism's existence and proliferation. On 

complicated protein-protein interaction (PPI) networks, conventional 

centrality approaches perform poorly. Machine learning algorithms based on 

enormous amounts of data do not make use of biological information's 

temporal and spatial dimensions. As a result, we developed a sequence-

dependent PPI prediction model using an Aquila and shark noses-based hybrid 

prediction technique. This model operates in two stages: feature extraction 

and prediction. The features are acquired using the semantic similarity 

technique for good results. The acquired features are utilized to predict the 

PPI using hybrid deep networks long short-term memory (LSTM) networks 

and restricted Boltzmann machines (RBMs). The weighting parameters of 

these neural networks (NNs) were changed using a novel optimization 

approach hybrid of aquila and shark noses (ASN), and the results revealed that 

our proposed ASN-based PPI prediction is more accurate and efficient than 

other existing techniques. 

Keywords: 

Aquila optimization 

Long short-term memory 

Protein-protein interaction 

prediction 

Restricted Boltzmann machines 

Semantic similarity 

Shark nose optimization 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Preeti Thareja 

Department of Computer Science and Applications, Maharshi Dayanand University 

Rohtak, Haryana, India 

Email: preetithareja10@gmail.com 

 

 

1. INTRODUCTION 

Protein-protein interactions (PPIs) can be utilized to look into the mechanisms underlying many 

biological processes, such as deoxyribonucleic acid (DNA) replication, protein modification, and signal 

transmission. Due to their accurate understanding and analysis, which can reveal numerous roles at the 

molecular and proteome levels, PPIs have been a research focus [1], [2]. On the other hand, there are problems 

with incomplete and imprecise prediction using web-lab identification methods [3], [4]. Alternately, low-cost 

candidates for future experimental validation could be obtained by applying precise bioinformatics methods 

for PPI prediction [5], [6]. 

Using advanced techniques to calculate PPI is not only laborious and costly, but it also produces an 

excessive number of false positives and false negatives [7], [8]. As a result, computational tools that can aid in 

the process of discovering genuine protein interactions are required. This problem can be viewed as a 

categorical classifying problem from the standpoint of machine learning, and it can be tackled using supervised 

learning methods [9], [10]. With the accelerated growth of deep learning techniques and neural network 

infrastructure, certain machine intelligence-based and sequence-based models for PPI prediction have been 

developed. Table 1 shows a summary of the state-of-art-methods. 

Li et al. [11] proposed DeepCellEss which is a methodology for easy-to-interpret deep learning (DL) 

based on sequences and cell line-specific key protein predictions. To extract minute and prolonged-range 
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hidden features from protein sequences, DeepCellEss uses a convolutional network and bidirectional long 

short-term memory (LSTM). Additionally, to enable the residue-level point process, a multi-head self-attention 

technique is adopted. Numerous computer studies show that DeepCellEss beats previous sequence-based 

approaches as well as network-based clear implications and provides effective prediction results for distinct 

cell lines. 

Hou et al. [12] created a method for identifying PPI sites based on an ensemble DL model called 

ensemble deep learning method for protein-protein interaction (EDLMPPI). This would aid in solving the issue 

of modeling the properties of amino acid (AA) sequences for PPI bindings by directly encoding them into 

distributed vector representations. Additionally, their performance could stand to be improved when AA 

sequences are directly encoded into distributed vector model to categorize PPI binding events because the 

experiment numbers for detected PPI sites are significantly less than the number of PPIs or protein domains in 

protein complexes. 

Gao et al. [13] offered the HIGH-PPI two-side learning hierarchical graph network to forecast PPIs 

and deduce the relevant chemical information. A vertex in the graph (top outer view) is a protein graph in this 

model's hierarchical graph (bottom inside-of-protein view). To effectively depict the quality of support of the 

protein, a set of chemically pertinent descriptors rather than protein sequences are used in the bottom view. To 

create a solid machine understanding of PPIs, HIGH-PPI investigates the human interactome's inside and 

outside of protein components. In terms of forecasting PPIs, this model has good accuracy and durability. 

Yue et al. [14] introduced a deep learning framework for identifying important proteins. Their 

research focused on three main objectives: investigating the significance of each element's value in model 

prediction, improving the handling of unbalanced datasets, and assessing the model's accuracy in predicting 

important proteins. They used node2vec for feature representation and depth-wise separable convolution for 

gene expression profiles. Results on Saccharomyces cerevisiae (S. cerevisiae) data demonstrated their model's 

superiority over traditional deep learning methods. 

In their 2022 study, Díaz-Eufracio and Medina-Franco [15] developed ensemble models utilizing 

support vector machine (SVM), logistic regression (LR), and random forest (RF) algorithms, employing an 

extended connectivity fingerprint radius of 2. Their primary objective was to validate newly generated PPI 

inhibitors from apothecary sources. The significance of their research lies in the predictive models they have 

created, which will empower future initiatives in designing PPI inhibitors to make informed, data-driven 

choices. 

 

 

Table 1. Literature review on traditional models 
Reference Techniques used Features Issues Dataset used 

[11] CNN, 

bidirectional long 

short-term 
memory neural 

network 

(BiLSTM) 

Attention scores play a vital role in enabling 

the identification of essential sequence 

regions for predicting outcomes specific to 
various cell lines. They facilitate in-depth 

research and comparisons for critical cell 

line-specific proteins. 

Does not reflect the 

relationships between several 

cell lines within the same tissue 
or cancer type. 

Nucleotide, 

Protein 

Sequences 

[12] BiLSTM and 

capsule network 

Work directly with AA sequences. Need to add more dynamic 

word embedding models to the 
model and modify them to 

address further pertinent 

protein-identifying issues. 

Dset_448, 

Dset_72, and 
Dset_164 

[13] Graph 

convolutional 

network 

Its capacity to recognize residue significance 

for PPI is a positive sign of great 

interpretability. 

Protein-level annotations 

weren't fully explored, and 

memory needs increase with 
more views in a hierarchical 

graph. 

PPI 

Sequences 

[14] 1D convolution On gene expression profiles, the notion of 
depth wise separable convolution is applied 

to extract attributes. 

Using a long vector to 
represent subcellular 

localization demands 

significant processing 
resources. 

S. cerevisiae 

[15] RF, LR, SVM Assess ML models for classifying new 

inhibitors by chemists and maintain the PPI 
inhibitors database regularly. 

For classification, new models 

and challenges can be applied. 

PPI Inhibitors 

 

 

Deep learning (DL) methodologies, as documented in references [16], [17], encompass a range of 

techniques, including support vector machines (SVM) [18], artificial neural networks (ANN) [19], and others. 

These approaches offer indispensable tools for the secure prediction of PPI by extracting essential peptide 

information from amino acid sequences [20]. This research demonstrates that deep learning frameworks [21] 
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excel at handling vast, unstructured datasets with intricate characteristics, thereby enhancing the 

comprehension of pivotal elements in PPI prediction [22], [23]. Consequently, a novel deep learning concept 

based on artificial neural networks, combined with a meticulous hyperparameter tuning strategy, has been 

devised to facilitate precise and dependable PPI predictions. 

This study offers significant contributions in three main areas. Firstly, the feature extraction process 

has been improved by incorporating a semantic similarity-based feature alongside other features, resulting in 

more accurate outcomes. Secondly, an approach combining LSTM and restricted Boltzmann machines (RBMs) 

has been devised to ensure precise predictions and minimize loss. Lastly, a novel optimization technique named 

Aquila and Shark nose optimization has been introduced to fine-tune the weights of both classifiers, thereby 

enhancing the efficiency of PPI prediction. The structure of this article is organized as follows: section 2 

discusses our proposed sequence-dependent ASN PPI prediction technique; section 3 presents the experimental 

results; section 4 concludes the paper; and the subsequent section includes references. 

 

 

2. METHOD 

Proteins are macromolecules that are organic and composed of AAs that are required by cells to 

support living activities [24]. They are significant in biology because they connect different important 

physiological functions of cells to PPIs, allowing a variety of life processes such as apoptotic and 

immunological responses [25]. The suggested ASN technique for predicting interactions from protein 

sequences is described in this section. Figure 1 depicts the architecture. Our method for predicting PPIs is 

comprised of two steps: i) To aid in reliable prediction, features are gathered using a standard sequence-

dependent and semantic similarity approach; and ii) LSTM and RBMs are employed to execute protein 

interaction prediction tasks. The new ensemble Aquila and Shark Nose are applied at this step to produce more 

dependable findings, with weighting parameters optimized. Finally, the prediction model uses feature 

extraction, ensemble deep learning, and the best parameters to predict protein interactions. 

 

 

 
 

Figure 1. Proposed method ASN PPI prediction model 

 

 
2.1.  Feature extraction 

The provided inputs were employed to extract two distinct types of characteristics [26]. These 

characteristics consist of one set based on sequence-based physical-chemical attributes and another set based 

on semantic similarity features. To understand the feature extraction process in detail, a comprehensive 

description is provided below. 

 

2.1.1. Sequence-based physical-chemical features 

To establish a strong foundation for predicting PPI, proteins have been thoroughly characterized using 

a comprehensive set of 12 physical and chemical attributes. These attributes are derived from the constituent 

amino acids of the proteins and include hydrophilicity, adaptability, accessibility, torsion, external surface, 

polarizability, antigenic propensity, hydrophobicity, net charge of side chains, polarity, solvent-accessible 

surface area, and side-chain volume. Notably, among these attributes, hydrophobicity and polarity were 

assessed using two distinct measurement methods, as detailed in reference [27], which documented the values 

of 14 different physical and chemical characteristic scales for the 20 essential amino acids  

In this approach, each AA is transformed into a matrix consisting of 14 numerical data points, 

corresponding to the various physicochemical scale ratings. Since proteins exhibit variations in length, this 

transformation can result in a variable number of vectors, making it challenging to process uniformly. To 

address this issue and provide a consistent input for the ensemble meta-base learner's classifier, a conversion 

method is employed. This method transforms the protein descriptions into an even matrix format utilizing auto 
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covariance (AC). This transformation ensures that all proteins, regardless of their varying amino acid content, 

are represented by matrices of the same length. 

The lth physicochemical property scale’s auto covariance 𝐴𝐶𝑙,𝑔 is provided by (1) and (2): 

 

𝐴𝐶𝑙,𝑔 =
1

𝐿−𝑔
∑ (𝑃𝑙,𝑚 − 𝛾𝑙) × (𝑃𝑙,𝑚+𝑔 − 𝛾𝑙)

𝐿−𝑔
𝑚=1  (1) 

 

𝛾𝑙 =
1

𝐿
∑ 𝑃𝑙,𝑚

𝐿
𝑚=1  (2) 

 
where 𝑔 denotes the predefined gap, 𝐿 indicates the protein 𝑃's length, while 𝛾𝑙 indicates the mean of protein 

𝑃's 𝑙th physicochemical scale values. By fixing the greatest spacing to 𝐺(𝑔 = 1, 2, … , 𝐺), every protein may be 

initialized of 𝑘 × 𝐺 elements, where k seems to be the physicochemical property scales count. 

 

2.1.2. Semantic similarity-based feature extraction 

The semantic similarity identification technique has been utilized to compute the degree of similarity. 

To compute the resemblance, every source is represented as a vector. In particular, the vector model faces 

issues such as word impropriety (e.g., disregard synonymy) as well as lacking semantic data. The point word 

recognition (PWR) technique incorporates semantic meaning into the vector model, hence removing vector 

semantic problems. Throughout this application, the species sensitivity distributions (SSD) approach is 

primarily concerned with determining the associations between every pair of resources by using a cosine 

similarity metric. Syntax, as well as semantic similarity, are integrated into SSD cosine similarity as can be 

expressed with (3). 

 

𝑆𝑒𝑚𝑠𝑖𝑚(𝑅𝑎, 𝑅𝑏) =
𝑅𝑏.𝑅𝑎

|𝑅𝑏|.|𝑅𝑎|
=

∑ (𝜔𝑏∗𝑆𝑅.𝜔𝑎)𝑚
𝑎=1

√∑ (𝜔𝑏
𝑎∗𝑆𝑅)

2𝑚
𝑎=1 .∑ 𝜔𝑎

2𝑚
𝑎=1

 (3) 

 

2.2.  Optimal trained hybrid classifier 

The extracted features are subjected to the prediction model where a hybrid model that combines 

improved LSTM and the RBMs classifiers is used. The hybrid concept is as follows: initially, the features are 

passed to both the individual classifiers, and finally the mean of the classifiers’ output will be considered as 

the outcome. Here, to enhance the performance of prediction results, the training of both classifiers is carried 

out by the proposed ASN via tuning the optimal weights. 

 

2.2.1. LSTM networks 

The most popular type of recurrent neural networks (RNNs) are LSTM networks. The memory cell 

and the gates are the two essential parts of the LSTM. The input gates and forget gates alter the internal elements 

of the memory cell. 

LSTM networks rely on four essential gates. The forget gate (f), responsible for determining what 

information from the previous state should be remembered or discarded. The input gate (i) comes into play, 

deciding which incoming data should be integrated into the current state. The input modulation gate (g), often 

considered as part of the input gate, alters incoming data to ensure its appropriateness for updating the internal 

state. Finally, the output gate (o) combines various outputs, including the previous state, to generate the current 

state. Together, these four gates orchestrate the flow of information, control state updates, and contribute to the 

network's output. 

In our work, we have employed the tanh activation function, denoted in (4). The use of the tanh 

activation function is pivotal in our neural network framework, introducing essential non-linearity that aids in 

capturing intricate data relationships. This function's significance lies in its widespread use across various 

neural network architectures, contributing to tasks like feature transformation and classification. 

 

𝐻𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐻𝐻𝐻𝑡−1 + 𝑊𝑥𝐻𝑥𝑡) (4) 

 

To reduce the model's loss, we employed the following cross-entropy loss function in our work, as in (5). 

 

𝑐𝑟𝑜𝑠𝑠𝐸𝑛𝑡 =
−1

𝑁
[∑ [𝑡𝑖 𝑙𝑜𝑔(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜒)) + (1 − 𝑡𝑖) 𝑙𝑜𝑔(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(1 − 𝜍𝑖))]𝑁

𝑖=1 ] (5) 

 

2.2.2. Restricted Boltzmann machines 

RBM layers, which were used for pre-training, were transformed into a feed-forward network to 

enable weight fine-tuning by using a new strategy. A SoftMax layer was added to the top layer during the fine-
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tuning step to improve the characteristics of the tagged samples. The underlying features were learned using a 

greedy tier unsupervised technique during the pre-training stage. 

 

2.3.  ASN optimizer 

The proposed ASN is the combination of Aquila optimizer and shark nose smell optimization. Aquila 

update is influenced by the Shark Nose algorithm. Normally, the hybrid concept of optimization ensures better 

convergence rate and speed rather than executing as the individual algorithms. The objective function of our 

proposed ASN-based PPI prediction model is provided in further subsections.  

 
2.3.1. Objective function 

The input for our proposed ASN-based method is visually represented in Figure 2. This figure serves 

as a pivotal element in conveying the data and information that are crucial for the successful implementation 

of our approach. Figure 2 provides a clear and concise visualization of the solution input, which can include 

various data sources, parameters, or components, depending on the context of the method.  

 

 

 
 

Figure 2. Solution encoding of proposed ASN-based PPI prediction technique 

 

 

The primary objective of this work was centered around the minimization of the mean square error, 

as described in (6). Mean square error (MSE) is a fundamental metric used in various fields, particularly in the 

context of optimization problems and statistical analysis. In this work, (6) serves as the key representation of 

the objective function, which outlines the specific mathematical criterion for minimizing the discrepancies 

between predicted and observed values. 

 

𝑂𝑏𝑗 = 𝑀𝑖𝑛(𝑀𝑆𝐸) (6) 

 

Where, the MSE denotes the mean square error. 

 

2.3.2. Aquila optimizer 

The Aquila optimizer is a nature-inspired algorithm based on Aquila bird hunting behavior, primarily 

used for optimization tasks. It may exhibit slower convergence and suboptimal results in complex optimization 

tasks. Aquila birds, like true eagles, build their nests in high places, use speed and talons for hunting, with 

ground squirrels being their common prey. 

The four hunting methods used by the bird are described as: ii) expanded exploration, in which the 

target is pursued (high soar with vertical scoop); ii) narrowed exploration, which is the preferred technique for 

pursuing ground creatures like snakes and squirrels (contour flight with short glide attack); iii) expanded 

exploitation, which is the technique for pursuing slow prey (low flight with a slow descending attack); and  

iv) narrowed exploitation is a technique for hunting huge animals (walking and grabbing the target). The 

mathematical expressions for the methods are expressed in (7)-(11). 

 

𝑋1(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑀(𝑡) − 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑟𝑎𝑛𝑑) (7) 

 

𝑋𝑀(𝑡) =  
1

𝑁
∑ 𝑋𝑖(𝑡), ∀𝑗 = 1,2, … , 𝐷𝑖𝑚𝑁

𝑖=1  (8) 

 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + (𝑋𝑅(𝑡) + (𝑦 − 𝑥) × 𝑟𝑎𝑛𝑑) (9) 

 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝑋𝑀(𝑡))  × 𝛼 − 𝑟𝑎𝑛𝑑 + ((𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑 + 𝐿𝐵) × 𝛿 (10) 

 

𝑋4(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 × 𝑋(𝑡) × 𝑟𝑎𝑛𝑑) − 𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1 (11) 

 

𝑄𝐹(𝑡) =  𝑡
2 ×𝑟𝑎𝑛𝑑 ()−1

(1−𝑇)2  (12) 

 

𝐺1 = 2 × 𝑟𝑎𝑛𝑑() − 1 (13) 
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𝐺2 = 2 × (1 −
𝑡

𝑇
) (14) 

 

where 𝑋1, 𝑋2, and 𝑋3 represent the new solution for methods 1, 2, and 3, 𝑋𝑏𝑒𝑠𝑡  is the best solution, 𝑡 is the 

current iteration, 𝑇 is the maximum iteration, 𝑁 is the population size, 𝐷𝑖𝑚 is the variable size, 𝑟𝑎𝑛𝑑 is the 

random value in the range 0 to 1, and 𝑋𝑀 is the local mean value, as in (8). 𝐿𝑒𝑣𝑦 (𝐷) is Levy’s flight 

distribution, 𝑈𝐵 is the upper bound, 𝐿𝐵 is the lower bound, α, δ are exploitation parameters, and 𝑄𝐹, 𝐺1, and 

𝐺2 are quality factors as shown in (12)-(14). 

 
2.3.3. Shark nose optimizer 

Shark nose optimization algorithm is a population-based metaheuristic optimization algorithm. Shark 

nose optimization algorithm is inspired by the Shark food foraging behavior. The entire algorithm is based on 

calculating the shark’s position based on the movements of the shark which are: i) forward movement and 

ii) rotational movement. The mathematical expression for the movements is expressed in (15)-(17). 

 

𝑌𝑖
𝑘+1 =  𝑋𝑖

𝐾 +  𝑉𝑖
𝑘 × ∆𝑡𝑘, 𝑖 = 1,2, … , 𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑘 = 1,2, … , 𝑘𝑚𝑎𝑥 (15) 

 

𝑍𝑖
𝑘+1,𝑚 =  𝑌𝑖

𝑘+1 + 𝑅3 × 𝑌𝑖
𝑘+1, 𝑚 = 1,2, … , 𝑀, 𝑖 = 1,2, … , 𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑘 = 1,2, … , 𝑘𝑚𝑎𝑥 (16) 

 

The shark’s new position is determined using the expression as shown in (17). 
 

𝑋𝑖
𝑘+1 = arg max{𝑜𝑓(𝑌𝑖

𝑘+1), 𝑜𝑓(𝑍𝑖
𝑘+1,𝑖), … , 𝑜𝑓(𝑍𝑖

𝑘+1,)} , 𝑖 = 1,2, … , 𝑛𝑒𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (17) 

 

Gauss mutation was also performed in our work to provide an accurate and reliable optimization. To make a 

new generation, Gaussian mutation simply adds a random value from a Gaussian distribution to every member 

of an individual's vector. The pseudocode for the proposed algorithm is described in Table 2. 

 

 

Table 2. Pseudocode for proposed ASN technique 
Step Number Step Name Step procedure 

1 Initialization Set the attributes new position, 𝑘𝑚𝑎𝑥, α, δ. 

Create an initial population. 

Create every decision randomly within the acceptable range. 

Initializing the stage counter 𝑘 = 1 

for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 

2 Forward 

movement 

Compute velocity vector using for every element. 

Acquire a new location of the shark depending on its forward movement, using the 

Aquila updating function. 
3 Rotational 

movement 

Depending on the rotational movement, acquire the new location of the shark. 

Depending on the two moves, choose the shark's upcoming location. 

4 Gaussian 
mutation 

Apply Gaussian mutation to increase the local search ability. 

End for 𝑘 

Set 𝑘 =  𝑘 + 1 

Choose the shark position with the greatest value in the final stage. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Simulation setup 

The proposed work has been implemented in the MATLAB tool. The datasets are typical UniProt 

proteins with experimental gene ontology (GO) annotation and structure models predicted by I-TASSER. 

Performance matrices of our proposed ASN PPI prediction technique were evaluated and compared with 

conventional techniques such as Aquila, cat swarm optimization, hunger games search, poor rich optimization, 

and shark nose optimization. 

 

3.2.  Error analysis 

The error analysis in this study encompasses several performance metrics to evaluate the model's 

accuracy. These metrics include mean absolute error (MAE), measuring the absolute size of discrepancies 

between actual and predicted values, root mean square error (RMSE), assessing the overall magnitude of errors, 

mean absolute relative error (MARE), evaluating prediction accuracy in relation to relative errors, and mean 

squared error (MSE), which calculates the average of squared differences between predicted values and the 

overall mean, offering insights into prediction variability. These metrics collectively provide a comprehensive 

assessment of the model's predictive capabilities and its ability to minimize errors across a range of contexts. 
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Our proposed ASN approach was compared to traditional optimization techniques, including cat 

swarm optimization (CSO), hunger games search (HGS), and poor rich optimization (PRO), using various 

evaluation metrics. For dataset-1, our approach achieved a lower MAE of 0.013 at 60% learning percentage 

(LP) compared to PRO (0.017) and CSO (0.014). Additionally, our method demonstrated a MARE value of 1 

for 60% and 70% LPs, highlighting its effectiveness. In contrast, HGS resulted in higher MSE and RMSE 

values of 0.043 and 0.21, respectively, at 60% LP, indicating that our ASN approach is more reliable and 

outperforms traditional methods. Figure 3 shows the comparison for ASN PPI prediction model with traditional 

models when applied to dataset 1 giving results for MAE in Figure 3(a), MSE in Figure 3(b), MARE in 

Figure 3(c) and RMSE in Figure 3(d). 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 3. Comparing results of (a) MAE, (b) MSE, (c) MARE, and (d) RMSE of proposed ASN PPI 

prediction model with standard optimization algorithms for dataset-1 

 

 

For dataset-2, we compared our ASN approach to traditional optimization algorithms, assessing 

metrics like MAE, MARE, MASE, and RMSE. Figure 4 shows the comparison for ASN PPI prediction model 

with traditional models when applied to dataset 2 giving results for MAE in Figure 4(a), MSE in Figure 4(b), 

MARE in Figure 4(c) and RMSE in Figure 4(d). Notably, at 60-90% LPs, our approach achieves lower MAE 

values (0.17, 0.18, 0.19, and 0.17) compared to CSO (0.180, 0.183, 0.194, and 0.195). Similarly, our MARE 

values for dataset-2 are consistently lower (1.7, 1.3, 1.8, and 1.5) across LPs, showcasing the effectiveness of 

our ASN technique for PPI prediction. In contrast, both HGS and PRO techniques yield higher MAE and 

MARE values, underlining the superior performance of our proposed prediction strategy over traditional 

methods. 

Figure 5 serves as a visual representation of the performance comparison of the proposed ASN-based 

prediction strategy with other alternative networks across multiple cases and datasets. The figure provides a 

clear and concise summary of the evaluation results for dataset-1 and dataset-2. It is divided into two  

sub-figures, Figures 5(a) and 5(b), each focusing on a specific dataset. 

In Figure 5(a), the performance results for dataset-1 are presented. The key performance metric, MAE, 

is highlighted, showing that the ASN-based strategy achieves a low MAE of 0.135. This is contrasted with 

LSTM, CNN, and SVM, which exhibit significantly higher MARE values of 2.44, 2.99, and 1.96, respectively. 

The results emphasize the superior performance of the proposed ASN-based strategy in dataset-1. 

Figure 5(b) shifts the focus to dataset-2 and provides a comprehensive examination of performance 

metrics, including MAE, RMSE, MARE, and MSE. The ASN-based approach in dataset-2 demonstrates MAE 

and RMSE values of 0.173 and 0.228, respectively. In contrast, alternative networks like LSTM, CNN, and 
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SVM yield higher MAE and RMSE values, further highlighting the superior performance of the ASN-based 

strategy in this dataset. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. Comparing results of (a) MAE, (b) MSE, (c) MARE, and (d) RMSE of proposed ASN PPI 

prediction model with standard optimization algorithms for dataset-2 

 

 

  
(a) (b) 

 

Figure 5. Comparing results of MAE, MSE, MARE, and RMSE of the proposed ASN model with standard 

optimization algorithms for (a) dataset-1 and (b) dataset-2 

 

 

3.3.  Accuracy analysis 

The performance of the projected model is evaluated for dataset 1 and dataset 2 by considering various 

learning percentages such as 60, 70, 80, and 90 respectively. As per the obtained results, the projected model 

has attained the highest accuracy over the conventional models for different learning percentages. The obtained 

results are illustrated in Tables 3 and 4. 

At a 60% learning percentage in dataset 1, the developed model achieves an impressive accuracy of 

approximately 87.37%, surpassing traditional methods such as CSO, HGS, and PRO. Additionally, in 

dataset 2, at a 70% learning percentage, the developed model consistently attains the highest accuracy among 

the alternatives. These results underscore the model's robust performance and its superiority over traditional 

methods in delivering accurate outcomes across various datasets and learning percentages. 
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Table 3. Comparison of accuracy of the proposed ASN approach with traditional optimization 

algorithms for dataset 1 
 60% 70% 80% 90% 

Cat Swarm 84 85.6 84 83.9 

Hunger Games 84.6 85.8 85 84 

Poor Rich 84.9 85.8 86 84.5 
Proposed ASN 87.37 86.6 86.5 87 

 

 

Table 4. Comparison of accuracy of the proposed ASN approach with traditional optimization 

algorithms for dataset 2 
 60% 70% 80% 90% 

Cat Swarm 84 85.4 83.9 83.8 
Hunger Games 85 86 85 84 

Poor Rich 85.9 86 85.9 84.9 

Proposed ASN 86.7 87.5 86.5 87 

 

 

4. CONCLUSION 

The current research work has emphasized predicting the protein-to-protein interaction by using 

sequence-based features and optimized classifiers. Different physicochemical properties have different effects 

on the classification of AAs in protein sequences. The classification criteria for AAs based on their 

physicochemical properties is difficult to choose. This is also the direction of our efforts in the future. 

In addition, the proposed machine learning approach has distinctive inherent biases, including representation 

biases and process biases, which affect their learning behaviors and performances significantly even in the 

same learning task. In the future, we will develop an ensemble meta-learning strategy to overcome these issues 

and it will extensible to other domains also. And also, we would employ another sequence-based model with 

an advanced deep-learning concept. In addition, the most effective optimization approach can be developed for 

extending the current method. 
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