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 Nowadays a huge amount of data has been communicated using fog nodes 

spread throughout smarty cities. the communication process is performed 

using fog nodes which are co-located with cellular base stations (BSs) that 

can move the computing resources close to internet of things (IoT) devices. 

In smart cities, a different type of data flow has been communicated through 

IoT devices. The communication process performs efficiently using the 

remote cloud. The IoT devices very close to the BS can communicate data 

without using fog nodes. Due to these phenomena, workload unbalancing 

occurs in IoT devices communicating in fog computing networks. Hence, it 

generates communication and computing latency. The task distribution 

process between the IoT devices is unbalanced. Hence, congestion and loss 

of information occur in fog computing network. A proposed reconfigurable 

load balancing algorithm (RLBA) is efficiently balancing the workload by 

reconfigurable communication channels and deviates the task with respect to 

the BS locations, IoT devices density and load IoT devices in each fog nodes 

in a network to minimize the communication and computing latency. As per 

the performance analysis, the proposed algorithm shows better performance 

as compared to conventional methods’ average latency ratio, communication 

latency ratio, computing load and traffic load. 
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1. INTRODUCTION 

The development of smart gadgets that can perceive the environment physical information has 

received a lot of research attention in recent years [1]. The term “internet of things (IoT)” refers to a concept 

in which linked the smart devices of one another over the internet and equipped with data analytics. IoT is 

currently employed in many different applications, including smart cities, smart homes, smart transportation, 

and smart health [2]. As the number and types of devices connected to the IoT increases, managing these 

devices efficiently becomes a vital consideration. As the number and variety of devices increase, so does the 

need for cloud-based thinking [3], [4]. But since the data streams produced by IoT devices are sent to a 

distant cloud over the internet, it uses an amount of energy and core network bandwidth [5]. 

Many delay-sensitive IoT applications typically have a significant data streams processing with a 

delay in cloud hosted architectures where the main network is frequently located long distance from the IoT 

devices [6]. Fog nodes, which bring computer resources closer to devices of IoT and IoT users, are one 

https://creativecommons.org/licenses/by-sa/4.0/
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option for easing the traffic burden on the core network and lowering IoT devices latency. Sometimes IoT 

application require a huge number of linked devices that produce enormous volumes of data. A paradigm 

called fog computing seeks to deal with the difficulties of processing this data fast and effectively. Fog 

nodes, often referred to as fog servers or fog devices, are essential to fog computing because they bring 

storage and processing resources closer to the network’s edge [7], [8]. 

IoT devices sense data flows, which are transmitted to the appropriate base stations (BSs) in a fog 

network processed by fog nodes that are physically close to the BSs. Therefore, each data flow’s latency is 

the sum of the communications times between an IoT device and a BS and a fog node. In the IoT, there are 

two different types of latency in communications: device latency and channel latency. The delay brought on 

by the wireless channel is referred to as channel latency. In a network, for example, when a wireless 

transmission involves multiple BSs, the wireless signal has to be transmitted from one BS to another 

sequentially. As a result, there will be significant communication delay due to the time wasted by round-trip 

communications. This kind of delays is known as channel latency. On the other hand, an IoT device will 

experience a delay if it sends its data through fog nodes, which are dispersed in areas with less traffic. This is 

because data transit through wired or wireless lines takes time. Device latency is the term for this delay. 

Therefore, it is required for the data flows total latency in a network that computational tasks are dynamically 

distributed among fog nodes. The fog node workload is closely correlated with the number of IoT devices 

connected to its corresponding BS because each fog node in this article is coupled to a single BS. That is, 

data flows from any IoT device that joins an IoT network are offloaded to a single co-located fog node [9]. 

Research has shown that nearby wireless service blocks BSs overlap and give coverage is as shown 

in Figure 1, which depicts the basic architecture computing of fog network using IoT devices. To balance 

loads among these BSs, fog nodes placed within these overlapping BSs might be connected to appropriate 

BSs. This connection has a significant influence on both the computation demands of traffic and fog nodes of 

BSs. Load balancing should take into account both the traffic loads of BSs and the computation loads of fog 

nodes in order to lower the latency of all data flows among devices and servers in the network. This is 

because latency is made up of two components: communication delay and calculation latency. In essence, 

when overloaded some BSs, they turn into bottlenecks and slow down communications for connected 

devices. To lessen their traffic demands, some IoT devices connected to these overcrowded BSs should be 

offloaded to nearby BSs. 

Our aim is to link devices of IoT to various fog and BS fog network nodes to lower the latency of all 

network data flows in the IoT devices. The average-latency ratios at BSs/fog nodes are used to represent, 

respectively, the processing latency in fog network nodes and the communications delay in BSs. We 

introduce the models for the compute demands at fog network nodes and mean traffic loads at BSs/fog nodes. 

Additionally, we have examined the effect load balancing has on the usual latency of IoT device traffic [10], 

[11]. As a solution to the problem of load-balancing in a fog IoT device network, we create a distributed IoT 

device association algorithm to map IoT based network devices to pertinent BSs/fog nodes, thereby reducing 

the mean latency of all network IoT data flows. The LAB accomplishes this by employing a greedy heuristic 

to repeatedly estimate traffic and resource burdens per BS before broadcasting this information back to 

devices of IoT so they may select practical and appropriate destinations. Additionally, a simulation is offered 

to demonstrate the convergence. 

 

 

 
 

Figure 1. The fundamental structure of fog computing network using IoT device 

 

 

2. RELATED WORKS 

Since fog computing is close to users and devices off IoT, in some studies have concentrated on 

merging IoT with fog network computing. Fog computing has applications that were developed by  

Yang et al. [12]. In the environment of networking, Marbukh [13] outlined the advantages and disadvantages 

of fog computing and stated that it can cover the gaps left by IoT. An architectural strategy (EdgeIoT) was 
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suggested by Donno and Dragoni [14] to control the IoT network device data streams at the fog network 

node. To further optimize traffic data flows and IoT network resources, Ju et al. [15] presented adaptive fog 

computing systems for IoT networking. It has been suggested that fog computing will enhance the 

functionality of mobile and IoT apps. In this work, we investigate the association strategy, the FogNode 

allocation technique, and the placement of virtual machines based on traffic load balancing and quality of 

service (QoS) in the medical cyber-physical system. Task scheduling and picture placement in a software-

defined embedded system have been presented by Tadesse et al. [16] in fog computing as a way to reduce 

task request response times. A workload placement approach was developed by Kuzman et al. [17] in order 

to optimize the response times of hierarchical edge cloud network all tasks. The algorithm distributes tasks 

among various tiers of fog network nodes and allots computational resources from each fog network node for 

the tasks that each fog network node is given. In order to improve user task response times and lower cloudlet 

brown energy consumption, Elavarasan and Vincent [18] introduced a workload allocation technique, known 

as workload allocation (WALL), in a hierarchical cloudlet network. Tomar et al. [19] suggested transferring 

mobile users’ virtual-machines (VM) among scattered cloudlets while also taking into account the energy 

requirements for VM migrations in order to decrease the overall consumption of energy dispersed cloudlets. 

The workload allocation method described in this study allocates cloudlet users to edge computing resources 

at various sites and then schedules tasks for the edge computing resources in accordance with the real-time 

needs of the associated users. Some studies also look at how wireline delay affects user task latency when 

edge computing resources are set up at various locations. Keep in mind that all of the aforementioned works 

only take wired communications latency into account, leaving out wireless delay. To reduce user response 

times for mobile edge computing networks, Hu et al. [20] present a model for load balancing cloudlets. In the 

present research, it is assumed that each user’s wireless delay is constant. Some studies suggested adjusting 

BS transmission power to modify data speeds and shorten user wireless delays. Additionally, a number of 

research on cellular mobile networks’ energy efficiency have been done. 

 

 

3. SYSTEM MODEL 

A fog IoT based network topology with fog nodes connected to BSs and overlapped coverage zones 

between close-by BSs is shown in Figure 2. It should be mentioned that all BSs use the next generation IoT 

(NBIoT) interface to deliver to IoT network devices communications services [21]. Because of the 

distribution of a workload across fog network nodes, the data flows require to pass over the mobile cellular, 

the IoT information flows are often to be processed at the local BS fog network node is preferred, which adds 

additional latency. On the other hand, to collect data a central controller is required on both the workload 

devices of IoT in the network topology and fog nodes in order to implement a centralized algorithm for the 

real-time allocation of workload among fog network nodes. For big size networks, such metropolitan area 

networks, this complexity makes it unusable. Therefore, we consider that the fog network node connected to 

the IoT network device’s BS processes network data flows from IoT devices rather than other fog nodes. 

Other recent studies, like [22], similarly make the same assumption based on similar concerns. Because from 

network no need to collect data from every device, it should be noted that in this situation the compute loads 

can be distributed easily and with flexibility over several fog nodes. 

 

 

 
 

Figure 2. Fog network architecture 
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4. TRAFFIC LOAD MODEL 

In this study, we considered that traffic loads arrive at a location x averaging a unit area rate, 𝛾(𝑥) 

as by using a poisson-point process. Additionally, we suppose that each BS has a unique fog node, F. 

Indicate x as a place inside C and A as the total area covered by all BSs. We assume that IoT network data 

flows arrive at location x at a poisson-point process average rate of 𝛾(𝑥) per unit area. Traffic loads vary 

spatially as a result of inhomogeneity. The main notations used in this work is shown in Table 1. The uplink 

channel gain from an IoT device’s position to BS j, the noise power 𝜃2, and the IoT device transmission 

power at that location are all specified as 𝑢𝑗(𝑥). The IoT device-based network signal-to-noise ratio (SNR) 

may be computed using (1) and (2) illustrates in the theorem of Shannon Hartley, if we denote 𝑏𝑗(𝑥) as the 

IoT transmission power at location x and it is logarithmic function is denoted by 𝜆𝑗(𝑥). 

 

ℶ𝑗(𝑥) =
𝑇(𝑥)𝑢𝑗(𝑥)

𝜃2  (1) 

 

𝑏𝑗(𝑥) = 𝜑𝑗 log(1 + 𝜆𝑗(𝑥))  (2) 

 

where 𝑏𝑗(𝑥) is represented IoT devices load traffic of average and 𝜑𝑗 is described the jth BS total bandwidth 

[23]. In various network environments, fog network nodes can be deployed by grouping smart devices 

together and creating a group of networks known as fog networks. The fog topology greatly improves the 

coverage of wireless network access points that are fixed to particular locations. In this arrangement, data 

flows received up by an IoT device are sent to its BS, where the fog network nodes is processed residing next 

to the BS. We will therefore concentrate on IoT device uplink connections and data processing of fog node in 

view to determine the flow of data latency. Equation (3) has been used to calculate the network load density 

average traffic for IoT devices. 

 

∝𝑗 (𝑥) =
𝛾(𝑥)𝑚(𝑥)𝜌𝑗(𝑥)

𝑏𝑗(𝑥)
 (3) 

 

where 𝜌𝑗(𝑥) is represented as binary variable with the location of ‘x’ is associated fog network nodes with 

the jth BS and ℵ𝑗 is described as avaearge traffic at BS, 𝑚(𝑥) is identified as exponential data flow 

distribution average value and the IoT device’s typical traffic-load density at location x in BS j. The fog node 

average traffic has been calculated using (4). 

 

ℵ𝑗 = ∑ ∝𝐽 (𝑥)𝑥𝜖𝐶  (4) 

 

A several factors, including user fairness and network capacity are considered to manage the IoT 

network devices access radio resources in mobile communications. In this study, IoT network devices are 

arranged in round-robin fashion for uplink transmissions such that uplink channel access by several devices 

concurrently for the sake of analytical tractability. While the network data rates at each place are provided, 

the IoT based network traffic arrival information rate at location ‘x’ also complies with the poisson-process, 

the information traffic volumes of data flows follow the exponential distribution, and the service duration of 

IoT network data flows at location ‘x’ also exponential distribution satisfied [24] and the mean service time 

(MST) of network data flows at point x is determined by (5). 

 

∅𝑗(𝑥) =
𝑚(𝑥)

𝑏𝑗(𝑥)
 (5) 

 

As a simulation result, an M/M/1-processor serves sharing queue as the foundation for a BSs uplink 

communications (BS) [25]–[29]. As per the suggested approach, different IoT network devices will equitably 

information share the average ratio energy and IoT network devices information resources of a BS even when 

they have different IoT data rates depending on their channel conditions. Furthermore, we must constantly 

ensure that ℵ𝑗 is less than one in order to maintain the queue’s stability. Processor sharing given the M/M/1-

network data queue of a BS, mean value of delivery time at location x is given by (6). 

 

𝛽𝑗(𝑥) =
𝑚(𝑥)

𝑏𝑗(𝑥)(1−𝜂𝑗)
 (6) 

 

The mean waiting time for each data flow at point x is given by (7). 
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𝜑𝑗 = 𝛽𝑗(𝑥) − ∅𝑗(𝑥) =
𝜂𝑗𝑚(𝑥)

𝑏𝑗(𝑥)(1−𝜂𝑗)
 (7) 

 

The symbol 𝜗𝑗(𝑥) represents the ratio of latency time of waiting to service in BS j for IoT network 

data flows at the location x. Then, since all of the devices in IoT connected to BS j have the same delay ratio 

and 𝜗𝑗(𝑥) only depends on the network traffic load of BS j, we define BS j’s latency ratio communications as 

we can deduct from (8) that raising the network traffic load ρj of BS j will increase j. IoT devices connected 

to BS µj must wait longer to reach the channel of transmission when µj>0, which is consistent with their 

delay of average delivery as indicated by (8). 

 

𝜗𝑗 =
𝜂𝑗

1−𝜂𝑗
 (8) 

 

 

5. PROBLEM FORMULATION 

In this study, we balance workloads between fog and BSs nodes in an effort to reduce the data flows 

latency. We write 𝜏(𝛼) = ∑ 𝜗𝑗 + 𝜗�̂�𝑗∈𝐹  as the fog network latency ratio. The goal of the suggested technique 

is to determine the ideal load distribution among BSs in view to reduce the fog network’s latency ratio. 

Consequently, the issue might be stated as (9) to (13). 

 

𝑇1: min
𝛼

∁(𝛼) (9) 

 
∑ 𝜗𝑗(𝑥) = 1,𝛼

𝑗∈𝐹 ∀𝑥∈ 𝜏 (10) 

 

0 ≤  𝜂𝑗  ≤ 𝜂𝑚𝑎𝑥 , ∀𝑗∈ 𝐹   (11) 

 

0 ≤  𝜂�̂�  ≤  �̂�𝑚𝑎𝑥, ∀𝑗∈ 𝐹   (12) 

 

𝜂𝑗(𝑥)𝜖{0,1}, ∀𝑥∈ 𝜏 (13) 

 

There can only be one BS associated with each location, according to constraints (10) and (13). The 

computation amount at fog node i is constrained by constraint (12). In load balancing, two factors influence 

the computation latency of data flows: traffic loads and computing loads. In an IoT network, when 

bandwidth-constrained devices are deployed in some areas, data congestion on overloaded BSs may result in 

a high latency for data flows [30]–[33]. On the other side, in a fog network, some fog nodes may become 

overloaded due to the heavy computational loads it has to host. 

 

 

6. LAB: A DISTRIBUTED IoT DEVICE ASSOCIATION SCHEME 

In this work, we suggest a load-shaping mechanism for wireless IoT networks that are delay-

tolerant. The controller in our suggested system continuously calculates the compute and fog nodes (BSs) 

traffic loads, then broadcasts the results to devices of IoT [34]. The conclusion is that IoT devices can choose 

BSs iteratively based on information of real load and their data rates of uplink to various BSs. We 

demonstrate that this distributed system can manage problems like service disruptions while achieving the 

best possible trade-off between delays and power consumption. 

 

6.1.  Algorithm for IoT device side 

Initially the kth iteration has been considered for all traffic loads 𝜂𝑗 and manuplated loads �̂�𝑗 to 

devices of IoT. Based on fog node network 𝑀(𝛼) as shown in (14). 

 
𝜕𝑀(𝛼)

𝜕𝛼𝑗(𝑥)
= 𝛾(𝑥)

𝑒𝑗(𝑥)𝑚(𝑥)(1−�̂�𝑗(𝑘))2+𝑏𝑗(𝑥)𝑣(𝑥)(1−𝜂𝑗(𝑘))2

𝑒𝑗𝑏𝑗(𝑥)(1−�̂�𝑗(𝑘))2(1−𝜂𝑗(𝑘))2  (14) 

 

IoT devices have been selected based on broadcast messages. Determine the BS is by using (15), 

 

𝑡𝑘(𝑥) = 𝑎𝑟𝑔 max
𝑗∈𝐹

𝑒𝑗(𝑥)𝑏𝑗(𝑥)𝜓𝑗(𝑘) (15) 
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where 𝑒𝑗(𝑥) is represented capacity computing (in CPU cycle/sec) for fog node ‘J’ and 𝜓𝑗(𝑘) is described 

the in 16 and 𝑡𝑘(𝑥) is identified as BS index and it controlled by condition is given in (17). 

 

𝜓𝑗(𝑘) =
(1−�̂�𝑗(𝑘))2(1−𝜂𝑗(𝑘))2

𝑒𝑗(𝑥)𝑚(𝑥)(1−�̂�𝑗(𝑘))2+𝑏𝑗(𝑥)𝑣(𝑥)(1−𝜂𝑗(𝑘))2 (16) 

 

𝛼𝑗
𝑘(𝑥) =  {

1,   𝑖𝑓 𝑗 = 𝑡𝑘(𝑥) , ∀𝑥∈ 𝜏

0,   𝑖𝑓 𝑗 ≠ 𝑡𝑘(𝑥) , ∀𝑥∈ 𝜏
} (17) 

 

6.2. Algorithm for BS side 

A BS must be aware of both its own traffic load and the compute load of the relevant fog node in 

order to estimate the intermediary IoT association. For each IoT device in the iteration, it must therefore 

estimate an intermediate IoT association. Then, using their side algorithm, IoT devices choose their BSs or 

fog nodes depending on the predicted load information among BSs, and the current IoT device association in 

the kth iteration changes to 𝜂𝑗(𝑘) as a result. As a result, BS ‘j’ can assessment IoT association an 

intermediate for location ‘x’ in the following iteration using the intermediate 𝛼𝑗
~𝑘(𝑥) (estimated by a BS) and 

the current IoT device association 𝛼𝑗
𝑘(𝑥) (determined by IoT devices) equations: 

 

𝛼𝐽
~𝐾+1(𝑥) = (1 − £)𝛼𝑗

𝑘(𝑥) + £𝛼𝑗
~𝑘(𝑥) (18) 

 

where £ is represented system parameter with a range 0 ≤ £ ≤ 1, if devices of IoT are associate with (k+1), 

then the traffic load has been calculated by the (19). 

 

𝜂𝑗(𝑘 + 1) = ∫
𝛾(𝑥)𝑚(𝑥)𝛼𝑗

~𝑘+1(𝑥)

𝑏𝑗(𝑥)𝑥∈𝜏
 𝑑𝑥 (19) 

 

 Similarly, the next computing traffic load at fog node ‘j’ is obtained from (20). 

 

𝜂�̂�(𝑘 + 1) =  ∫
𝛾(𝑥)𝑣(𝑥)𝛼𝑗

~𝑘+1(𝑥)

𝑒𝑗(𝑥)𝑥∈𝜏
 𝑑𝑥 (20) 

 

The BS selected algorithm has been done by using algorithm 1. 

 

Algorithm 1. The BS side algorithm 
Input: BS choice for IoT devices:𝑡𝑘(𝑥), ∀𝑥∈ 𝜏. The kth iteration’s intermediate IoT device association vector, 𝛼𝑗

𝑘. 

Output: The estimated traffic loads of BSs 𝜂 (𝑘 + 1) and the computing loads is estimated of fog nodes �̂�(𝑘 + 1) in the (k+1) th. 

The estimated loads computing of fog nodes �̂�(𝑘 + 1) in the (𝑘 + 1) th and the estimated traffic loads of BSs in the 𝜂 (𝑘 + 1) th. 

a. Update the IoT device association intermediate for different locations based on: 𝛼𝐽
~𝐾+1(𝑥) = (1 − £)𝛼𝑗

𝑘(𝑥) + £𝛼𝑗
~𝑘(𝑥), 𝑥 ∈ 𝜏, 𝑗 ∈ 𝐹. 

b. Calculate 𝜂𝑗(𝑘 + 1) and �̂�𝑗(𝑘 + 1) based on (19) and (20); 

c. Return 𝜂𝑗(𝑘) and �̂�𝑗(𝑘 + 1). 

 

Treated in algorithm 1. Equation (21) contains the feasible set for problem P1, as is well known. 

 

�̂� = {𝛼|𝜂𝑗 =  ∫
𝛾(𝑥)𝑚(𝑥)𝛼𝑗(𝑥)

𝑏𝑗(𝑥)𝑥∈𝜏
 𝑑𝑥,   

  
} (21) 

 

where 𝛼𝑗(𝑥) ∈ {0,1}, 0 ≤ 𝜂𝑗 ≤ 𝜂𝑚𝑎𝑥 and ∑ 𝛼𝑗(𝑥) = 1, ∀𝑗  ∈ 𝐹,𝑗∈𝐹 ∀𝑥∈ 𝜏  

Treated in algorithm 1. As we are aware, the equation (22) can be used to define the feasible set of 

problem P1. 
 

𝑀 = {𝛼|𝜂𝑗 =  ∫
𝛾(𝑥)𝑚(𝑥)𝛼𝑗(𝑥)

𝑏𝑗𝑥∈𝜏
 𝑑𝑥}  

𝛼𝑗(𝑥) ∈ {0,1}, 0 ≤ 𝜂𝑗 ≤ 𝜂𝑚𝑎𝑥  

∑ 𝛼𝑗(𝑥) = 1, ∀𝑗  ∈ 𝐹,𝑗∈𝐹 ∀𝑥∈ 𝜏  (22) 

 

We must employ IoT association an intermediate value to lower the average latency ratio 𝐿() in 

each iteration because the traffic load (or computing load) vector for problem P1 is not convex, as indicated 

by the 𝛼𝑗(𝑥)  ∈ {0,1}. We demonstrate that the load vectors computing and traffic load will converge to be in 
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the feasible set by first relaxing to make 0≤𝛼𝑘≤1. Given in (23), the feasible set relaxed for problem P1 can 

be expressed. 

 

�̂� = {α|ηj =  ∫
γ(x)m(x)αj(x)

bj(x)x∈τ
 dx,   

  
}  

𝛼𝑗(𝑥) ∈ {0,1}, 0 ≤ 𝜂𝑗 ≤ 𝜂𝑚𝑎𝑥  

∑ 𝛼𝑗(𝑥) = 1, ∀𝑗  ∈ 𝐹,𝑗∈𝐹 ∀𝑥∈ 𝜏  (23) 

 

Theorem 1:  The feasible relaxed set �̂� is a convex set. 

Proof:  As the set �̂� includes any convex combination of α, it is defined in �̂�. 

Theorem 2:  The convex function of α, when is defined by objective function (𝛼), when ‘α’ is defined in �̂�. 

Proof: ∇2𝜏(𝛼) > 0 during (𝛼) is defined in �̂� proved by showing this equation. 

 

6.3.  Analysis of the algorithm 

In this part, we will examine the LAB scheme’s convergence and optimality with regard to problem P1. 

Theorem 3: Gives a direction for 𝜏(�̂�) at �̂�k, when �̂�k+1≠ �̂�k, �̂�k+1. 

Proof: As 0 ≤  �̂�𝑗
𝑘(𝑥) ≤ 1, 𝜏(�̂�) is defined in �̂�, As shown in Theorem 2 𝜏(�̂�) is a convex function of �̂�, 

and thus, we need to prove 〈∇∁(�̃�𝑘), 𝛼 ̃𝑘+1 − �̃�𝑘〉 < 0 thus, we have (24). 

 

〈∇∁(�̃�𝑘), 𝛼 ̃𝑘+1 − �̃�𝑘〉  

= ∫ ∑ 𝛾(𝑥)𝑣(𝑥)
𝛼𝐽

~𝐾+1(𝑥)−𝛼𝐽
~𝐾(𝑥)

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑗 ∈𝐹𝑥∈𝜏
  

= ∫ 𝛾(𝑥)𝑣(𝑥)
𝛼𝐽

~𝐾+1(𝑥)−𝛼𝐽
~𝐾(𝑥)

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑥∈𝜏
  (24) 

 

Based on (18), we can compute using (25). 

 

𝛼𝐽
~𝐾+1(𝑥) −  𝛼𝐽

~𝐾(𝑥) = (1 − £)(𝛼𝑗
𝑘(𝑥) + £𝛼𝑗

~𝑘(𝑥)) (25) 

 

As we know that, in (26). 

 

𝛼𝐽
~𝐾(𝑥) = {

1,   𝑖𝑓 𝑗 = 𝑡𝑘(𝑥)

0,   𝑖𝑓 𝑗 = 𝑡𝑘(𝑥)
} (26) 

 

The kth iteration is adopted for BS selection rule at the destine side, then it can be achieved by the equations 

𝑡𝑘(𝑥) = 𝑎𝑟𝑔 max
𝑗∈𝐹

𝑒𝑗(𝑥)𝑏𝑗(𝑥)𝜓𝑗(𝑘), from we can derive the (27) and (28): 

 

∑ (1 − £)
𝛼𝑗

𝑘(𝑥)−𝛼𝐽
~𝐾(𝑥)

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑗∈𝐹  ≤ 0 (27) 

 

𝑠𝑖𝑛𝑐𝑒 𝛼𝐽
~𝐾+1(𝑥)  ≠ 𝛼𝐽

~𝐾(𝑥)  

 

∑ (1 − £)
𝛼𝑗

𝑘(𝑥)−𝛼𝐽
~𝐾(𝑥)

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑗∈𝐹  < 0 (28) 

 

Thus, we have proved 〈∇∁(�̃�𝑘), 𝛼 ̃𝑘+1 − �̃�𝑘〉 < 0. 

By proving the subsequent theorem as part of the LAB scheme, we will also examine if the optimal 

selection rule for BS each iteration at the IoT device side is the best choice. 

Theorem 1: The ideal IoT device association rule at the fog node side is the following given the advertised 

traffic loads of BSs and computing loads of fog nodes 𝑡𝑘(𝑥) = 𝑎𝑟𝑔 max
𝑗∈𝐹

𝑒𝑗(𝑥)𝑏𝑗(𝑥)𝜓𝑗(𝑘), where x is a 

feature vector associated with an IoT device. 

Proof: The proposed kth iteration side algorithm for IoT side algorithm achieves association IoT device given 

by 𝑡𝑘(𝑥) = 𝑎𝑟𝑔 max
𝑗∈𝐹

𝑒𝑗(𝑥)𝑏𝑗(𝑥)𝜓𝑗(𝑘) Meanwhile, let ‘𝛼’ denote any other possible IoT devices, with a 

condition and (29). 
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< ∇∁(𝛼𝑘), 𝛼′ − 𝛼𝑘  > 0 

< ∇∁(𝛼𝑘), 𝛼′ − 𝛼𝑘  > 

= ∫ ∑ 𝛾(𝑥)𝑣(𝑥) (𝛼′ − 𝛼𝑗
𝑘(𝑥))

1

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)
𝑑𝑥𝑗 ∈𝐹𝑥∈𝜏

  

= ∫ 𝛾(𝑥)𝑣(𝑥) ∑ (𝛼′ − 𝛼𝑗
𝑘(𝑥))𝑗∈𝐹

1

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑥∈𝜏
 𝑑𝑥  (29) 

 

since (30) 

 

𝑡𝑘(𝑥) = 𝑎𝑟𝑔 min
𝑗∈𝐹

𝑒𝑗(𝑥)𝑏𝑗(𝑥)𝜓𝑗(𝑘)  

𝛼𝑗
𝑘(𝑥) =  {

1,   𝑖𝑓 𝑗 = 𝑡𝑘(𝑥) , ∀𝑥∈ 𝜏

0,   𝑖𝑓 𝑗 ≠ 𝑡𝑘(𝑥) , ∀𝑥∈ 𝜏
}  (30) 

 

then, we have  

 

∑ 𝛼𝑗
′(𝑥)

1

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)
   ≥   ∑ 𝛼𝑗

𝑘(𝑥)
1

𝑒𝑗𝑏𝑗(𝑥)𝜓𝑗(𝑘)𝑗∈𝐹   𝑗 ∈𝐹   

 

hence, 〈∇∁(𝛼𝑘), 𝛼′ − 𝛼𝑘 〉 > 0. Therefore, 𝛼𝑘 is an optimal IoT device association in the kth iteration.  

 

 

7. NUMERICAL RESULTS 

In this section, we present simulations to gauge how well our proposed approach works. In this part, 

we compare it to the Best SNR algorithm and distributed algorithm. The fundamental goal of the distributed 

algorithm is to divide workloads of traffic among BSs as efficiently as possible in view to reduce 

communications delay ratio (i.e., ∑ 𝜗𝑗𝑗∈𝐹 ) without taking load distribution at fog nodes into account. The 

Best SNR algorithm, on the other hand, aims to link IoT devices with BSs that offer the conditions best 

channel. The Table 1 displays the simulation parameters for a comparison of proposed and standard methods’ 

performance. 

 

 

Table 1. Simulation parameter 
SI.NO Parameter  Range  

1. Number of BSs 6 
2. Total network area   3,000×2,000 m2 

3. Number of areas divided  15,000 Location 

4. Location area 20×20 m 
5. Mean arrival rate per unit area is set  0.50 flows/second 

6. Mean traffic area 0.05 Mbits 

 

 

Figure 3 shows the network topology BSs distribution with respect to the parameter consider in 

Table 1. The Figure 4 shown the performance analysis between proposed method and conventional methods 

average latency ratio 𝐿(𝛼) with respect to the 𝛾 = 0.6, 𝑒𝑗 = 7.6 ∗ 106. The average delay ratio 𝐿() for the 

various algorithms is shown in Figure 5. Figure 6 displays the communication delay (average) ratio in 

relation to the number of iterations, 𝛾 = 0.6, 𝑒𝑗 = 7.6 ∗ 106, whereas Figures 7 and 8 display the compute 

loads placed on various fog nodes within a network structure. 

Figure 9 shows the average delay ratio in terms of each fog’s capacity (𝛾 = 0.5), and Figure 10 

compares the performance of the suggested method to that of the more traditional approach in terms of the 

flow arrival rate (𝑥), where 𝛾 (𝑥) , 𝑒𝑗 = 7.6 ∗ 106. As a result, as compared to fuzzy golden eagle load 

balancing (FGELB), the compute load balancing of reconfigurable load balancing algorithm (RLBA) is 

unable to reduce average latency. However, as the average traffic arrival rate rises, both the traffic loads and 

compute load in a network become heavy, which causes the average latency ratio of RLBA to develop slowly 

while the performance of the FGELB declines quickly. In the present scenario, average latency is impacted 

by both traffic loads among BSs and computing loads among fog nodes. However, this method does not 

concentrate on balancing traffic loads between BSs but simply balances compute loads across fog nodes. As 

RLB takes into account both load balancing algorithms, it can still maintain low average latency in spite of 

large computing loads. This indicates that some fog nodes are crowded, particularly when the network is 

experiencing heavy compute load. 
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Figure 3. Fundamental base station distribution in network topology 

 

 

 
 

Figure 4. The average latency ratio 𝐿(𝛼) performance analysis between proposed and conventional methods 

 

 

 
 

Figure 5. The average latency ratio 𝐿(𝛼) for the different algorithms with respect to the 𝛾 = 0.6, 𝑒𝑗 = 7.6 ∗ 106 
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Figure 6. The average latency ratio 𝐿(𝛼) performance analysis between proposed and conventional methods 

 

 

 
 

Figure 7. Computing loads of different fog nodes 

 

 

 
 

Figure 8. Various BSs traffic loads 
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Figure 9. The performance analysis between proposed and conventional methods with respect to  

𝛾 = 0.6 , 𝑒𝑗 = 7.6 ∗ 106 

 

 

 
 

Figure 10. The performance analysis between proposed and conventional methods with respect to  

𝛾 = 0.6 , 𝑒𝑗 = 7.6 ∗ 106 

 

 

8. CONCLUSION 

In this paper, the main concentration is on the proper workload distribution in smart cities using a 

RLBA. When a huge number of data flows across the IoT device in a fog computing network, there may be a 

loss of information, more attenuation, and unbalancing task in fog nodes. to overcome the above-mentioned 

drawback, a proposed RLBA has been used to optimize the workload by considering a few standard 

parameters in the fog computing network. With respect to the average latency ratio, 𝐿(𝛼) performance 

analysis has been done by considering (𝛾 = 0.6, 𝑒𝑗 = 7.6 ∗ 106.) the proposed RLBA. The result shows 

better performance as compared to the conventional method of about 1.6% with respect to the 

communication latency ratio. As per the analysis of performance that has been done by considering  

(𝛾 = 0.6, 𝑒𝑗 = 7.6 ∗ 106), the proposed RLBA shows better performance as compared to the conventional 

method of about 0.96%. With respect to the computing load, the proposed method shows better performance 

of about 0.26% and 1.21% as compared to FGELB and best SNR respectively. With respect to the traffic 

load, the proposed method RLBA optimized to 0.98% and 1.25% as compared to FGELB and best SNR 

respectively. 
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FUTURE SCOPE 

The emerging technology is six generation (6G), our proposed method is capable to operate the 6G 

communication in a fog computing network using IoT devices without lose of information and attention. 
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