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 This paper deals with the design and analysis of a super twisting fractional-

order sliding mode controller (ST-FOSMC) to adjust the vehicle longitudinal 

dynamic when braking. While vehicle loading, road types, and modeling 

uncertainties are time-varying parameters, the control law must be robust 

against these disturbances. Also, the aging of the brake plate may introduce a 

difference between the control output and the actuator response that should 

be considered. The proposed control strategy has been used to enable the 

anti-lock braking system (ABS) to track the desired wheel slip value despite 

the presence of disturbances and constant actuator fault. The design of this 

controller is presented and the system stability is guaranteed by applying the 

Lyapunov theory. We carried out a simulation example that makes a 

comparison between our controller and the one based on the fractional-order 

sliding mode control to investigate which one of them outperforms the other. 

The results exhibit the superiority of the super twisting fractional order 

controller over the traditional fractional-order sliding mode controller during 

the braking phase. 
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1. INTRODUCTION 

Recent advancements in embedded systems have led to noticeable progress in the electronic control 

of vehicle dynamics. Therefore, this achievement makes the active safety systems carry out a vital role to 

protect the life of vehicle passengers. One of the most important active safety systems is the anti-lock braking 

system (ABS), which controls the wheel slip to prevent the risk of locking up a wheel in emergency situation 

and critical braking. When the sensors located in each wheel detect an over-slip, the computer alleviates the 

brake pressure on this wheel. 

Several researches in the literature have addressed the control of the wheel slip [1]. The vehicle will 

likely slide after severe braking or slippery road condition, especially icy surfaces. Consequently, the car will 

lose its lateral stability, and the braking distances will increase. Therefore, the purpose of the ABS consists of 

the control and adjustment of the wheel slip. In other words, it aimed to track the predefined value, along 

with keeping the tire adhesion at its maximum.  

During the braking phase, the adhesion between the vehicle's wheel and the road surface produces 

the tractive forces Fx that are expressed as the product of the road coefficient of adhesion µ and the vertical 

https://creativecommons.org/licenses/by-sa/4.0/
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forces Fz. Several studies have proven that µ can be expressed as a mathematical function of the wheel slip λ.  

Figure 1 depicts the curves of µ against λ in various road types. λ varies between 0 and 1. According to  

Figure 1, one can observe that whenever the road surface has been more slippy, the friction becomes very 

weak, which will influence the vehicle stability. It is noticed that the value 0.2 of the wheel slip has a good 

friction coefficient for all surfaces. Owing to the mentioned analysis, the main object of designing ABS is 

maintaining the slip ratio λ as near as possible to the reference value 0.2, in which the active force reaches its 

maximum value. Thus, the braking is efficient (which cannot be attained when the desired slip is zero). 

 

 

 
 

Figure 1. Friction coefficient versus wheel slip for various road types 

 

 

In recent decades, the control of nonlinear systems has been one of the most challenging areas in the 

field of control theory. Various control techniques have been innovated and successfully integrated for better 

performance and accuracy in closed-loop for many classes of nonlinear systems [2], [3]. Among the proposed 

methods, the sliding mode control (SMC) aroused great interest due to its flexibility and robustness [4], [5]. 

Therefore, it has been widely applied to design ABS controllers. Chaudhari et al. [6] propose a disturbance 

observer combined with the SMC approach for ABS, which aimed to compensate model parameters variation. 

A time-varying SMC strategy for the control of the longitudinal dynamics of an electric car has been presented 

and compared with experimental results [7]. In parallel, some research works have built up fuzzy adaptive [8] 

neuro-adaptive [9] and SMC that estimate accurately the uncertainties and external disturbances. A new digital 

SMC technique has been elaborated in [10] to tackle the issue of integration of ABS controllers in electronic 

boards. Also, an improved conventional SMC for wheel slip control has been developed in the literature [11].  

The main drawback of the SMC based strategies is the chattering effect. This undesirable phenomenon 

reduces the lifetime of the ABS mechanical parts and impacts the control accuracy. Many solutions have been 

proposed to overcome these issues [12], [13]. One of them consists in utilizing a higher-order SMC as described 

in [13]. However, further improvements are needed to suppress this harmful effect. 

The previously mentioned techniques and strategies belong to the category of classical SMC. That 

means the order of integration or derivation in the sliding surface is always an integer. After its emergence more 

than three-century ago, the fractional calculus has known a spectacular development. But, its application in 

physics and engineering has been introduced only in the last few decades. While fractional derivatives and 

integrals are an extension to the natural ones, the fractional-order sliding mode controller (FOSMC), founded on 

this new mathematical paradigm, is similarly an extension of the conventional SMC.  

The FOSMC has been adopted in many nonlinear systems such as autonomous vehicle [14], robot 

manipulators [15], DC-DC converters [16] and doubly-fed induction generator (DFIG) [17]. It should be 

emphasized that great efforts have been made to design FOSMC based ABS controllers [18]. For example, in 

[19], a FOSMC methodology that deals with the ABS control have been developed using the quarter-vehicle 

model. Furthermore, another FOSMC scheme based on a fuzzy adaptive controller has been used to mitigate the 

effect of disturbances [20]. More recently, an adaptive design of FOSMC controller that utilizes a fast terminal 

fractional-order sliding surface has been elaborated [21]. This large number of studies that have addressed 

FOSMC show its importance. To the best knowledge of the authors, there are no previous articles that have 

addressed the case when actuator faults arise. For this reason, the main objective of this paper is the design of a 

new controller based on the super twisting fractional-order sliding mode control that ensures the stability and 

high performances of the ABS under disturbances and constant actuator faults. 
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The rest of this paper is structured as follows: section 2 describes the chosen ABS modeling strategy. 

While section 3, deals with the design of FOSMC and ST-FOSMC controllers. Comparison of simulation 

results of both controllers is detailed in section 4. Finally, some conclusions and perspectives are drawn in 

section 5. 

 

 

2. THE ABS SYSTEM MODELING 

Modeling vehicle dynamics is a complex process. Each model developed in the literature is suitable 

for certain situations and shows its limits in others. When we study only the vehicle longitudinal dynamics 

under braking conditions, the quarter-vehicle model [19] is a good compromise between simplicity and 

results reliability. By applying newton's law to the system described in Figure 2, the (1) and (2) are obtained. 

 

𝑚�̇� = −𝐹𝑥 (1) 

 

𝐽�̇� = −𝑇𝑏 + 𝑟𝐹𝑥 (2) 

 

where Tb is the braking torque of control, Fx indicates the longitudinal friction force, ω designates the angular 

speed of the wheel, r represents the wheel radius, J is the wheel inertia, m denotes the mass of the quarter 

vehicle and υ is the vehicle longitudinal speed. According to Coulomb law, Fx can be expressed as (3). 

 

𝐹𝑥 = 𝜇(𝜆)𝐹𝑧 (3) 

 

 

 
 

Figure 2. The quarter vehicle model under study 

 

 

For the sake of simplicity, we consider 𝐹𝑧 = 𝑚𝑔 where g designates the constant of gravitational 

acceleration. The variable λ which is the wheel slip allows quantifying the gap between the vehicle and the 

wheel velocities when the driver presses on the brake pedal. It is defined as (4), 

 

𝜆 =
𝜐−𝑟𝜔

𝜐
 (4) 

 

λ is the state of interest in designing the ABS controller because only the slip ratio has a relationship to the 

road friction coefficient. This later, when it reaches its maximum, reduces the braking time. The wheel 

velocity cannot be greater than the vehicle velocity during the braking phase, for this reason, λ is always 

positive. By applying the time derivative to (4) and after substitution by (1) and (2) we can obtain the 

following general formula that is considered very useful to control the system: 

 

𝜆 = − (
1−𝜆

𝑚𝜐
+

𝑟2

𝐽𝜐
)

̇
𝜇𝐹𝑧 +

𝑟

𝐽𝜐
𝑇𝑣 (5) 

 

In established studies, several models have been developed to model the friction force generated by 

the interaction between the vehicle tire and the road. There are those based on semi-empirical models like the 

Pacejka magic formula [22]. There are also physical models such as the Dugoff's tire model [11]. Meanwhile, 

the Burckhardt model [22] has been extensively used in controlling the vehicle longitudinal dynamics, owing 

to the simplicity of its formulation (6). 
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𝜇(𝜆) = 𝑐1(1 − 𝑒−𝑐2𝜆) − 𝑐3𝜆 (6) 

 

with c1, c2, and c3 are real coefficients that must be determined for each road type [23]. 

 

 

3. SMC, FOSMC AND ST-FOSMC ABS CONTROLLERS DESIGN 

In this section, three controllers are proposed for the ABS. They are based on the longitudinal model 

in (5). Figure 3 depicts the control scheme of the system in a closed-loop. While the goal of these controllers 

consists in tracking the predefined slip ratio, let us define the following error of tracking (7), 

 

𝑒 = 𝜆 − 𝜆𝑑 (7) 

 

where λd designates the reference slip ratio. 

 

 

 
 

Figure 3. Control scheme 

 

 

3.1. SMC controller design technique for ABS 

In designing SMC controllers, the first step is the choice of a suitable sliding surface. In recent 

research works, many types of sliding surfaces have been proposed and applied in the design stage [24], [25]. 

In our work, the following sliding surface is selected (8). 

 

𝑆1 = 𝑘1𝑒 + ∫ 𝑒𝑑𝑡  (8) 

 

where k1 denotes a positive constant.  

The following control torque is considered (9). 

 

𝑇𝑏 = 𝑇𝑒𝑞 + 𝑇𝑟  (9) 

 

where Teq represents the equivalent control. It is calculated under the constraint �̇�1 = 0. While 𝑇𝑟 is the robust 

nonlinear term that is used to compensate the unknown uncertainties. As shown in (10) and (11) explicit their 

expressions. 

 

𝑇𝑒𝑞 =
𝐽𝜐

𝑟
(−

𝑒

𝑘1
+

𝜇𝐹𝑧

𝜐
(

1−𝜆

𝑚
+

𝑟2

𝐽
)) (10) 

 

𝑇𝑟 =
𝐽𝜐

𝑟
𝑘2𝑆𝑔𝑛(𝑆1)  (11) 

 

where k2 is a real positive coefficient, and the sign function is defined as follows: 

 

𝑆𝑔𝑛(𝑆) = {

+1, 𝑖𝑓𝑆 ≻ 0
0, 𝑖𝑓𝑤ℎ𝑒𝑛 = 0

−1, 𝑓𝑜𝑟𝑆 ≺ 0
 

 

Theorem 1. Let us consider the nonlinear state model in (5) which is controlled by the control law given (9), 

(10), and (11), then, the dynamic of the wheel slip will coincide with the selected sliding surface (8). 

Proof. Considering the following Lyapunov candidate function as in [19]. 

 

𝑉1 = |𝑆1|  (12) 
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Time derivative is applied to both sides of (12). 

 

�̇�1 = �̇�1𝑆𝑔𝑛(𝑆1)  (13) 

 

The application of the time derivative on the sliding surface gives (14). 

 

�̇�1 = −𝑘1𝑘2𝑆𝑔𝑛(𝑆1) (14) 

 

After simplification of (14), one can obtain (15). 

 

�̇�1 = −𝑘1𝑘2|𝑆1|  (15) 

 

The time derivative of V1 is negative. Thus, proving theorem 1. 

 

3.2.  FOSMC controller design technique  

Before we proceed to the design of the controller of this section, it is underlined that some 

preliminaries of the fractional calculus are required [18]. Let us introduce the theorem that reveals the 

stability condition of an autonomous fractional-order system described by (16). It will help us to assess the 

stability of the fractional sliding surface. 

 

𝐷0 𝑡
𝛼𝑥 = 𝐴𝑥𝑎𝑛𝑑𝑥(0) = 𝑥0   (16) 

 

where α designates the order of differentiation, 𝐴 ∈ ℝ𝑛×𝑛 and 𝑥 ∈ ℝ𝑛. 

Theorem 2. The system presented in (16) is asymptotically stable if |arg(eig(A))|>απ/2 [26]. If the 

aforementioned condition holds, then the state vector decay towards vector zero like t-α. In the case where 

|arg(eig(A))|≥απ/2, then the stability is guaranteed if also, the geometric multiplicity of those particular 

eigenvalues that verify |arg(eig(A))|=απ/2 is equal 1. 

In addition, the stability zone of the fractional order system characterized by α]0,1[ is larger than 

that with either α]1,2[ or α=1. Let us opt for the choice of the sliding surface PDα defined by (17). 

 

𝑆2 = 𝐷𝛼𝑒 + 𝑘3𝑒   (17) 

 

If condition S2=0 is fulfilled, then (17) becomes (18). 

 

𝐷𝛼𝑒 = −𝑘3𝑒 (18) 

 

According to (18), A=-k3. So, |arg(eig(A))|= π, Typically, α is selected in the interval ]0,1[. This is 

due to the larger stability in this region. While |arg(eig(A))|>απ/2, the sliding surface dynamic is 

asymptotically stable. 

The next equation provides the first derivative of the PDα sliding surface: 

 

�̇�2 = 𝐷𝛼+1𝑒 + 𝑘3�̇� (19) 

 

where k3 represents a positive constant. Similarly, to the previous subsection, the control law has the 

expression (20). 

 

𝑈 = 𝑈𝑒𝑞 + 𝑈𝑟    (20) 

 

Once again, the term Ueq can be deduced by considering the constraint �̇�2 = 0. But the robust term Ur is 

designed in another way to guarantee the system stability. The below expressions make that clearer: 

 

𝑈𝑒𝑞 =
𝐽𝜐

𝑟
[

𝜇𝑔(1−𝜆)

𝜐
+

𝜇𝐹𝑧𝑟2

𝐽𝜐
−

𝐷𝛼+1𝑒

𝑘3
]   (21) 

 

𝑈𝑟 =
𝐽𝜐

𝑟
𝑘4𝑆𝑔𝑛(𝑆2) (22) 

 

Theorem 3. Considering the nonlinear state model in (5) which is controlled by the control law given in (20), 

(21) and (22), then, the dynamic of the wheel slip will coincide with the selected sliding surface (17). 
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Proof. We opt for the use of the following classical Lyapunov function: 

 

𝑉2 =
1

2
𝑆2

2  (23) 

 

Now, by taking time derivative of (23) results in (24). 

 

�̇�2 = �̇�2𝑆2 (24) 

 

The next equation is derived from the previous one: 

 

�̇�2 = 𝑘3𝑆2(−𝑘4𝑆𝑔𝑛(𝑆2))  (25) 

 

After simplification: 

 

�̇�2 = −𝑘3𝑘4|𝑆2|  (26) 

 

The function V2 is positive, and its time derivative in the above equation is negative. According to the 

Lyapunov theorem the stability of the system is guaranteed. 

 

3.3.  ST-FOTSMC controller design method  

In reality, the slip (5) fails to represent truly the ABS. For the sake of accuracy, it is mandatory to 

consider the model uncertainties and lumped disturbances. Therefore, in this subsection, we consider the (27), 

 

�̇� = − (
1−𝜆

𝑚𝜐
+

𝑟2

𝐽𝜐
) 𝜇𝐹𝑧 +

𝑟

𝐽𝜐
(𝑇𝑏 + 𝑓) + 𝑑  (27) 

 

where d denotes the sum of uncertainties and disturbances, and f is the constant actuator fault, the following 

assumption is considered throughout the (28). 

 

𝑑 ≤ 𝜌|𝜎|1/2  (28) 

 

The control scheme adopted in this subsection is described in Figure 4. 

 

 

 
 

Figure 4. Control scheme with actuator fault 

 

 

We use the same sliding surface PDα defined in the previous subsection (29). 

 

𝜎 = 𝐷𝛼𝑒 + 𝑐𝑒  (29) 

 

where c is a positive real coefficient. The time derivative of (29) leads to: 

 

�̇� = 𝐷𝛼+1𝑒 + 𝑐�̇�   (30) 

 

The control torque can be written as (31). 
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𝑇𝑏 = 𝑇𝑒𝑞 + 𝑇𝑆𝑊    (31) 

 

So, Tb is the sum of the equivalent term Teq that is derived from �̇� = 0, and the super twisting term TSW: 

 

𝑇𝑒𝑞 =
𝐽𝜐

𝑟
[

𝜇𝑔(1−𝜆)

𝜐
+

𝜇𝐹𝑧𝑟2

𝐽𝜐
−

𝐷𝛼+1𝑒

𝑐
] − 𝑓    (32) 

 

𝑇𝑆𝑊 =
𝐽𝜐

𝑐𝑟
[−𝛾|𝜎|1/2𝑆𝑔𝑛(𝜎) + 𝜗]     (33) 

 

with: �̇� = −𝛽𝑆𝑔𝑛(𝜎) 

Theorem 4. Considering the nonlinear state model including uncertainties and disturbances and actuator fault 

in (27) which is controlled by the super-twisting torque given in (31), (32) and (33), then, the dynamic of the 

system will pursue the predefined reference. 

Proof. We define the Lyapunov function adopted to prove the stability of our system as (34). 

 

𝑉3 = |𝜎| +
1

2𝜀
𝜗2 +

1

2𝜁
𝑓2   (34) 

 

The time derivative of the previous equation leads to the (35). 

 

�̇�3 = �̇�𝑆𝑔𝑛(𝜎) +
1

𝜀
�̇�𝜗 +

1

𝜁
𝑓̇𝑓 (35) 

 

After simplification: 

 

�̇�3 = [𝑐𝑑 + 𝑐
𝑟

𝐽𝜐
𝑓 − 𝛾|𝜎|1/2𝑆𝑔𝑛(𝜎) + 𝜗] 𝑆𝑔𝑛(𝜎) −

1

𝜀
𝛽𝑆𝑔𝑛(𝜎)𝜗 −

1

𝜁
𝑓̇𝑓 (36) 

 

By choosing ԑ=β and considering the assumption in (28), the following holds: 

 

�̇�3 ≤ (𝑐𝜌 − 𝛾)|𝜎|1/2 + (𝑐
𝑟

𝐽𝜐
𝑆𝑔𝑛(𝜎) −

1

𝜁
𝑓̇) 𝑓 (37) 

 

We choose 𝑓 and γ such that: 𝑓̇ =
𝜁𝑐𝑟

𝐽𝜐
𝑆𝑔𝑛(𝜎) and 𝛾 ≻ 𝑐𝜌, After replacement in (37), the (38) is verified: 

 

3 0V  (38) 

 

3V  is always negative. Thus, the system is stable.  

 

 

4. SIMULATION RESULTS 

The purpose of the results section consists of comparing the response of the vehicle using the three 

controllers, through a simulation carried out under MATLAB Simulink. All tests are based on the dry asphalt 

road. Table 1 summarizes the vehicle parameters [21]. In the simulation scheme, the saturation function 

defined in (39) was used instead of the sign function in order to attenuate the phenomenon of chattering. 

Table 2 summarizes the three controllers parameters values. 

 

𝑠𝑎𝑡 (
𝑆

𝛷
) = {

𝑆𝑔𝑛 (
𝑆

𝛷
) , |

𝑆

𝛷
| ≥ 1

𝑆

𝛷
, |

𝑆

𝛷
| ≺ 1

     (39) 

 

 

Table 1. Vehicle's parameters 
Parameters Values 

m 342 Kg 

J 1.13 Kg.m2 

g 
r 

V 

9.8 m/s2 

0.33 m 

20 m/s 
 

Table 2. The values of the controller’s parameters 
Parameters Values Parameters Values 

k1 40 k2 100 

k3 15 k4 250 

α 0.3 ɸ 2 
c 1.2×103 β 1.8 

γ 133× c ζ 1× c 
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4.1.  Scenario 1: without actuator fault and model uncertainties 

In the first scenario, we ran a simulation under normal conditions without taking into account the 

model uncertainties and the actuator fault. The objective is to assess the response of the system under the 

three controllers by analyzing the slip ratio and braking distance. Based on Figure 5, it is shown that the  

ST-FOSMC and FOSMC controllers reach the desired slip ratio and follow it accurately. While the 

traditional SMC suffers from a lack of precision compared to the aforementioned controllers. Also, referring 

to Figure 6, the braking distance is the shortest when ST-FOSMC and FOSMC controllers are used. 

 

 

  
  

Figure 5. The wheel slip curves in the case of dry 

asphalt road 

Figure 6. Braking distance of the first  

scenario 

 

 

4.2.  Scenario 2: with model uncertainties: 𝜟𝒎 = 𝟓𝟎% 𝒎, 𝜟𝒓 = 𝟓𝟎% 𝒓, and 𝜟𝑱 = 𝟓𝟎% 𝑱  

In this subsection, we have added the model uncertainties, such as the vehicle's mass variation, the 

wheel radius changes, and the wheel inertia uncertainties. As clearly shown in Figure 7, the vehicle loses its 

accuracy and starts to diverge after 8s when the SMC and FOSMC controllers are used. On the contrary, the 

vehicle keeps its stability and tracks accurately the desired slip ratio under the ST-FOSMC controller. In 

regards to the braking distance Figure 8, the ST-FOSMC controller offers the shortest distance. The FOSMC 

controller comes in the second position, while the SMC takes the third rank. That exhibits the importance of 

the ST-FOSMC controller in situations where the model uncertainties cannot be neglected. 

 

 

  
  

Figure 7. The wheel slip curves in the case of dry 

asphalt road 

Figure 8. Braking distance of the second  

scenario 

 

 

4.3.  Scenario 3: with actuator fault and model uncertainties: 𝜟𝒎 = 𝟓𝟎% 𝒎, 𝜟𝒓 = 𝟓𝟎% 𝒓, 𝜟𝑱 = 𝟓𝟎% 𝑱 

and 𝒇 = 𝟓𝟎 𝑵. 𝒎 

In the last scenario, both the model uncertainties and the actuator fault are considered to evaluate the 

robustness of the controllers. Figure 9 depicts the performances of the three controllers. The SMC and the 

FOSMC controllers diverge and lose their stability after 8 s, while the ST-FOSMC demonstrates another time 

its high robustness and accuracy. Figure 10 shows that the braking distance of the ST-FOSMC controller is 

still the shortest when a constant actuator fault is added. 
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Figure 9. Time response of wheel slip for dry asphalt 

road 

Figure 10. Braking distance of the third 

 scenario 

 

 

5. CONCLUSION  

In this paper, we built up an ST-FOSMC controller for ABS considering constant actuator faults and 

external perturbations. The system stability has been ensured by satisfying the Lyapunov's theory. The results 

obtained by carrying out three simulations for different scenarios have demonstrated the effectiveness and the 

ability of the ST-FOSMC controller to maintain the system stability and performance under uncertainties and 

actuator fault. The advantages of our proposal are as follows: i) accurate and fast-tracking of the predefined 

reference value, ii) ensure the stability and nominal functioning under the occurrence of constant actuator 

faults and disturbances, and iii) the proposed controller design remains simple but efficient. Our future works 

may focus on the active fault-tolerant control of the ABS system under variable actuator fault, taking 

advantage of the performances of the fractional-order mathematical paradigm. 
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