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 Image noise reduction is an important task in the field of computer vision and 

image processing. Traditional noise filtering methods may be limited by their 

ability to preserve image details. The purpose of this work is to study and 

apply deep learning methods to reduce noise in images. The main tasks of 

noise reduction in images are the removal of Gaussian noise, salt and pepper 

noise, noise of lines and stripes, noise caused by compression, and noise 

caused by equipment defects. In this paper, such noises as the removal of 

raindrops, dust, and traces of snow on the images were considered. In the 

work, complex patterns and high noise density were studied. A deep learning 

algorithm, such as the decomposition method with and without preprocessing, 

and their effectiveness in applying noise reduction are considered. It is 

expected that the results of the study will confirm the effectiveness of deep 

learning methods in reducing noise in images. This may lead to the 

development of more accurate and versatile image processing methods 

capable of preserving details and improving the visual quality of images in 

various fields, including medicine, photography, and video. 
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1. INTRODUCTION 

There are various machine learning methods for removing noise in images, including neural 

networks, deep learning, image recovery methods [1], and regularization methods [2]–[4]. Neural networks 

[5] and deep learning, such as autoencoding and convolutional neural networks (CNNs) [6], [7] are often 

used to remove noise in images. In this paper, the methods considered were trained on clean images, and then 

used this model to remove noise on noisy images. Raindrops, traces of snow, and dust in the images can be 

considered as one of the types of noise in the images. They are random white or black spots, and white or 

gray lines on the background of the image, which can degrade the image quality and make it difficult to 

analyze. When shooting outdoors, these noises can be especially noticeable on dark backgrounds and at 

night. To remove such noise in images, various machine learning methods can be used [8]–[10] such as 

filters, CNNs, and other algorithms. CNNs can be trained on a large number of images with different types of 

noise to automatically remove noise on new images. There are also noise reduction methods based on 

statistical analysis that can help in removing such types of noise in images. For example, the histogram 

https://creativecommons.org/licenses/by-sa/4.0/
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method is used to improve image quality by applying histogram alignment. This method changes the 

brightness or color characteristic of the image in such a way as to obtain a more uniform distribution of pixel 

values. This method can help to improve the image quality and increase its readability. 

Lyu et al. [11] present a fast and flexible denoising network (FFDNet), a deep learning model that 

focuses on fast and flexible image noise reduction. The model provides competitive results in the field of noise 

reduction while maintaining efficient computing performance. According to Ulyanov et al. [12] the concept of 

using deep neural networks as prerequisites for image reconstruction tasks, including noise suppression, is 

investigated. The authors demonstrate that a randomly initialized deep neural network (DNN) can capture the 

basic structure of images and effectively eliminate their noise without the need for additional training data.  

Batson and Royer [13] present Noise2Self, a self-supervised learning method for denoising images. 

The approach leverages the idea that an image can be used as it is noisy label, allowing the model to learn 

denoising directly from noisy images. Zhai et al. [14] addresses the challenges of real-world image 

denoising, where the noise characteristics are unknown. The authors propose neural adaptation networks 

(NANs), which can adapt to different noise levels and distributions for effective denoising. 

Zhang et al. [15] focuses on learning a deep CNN denoiser prior, which can be applied to various 

image restoration tasks, including denoising. The authors propose a two-stage training framework that 

incorporates both noisy and clean images to learn effective denoising prior. Sharan et al. [16] focuses on 

video denoising, it presents a deep learning-based approach that can be extended to image denoising. The 

authors propose a deep video prior, which exploits temporal redundancy in videos to effectively denoise 

individual frames. These are just a few notable works that demonstrate the effectiveness of deep learning 

techniques to reduce noise in images. It is important to note that research in this area is constantly evolving, 

so conducting a comprehensive literature search would allow you to get a more detailed idea of the 

achievements made in this area. 

 

 

2. METHOD 

The generative model of the attentive generative adversarial network (GAN) combines the ideas of 

attention and classical GAN architecture. The AttentiveGAN [17], [18] allows the model to focus on specific 

areas in the data and generate better results. Attention in the context of machine learning refers to a 

mechanism that allows the model to focus on certain parts of the input data, ignoring the rest. This allows the 

model to focus on more important details or data areas. An AttentiveGAN usually consists of two main 

components: a generator and a discriminator, which compete with each other in the learning process. The 

generator takes random noise or another form of input data as input and generates the generated data. 

Attention can be applied to the generator so that it can focus on certain areas of data and create more realistic 

results. The discriminator accepts both real data and generated data from the generator and tries to distinguish 

them. The task of the discriminator is to distinguish real data from fake data with maximum accuracy. 

Learning occurs by opposing the generator and discriminator to each other. The architecture of the model for 

the applied task of this work is shown in Figure 1. 

 

 

 
 

Figure 1. The architecture of the AttentiveGAN model 

 

 

The effectiveness of using filtering [19] on noisy images depends on several factors, including the 

type of noise, the noise level, the selected filter, and filtering options. Different types of noise require 

different filtering methods. For example, for randomly distributed additive noise, such as Gaussian noise, 

filters based on statistical processing, such as a Gaussian filter or a median filter, are usually effective.  
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The algorithm for performing Gaussian filtering and the AttentiveGAN (AGAN) model was 

implemented as follows: 

a) Training the AGAN model. First, the AGAN model was trained in pairs of noisy and clean images. The 

AGAN model generates clean images from noisy inputs. 

b) Preparation of a noisy image. The noisy image must be prepared. This may include applying Gaussian 

filtering to smooth the noise, which can reduce high-frequency noise. 

c) Application of the AGAN model. The noisy image is passed through the AGAN model generator. The 

generator converts the noisy image into a cleaner image using the information obtained during training. 

d) Application of Gaussian filtering [20]–[22]. After passing through the AGAN model, the resulting 

cleaned image is further processed using Gaussian filtering [23]–[25]. This allows you to smooth out the 

remaining noise and improve the quality of the final image. 

 

 

3. RESULT AND DISCUSSION 

To solve this problem, noisy images with different noise densities were taken, which contain 

raindrops and traces of dust and snow. The training data set contains 15,314 pre-trained sets of images taken 

from the Kaggle open-access database. Figure 2 shows noisy images with various types of noise, such as 

Figure 2(a) traces of dust, Figure 2(b) traces of snow, and Figure 2(c) raindrops. 

In this work, when training on pairs of noisy and corresponding clean images, the AttentiveGAN 

model was used. After the training model, a Gaussian filter was also used. As shown in Figure 3, the results 

of using the AttentiveGAN model and filtering when removing noise, such as in Figure 3(a) the result of 

removing traces of dust, in Figure 3(b) the result of removing traces of snow, in Figure 3(c) the result of 

removing raindrops of the image were impressive. The model was trained to extract important features of the 

image and restore its clean version, minimizing the effect of noise. Applying a Gaussian filter can effectively 

reduce image noise, especially when the noise is additive and has a Gaussian distribution. This made it 

possible to achieve improved image quality with reduced noise. 

 

 

   
(a) (b) (c) 

 

Figure 2. Original noisy images (a) dust trails, (b) snow trails, and (c) raindrops 

 

 

   
(a) (b) (c) 

 

Figure 3. Processed images (a) the result of removing traces of dust, (b) the result of removing traces of 

snow, and (c) the result of removing raindrops 

 

 

In this work, deep learning methods show high efficiency in reducing noise in images. They allow 

models to automatically study complex dependencies in data and restore clean images with high accuracy. 

The Terrain model was used for all training images, which made it possible to reduce noise in images of 

different types. Figure 4 shows the algorithm for executing the AttentiveGAN model using a Gaussian mask. 
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Figure 4. Algorithm for executing the AttentiveGAN model 

 

 

Gloss, D-loss, and SIM metrics are used in the context of generative-adversarial networks (GAN) to 

evaluate model performance. The Gloss loss measure (generative loss) evaluates how well the generator in 

GAN performs its task. The purpose of the generator is to create real examples of data that can pass as real. 

Gloss allows you to estimate the difference between the generated data and the real data. The lower the G-

loss, the better the generator performs its task. 

The discriminative loss (D-loss) loss measure evaluates how well the discriminator in GAN 

distinguishes between generated data and real data. The discriminator in GAN is a model that is trained to 

classify data as real or generated. D-loss allows you to estimate the difference between the discriminator 

classification and the actual data labels. The purpose of the discriminator is to be able to accurately 

distinguish real data from generated data. The lower the D-loss, the better the discriminator performs it is 

task. The structural similarity index (SSIM) metric is used to measure the similarity between two images. 

SSIM evaluates the structural similarity between the original and restored images. It takes into account the 

brightness, contrast, structure, and perception of human vision. SSIM outputs a value from 0 to 1, where 1 

means perfect similarity. A high SSIM value as shown in Figure 5 indicates that the restored image is close to 

the original one in terms of structure. 

 

 

 
 

Figure 5. Gloss, D-loss, and SIM loss measure 
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4. CONCLUSION  

In this experiment, the resulting improved images can be effectively used in the future in object 

recognition. If the background in an image contains noise or unwanted detail, blurring the background helps 

make objects stand out more. Automated image noise reduction using deep learning techniques can make 

objects more distinct and easier to recognize. 

In the course of the work, it was noted that the effectiveness of deep learning methods for noise 

reduction depends on the quality of training data, the amount of data, and the choice of model architecture. In 

this work, noisy images with different noise densities were taken. The optimal result can be achieved with the 

correct selection of parameters and optimization of the model for a specific type of noise and the desired 

results. In this work, to achieve a better result, we used a combined model, that is, we trained the data using 

the Derain model and applied a Gaussian filter. To assess the effectiveness of the model, Gloss, D-loss, and 

SIM indicators were used, where the SIM value reaches 1, which allows us to evaluate the effectiveness of 

the deep learning method used. 
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