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 This article explores the relationship between forest cover and coronavirus 

disease 2019 (COVID-19) cases in Colombia using remote sensing 

techniques and data analysis. The study focuses on the CORINE land cover 

methodology's five main land cover categories: artificial territory, 

agricultural territories, forests and semi-natural areas, humid areas, and 

water surfaces. The research methodology involves several phases of the 

unified method of analytical solutions for data mining (ASUM-DM). Data 

on COVID-19 cases and forest cover are collected from the Colombian 

National Institute of Health and Advanced Land Observation Satellite 

(ALOS PALSAR), respectively. Land cover data is processed using QGIS 

software. The results indicate an inverse relationship between forest cover 

and COVID-19 cases, as evidenced by Pearson's index ρ of -0.439 (p-value 

<0.012). In addition, a negative correlation is observed between case density 

and forests and semi-natural areas, one of the land cover categories. The 

findings of this study suggest that higher forest cover is associated with 

lower numbers of COVID-19 cases in Colombia. The results could 

potentially inform government organizations and policymakers in 

implementing strategies and policies for forest conservation and the 

inclusion of green areas in densely populated urban areas. 
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1. INTRODUCTION 

In 2019, after several years, the world again experienced a pandemic caused by the coronavirus 

disease 2019 (COVID-19) disease, caused by the SAR-CoV-2 virus [1]. To mitigate the spread of the virus 

and reduce the risk of the population suffering from COVID-19, a large portion of the world´s governments 

implemented mitigation strategies [2], [3]. On the other hand, the research and academic sectors began to 

develop research to understand the relationships between the spread of the virus and different factors, such as 

environmental [4]–[6], demographic and economic [7]–[9], age-related, climatological, people with the 

Bacillus Calmette-Guérin (BGC) vaccine, and people under treatment for malaria [10]. Likewise, different 

authors have worked on the development of mathematical models that allow modeling and estimating the 

long-term spread of COVID-19 [11]. 

Spatial data mining techniques allow the extraction of information from geographic data to perform 

correlation analysis [12] between different variables, such as: land use and forest fire risk [13], the spatial 

distribution of forest cover and environmental variables [14], and the quantification of vegetation types using 

multitemporal analysis [15]. Thanks to the above and considering that, remote sensing, it is possible to carry 

out vegetation cover analysis [16]–[18], this is another factor studied concerning the spread of COVID-19. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Remote sensing in the analysis between forest cover and COVID-19 cases in … (Vladimir Henao-Céspedes) 

733 

Thus, another factor that has been studied with regard to COVID-19 are the green areas present in cities, in 

such a way that it can be defined if the existence of these spaces mitigates or not the spread of the virus. 

Studies focused on this factor have managed to establish that there is a negative correlation between the 

existence of green spaces and the infection rate, that is, the number of infections is lower in areas where there 

are more green spaces [19]–[21]. If the percentage of vegetation coverage increases, the spread rate of the 

virus decreases, according to numerical data. If the coverage increases by 1%, the number of accumulated 

cases of COVID-19 decreases by 2.6%, according to [22]. The preceding is consistent with studies carried 

out on the relationship of some respiratory diseases with green areas, such as the case presented in [23], 

where it is suggested that growing up in urban areas with large green areas reduces the risk of developing 

asthma thanks to the macrobiota present. Considering the importance of green regions to mitigate the chances 

of developing some diseases, some authors propose incorporating biophilic elements into urban design, such 

as green roofs, which could help improve air quality [24]. 

In this article, using remote sensing data associated with forest cover, the results of a study on its 

relationship with COVID-19 are presented, applying various phases of the analytics solutions unified method 

for data mining (ASUM-DM), methodology for data analysis projects. Remote sensing data have allowed 

modeling the spread of diseases from a spatial and temporal dynamic [7], [25]. Finally, this article analyzes 

the association between COVID-19 cases recovered, deceased, and forest cover. The research hypothesis that 

"greater forest cover is associated with a lower number of COVID-19 cases" was verified in a case study in 

Colombia. 

 

 

2. METHOD  

2.1.  Study area 

The study area is Colombia, a country comprising 32 departments according to its internal political 

division. Colombia is located in the northwest of South America. The country has a Gini index of 0.53 [26], 

indicating a state of neither perfect equality nor perfect inequality. However, based on this, it can be inferred 

that a significant portion of the population lacks sufficient economic income. Colombia exhibits a diverse 

range of land cover types across its five regions: the Caribbean region, characterized by grasslands, wetlands, 

and bare soils; the Pacific region, known for its high rainfall and lush rainforests; the Orinoco region, 

dominated by vast savannahs on a flat landscape; the Amazon rainforest area, featuring dense tropical 

jungles; and the Andes Mountain range, comprising heavily modified natural ecosystems, extensive 

agricultural cultivation, road networks, and urban areas [27].  

 

2.2.  Data sources 

The data that was used in this research and the respective sources are presented in Table 1. The 

population data for the study area was obtained from the 2018 population census report carried out by the 

national administrative department of statistics [28]. This makes it clear that the most recent census in 

Colombia is the one mentioned. The number of cases of COVID-19 is obtained from the National Institute of 

Health of Colombia, also known as Instituto Nacional de Salud (INS) by its name in Spanish [29]. The land 

cover data for Colombia were obtained from the National Institute of Hydrology, Meteorology and 

Environmental Studies (IDEAM) [30] and geographically processed using QGIS software [31], [32]. The 

IDEAM employs the CORINE Land Cover methodology [33], [34] to generate the land cover classification. 

Finally, the forest cover data was obtained from the global forest/non-forest map (FNF) dataset [35] 

implemented in google earth engine (GEE). 

 

 

Table 1. Data sources 
Data Acquisition date Source 

Population  01/10/2020 - 31/12/2021 [28] 
Covid–19 (amount cases) 01/10/2020 - 31/12/2021 [29] 

Forest 01/10/2020 - 31/12/2021 [36] 

Land Cover  [30] 

 

 

2.3.  Methodology 

To start, the study area is defined, in this case, Colombia, and a time window is established from 

October 1, 2020 to December 31, 2021, the window for which the primary data of the study is covered. 

Subsequently, data from the study area on the behavior of the COVID-19 pandemic, in which the number of 

cases is identified, are obtained from the information system of the National Institute of Health in Colombia. 

Forest data is also obtained for the study area for the established time window, and this study focused on 
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analyzing the five main categories of land cover: i) artificialized territory (CLC1), ii) agricultural territories 

(CLC2), iii) forests and semi-natural areas (CLC3), iv) wet areas (CLC4), and v) water surfaces (CLC5). For 

the execution of the study, some stages of the analytics solutions unified method for data mining/predictive 

analytics (ASUM–DM) methodology created by IBM in 2015 [37] were applied in an adjusted way for a 

better understanding. This can be observed in Figure 1. 

 

 

 
 

Figure 1. Methodology flowchart 

 

 

The analytical approach of the problem phase is carried out to identify the variables that are required 

in the study. Subsequently, the data requirement phase establishes these variables with their respective 

characteristics. Once the variables necessary for the study with their respective characteristics were defined, 

the data collection phase was carried out, during which the different sources where the variables were found 

were accessed. After obtaining the data from the variables, an initial exploratory analysis is carried out in the 

data comprehension phase, to observe the variables' behavior. Once the behavior of the variables was known, 

the data preparation phase was executed, where processes such as cleaning and standardization of erroneous 

and atypical data were carried out. Finally, an analysis of the data is generated in the phase of the 

construction of the model-analysis.  
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3. RESULTS AND DISCUSSION  

The analytical approach to the problem suggests the need to understand the relationship between the 

variable "case density" and the variables "forest density" and "land cover" in order to identify the impact of 

forest coverage on the number of COVID-19 infections. Accordingly, the COVID-19 dataset was filtered and 

consolidated, specifically by departments, using the R software. The land cover data were processed in QGIS 

using the "Join attributes by location" data management tool with the geometric predicate "contains." This 

methodology allows for associating each geographical unit with the corresponding land cover categories 

within its boundaries. Subsequently, the land cover data were merged into the preexisting COVID database to 

create an integrated dataset. Following the data cleaning process performed with R and Excel, the data 

comprehension phase commenced, including an exploratory analysis that revealed the findings in Table 2. As 

observed in the table as mentioned earlier, the Shapiro-Wilk test indicates that the analyzed dataset is not 

normally distributed, as all the p-values from the Shapiro-Wilk test are less than 0.05. However, the forest 

density among the variables shows the closest approximation to a normal distribution, with a Shapiro-Wilk  

p-value of 0.102. 

 

 

Table 2. Descriptive statistic 
 Cases density Forest density CLC1 CLC2 CLC3 CLC4 CLC5 

Valid 32 32 32 32 32 32 32 

Missing 0 0 0 0 0 0 0 
Mean 0.076 0.511 18994.868 828732.63 1.27E+06 27878.697 20090.187 

Std. Deviation 0.112 0.277 15999.318 681897.086 1.60E+06 41316.012 26982.455 

Shapiro-Wilk 0.692 0.945 0.826 0.906 0.67 0.713 0.690 
P-value of Shapiro-Wilk < .001 0.102 < .001 0.009 < .001 < .001 < .001 

Minimum 3.05E-04 1.92E-04 956.148 1398.354 1041.032 0 0 

Maximum 0.432 0.969 61877.915 2.90E+06 7.80E+06 182599.677 129055.454 

 

 

Given the purpose of this study and considering the rejection of the normality assumption of the data, 

Pearson's correlation coefficient was applied, obtaining the values indicated in Table 3. As can be seen, there is 

a Pearson index 𝜌 of -0.439 (p-value<0.012) between the variables forest density and cases density. On the 

other hand, between the variables case density and CLC3, a Pearson index 𝜌 of -0.383 (p-value<0.031) was 

obtained.  

 

 

Table 3. Pearson's Correlations of the variables case density, forest density, and the 5 cover categories 
Variable  Cases density Forest density CLC1 CLC2 CLC3 CLC4 CLC5 

1. Cases density Pearson's r —       
 p-value —       

2. Forest density Pearson's r -0.439* —      

 p-value 0.012 —      

3. CLC1 Pearson's r -0.091 -0.146 —     

 p-value 0.621 0.425 —     

4. CLC2 Pearson's r -0.253 -0.135 0.251 —    
 p-value 0.162 0.461 0.165 —    

5. CLC3 Pearson's r -0.383* 0.109 -0.22 0.266 —   

 p-value 0.031 0.554 0.226 0.142 —   

6. CLC4 Pearson's r -0.264 -0.347 0.142 0.288 0.068 —  

 p-value 0.145 0.052 0.438 0.109 0.713 —  

7. CLC5 Pearson's r -0.252 -0.2 0.139 0.316 0.006 0.900*** — 
 p-value 0.164 0.273 0.448 0.079 0.976 < .001 — 

* p < .05, ** p < .01, *** p < .001 

 

 

Results in Table 3 indicate an inverse trend between forest density and the variables cases density 

and CLC3, with departments with high forest cover presenting a low number of COVID-19 cases, thus 

validating the hypothesis raised for the development of this article. This is consistent with what was proposed 

in [19], [20] where green areas are associated with the low severity of COVID-19 infections and the low 

transmission rate, thanks to optimum air quality. Considering the correlation obtained for the CLC3 

variables, an analysis was conducted that encompassed the vegetation covers within category 3. These covers 

include, first, those of a forest type (code: 31); second, those of a shrubby and herbaceous type (code: 32); 

and third, territories composed of bare soils, rocky outcrops, and sandy areas (code: 33). The analysis reveals 

a significant correlation (𝜌=-0.368, p-value=0.038) between the density of COVID-19 cases and coverage 31, 

which corresponds to forested areas as shown in Table 4. This correlation value aligns with the findings of 
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the previous analysis conducted using forest density data obtained from the FNF map, further confirming the 

inverse relationship between the number of COVID-19 cases and the extent of forest presence in the study 

areas. 

 

 

Table 4. Pearson's Correlations of the case density variables and the three categories of the CLC3 level of 

coverage 
Variable 

 
Cases 

density 

31 -

Forest 

32 - Areas with herbaceous 

and/or shrubby vegetation 

33 - Open areas, with 

little or no vegetation 

Cases density Pearson's r — 
   

p-value — 
   

31 - Forest Pearson's r -0.368* — 
  

p-value 0.038 — 
  

32 - Areas with herbaceous and/or 

shrubby vegetation 

Pearson's r -0.328 0.68*** — 
 

p-value 0.067 < .001 — 
 

33 - Open areas, with little or no 

vegetation 

Pearson's r -0.232 0.194 0.419* — 

p-value 0.201 0.279 0.015 — 

* p < .05, ** p < .01, *** p < .001 

 

 

The correlation between the cases density of COVID-19 and the CLC3 coverage is visually 

presented in Figure 2 and Figure 3. The graphical representation reveals that certain departments with a high 

case density (depicted in an intense red color in Figure 3 exhibit low CLC3 coverage (depicted in a very light 

green color in Figure 2). The foregoing can also be verified in Figure 4, where the trend of a decrease in 

cases is observed as the area of CLC3 coverage by department increases. 

 

 

 
 

Figure 2. Distribution of CLC3 coverage in Colombia 
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Figure 3. Distribution of COVID - 19 cases in Colombia 

 

 

 
 

Figure 4. Relation between area of CLC 3 and cases density 

 

 

In a more detailed way, Figures 5, 6, and 7 graphically present the relationship between the three 

coverages analyzed at the CLC3 level. It is possible to observe the negative relationship that exists between 

each of the coverages and the density of cases, as shown in Table 4. This supports the idea that in places 

where there is a reduced surface extension of the coverages under analysis, there were quite a few cases of 

COVID-19. 
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Figure 5. Cover with code 31 vs cases density 

 

 

 
 

Figure 6. Cover with code 32 vs cases density 

 

 

 
 

Figure 7. Cover with code 33 vs cases density 

 

 

Finally, unlike other studies, the present study was able to present results of the correlation between 

five categories of land cover and the density of cases of COVID-19. The cover that presents the highest 

negative correlation is CLC3 associated with forest; although this has been reported in other articles, in the 

present article, it is evident that depending on the type of forest, the correlation with the cases of COVID-19 

will be the same. Thus, in areas with forest cover (code 31), the highest negative correlation is presented; this 

cover includes natural forests and plantations, and at the local level in Colombia, it also includes natural 

biological forms such as palm and guadua. Then, a lower negative correlation is found, associated with 

herbaceous and/or shrub vegetation cover (code 32), including low vegetation and tangle vegetation for 

Colombia. Finally, the lowest negative correlation is found with the cover of open areas with little or no 

vegetation (code 33), particularly bare and burned soils or soils covered by ice and snow. 
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4. CONCLUSION  

The present study allowed us to explore the relationship between forest cover and the number of 

positive cases of COVID-19 in Colombia. It is possible to observe that in the areas where there is a greater 

forest cover, the number of cases is lower. This may be due, on the one hand, to what has been stated by 

different authors who indicate that the vegetation cover allows to improve air quality indices and therefore 

reduce the spread of COVID-19. On the other hand, this relationship can also occur given that in the areas 

with the greatest forest cover in Colombia, the population density is much lower than in the areas where there 

is less forest cover, for both in the areas with the greatest forest cover, the transmissibility of the virus may be 

lower. The results obtained have some limitations associated with the amount of data available to carry out 

the study and their variability in Colombia. This country presents substantial differences between its 

departments due to its geographic location, population, and distribution of forests. It is hoped that a future 

study can be carried out with continental scale data to have a larger dataset to validate the hypothesis, or at 

the national level as in the present study but with forest cover data at the urban area level, requiring very 

high-resolution images. It is hoped that studies of this type can provide decision-making tools to government 

entities to support forest conservation and expansion processes and the generation of incentives for 

constructions that include biophilic elements to increase vegetation cover within urban areas. 
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