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 Electricity theft is a serious issue that many nations face, especially in 

developing areas where non-technical losses can make up a significant 

percentage of the overall losses sustained by utilities. Electricity theft 

detection (ETD) is a very challenging task because it frequently introduces 

irregularities in customer electricity consumption patterns. In recent times, 

machine learning (ML) techniques have been investigated as a potential 

solution for ETD. In this research, author propose electricity theft detection 

based on four kernel functions of support vector machines (SVM). The 

proposed method analyzes the electricity consumption patterns and then 

predicts the category of the user. The kernel functions utilized includes 

polynomial, sigmoid, radial basis function (RBF) and linear kernel function. 

For experimentation and model training, a dataset of Pakistani utility 

company is used, which contains the electricity consumption information. 

The results highlight SVM method works well for accurate ETD. The 

detection accuracy of the various kernel functions of SVM is 83%, 79%, 

80%, and 76% for RBF, polynomial, sigmoid, and linear kernel functions, 

respectively, demonstrating the effectiveness of the proposed SVM-based 

method for theft detection. By leveraging these ML-based methods, utility 

companies can strengthen their ability to detect and prevent electricity theft, 

leading to improved revenue management and dependability of services. 
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1. INTRODUCTION 

Electricity theft is indeed a serious issue in many countries, and it has significant economic, social, 

and environmental implications. Traditional methods for detecting electricity theft often rely on manual 

inspections and periodic meter readings, which can be inefficient and may not effectively identify all 

instances of theft [1]. The World Bank estimates that theft of power costs the global economy $96 billion 

every year in lost income [2]. Electricity theft is especially common in developing countries, where non-

technical losses can make up a significant share of all utility losses [3]. Physical examination and manual 

meter reading are two outdated, expensive, time consuming and error-prone methods of detecting electricity 

theft [4]. As a result, there has been a growing interest in developing more advanced and technology-driven 
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approaches to address this problem. In recent times, machine learning (ML) techniques have been 

investigated as a potential solution for automatically detecting the electricity theft and it has shown the 

promising results. Machine learning algorithms can analyze large data sets, which can also identify patterns 

that might be signs of electricity theft [5], [6]. One of the commonly used machine learning algorithm i.e., 

support vector machines (SVM) has been effectively used in a number of industries, including banking, 

healthcare, and cyber security and Electric theft detection [7]. As a supervised learning system, SVM, can 

identify distinct data classes and generate predictions based on discovered patterns [8], [9]. 

In this article, author suggest using SVM and its four-kernel function to automatic detection and 

prediction of electricity theft by analyzing the consumption patterns of the users. Support vector machines 

(SVMs) are a type of supervised machine learning algorithm. SVMs work by finding a hyperplane that best 

separates data points belonging to different classes while maximizing the margin between the two classes. 

Here's how SVMs can be applied to detect electric theft: 

− Data collection: to detect electrical theft, you need a dataset with details on typical patterns of electricity 

use and pertinent attributes. This dataset should be tagged, indicating that it includes illustrations of both 

typical electricity use (which is not theft) and cases of theft. 

− Feature extraction: extract useful characteristics from your dataset using the feature extraction method. 

These characteristics can include trends in electricity consumption over time, variations in voltage and 

power factor, and any other pertinent data that might aid distinguish between legitimate use and theft. 

− Data preprocessing: preprocessing your data includes cleaning and preparing it. The handling of missing 

values, normalization of the data, and division of the data into training and testing sets could all be 

included in this stage. 

− Training the SVM: now, you can train your SVM model using the labeled training data. The SVM 

algorithm's objective is to find a hyperplane that best separates the two classes (normal and theft) while 

maximizing the margin. This hyperplane is chosen to ensure that it is as far away from the nearest data 

points of both classes as possible. Mathematically, the SVM optimization problem can be represented as 

in (1): 

 

𝑀𝑖𝑛 𝑓: ½ ||𝑤||2 

𝑠. 𝑡. 𝑔: 𝑦𝑖 (𝑤 • 𝑥𝑖 )– 𝑏 = 1 𝑜𝑟 [𝑦𝑖 (𝑤 • 𝑥𝑖 )– 𝑏] – 1 = 0 (1) 

 

where w is the weight vector, xi represents the feature vector of the i-th training example, b is the bias 

term, and yi is the class label for the i-th training example (-1 for normal, +1 for theft). 

− Kernel trick: SVMs can translate data into a higher-dimensional space where separation is achievable 

using a kernel function in situations where the data is not linearly separable. The polynomial kernel and 

the radial basis function (RBF) kernel are examples of common kernel functions. The type of data 

determines which kernel function to use. 

− Decision making: once the SVM model is trained, you can use it to classify new data points. For electric 

theft detection, if a new data point is classified as +1 (theft), it suggests that the consumption pattern is 

likely indicative of theft, while a classification of -1 (normal) indicates normal electricity consumption. 

− Evaluation: evaluate the performance of your SVM model using metrics such as accuracy, precision, 

recall, and F1-score on a separate testing dataset. This helps you assess how well your model is 

performing in detecting electric theft. 

− Fine-tuning: you can further fine-tune your SVM model by adjusting hyperparameters, such as the 

regularization parameter (C) or the kernel parameters, to optimize its performance. 

In summary, SVM can be a valuable tool for electric theft detection by learning patterns from 

historical data and classifying new consumption patterns as normal or indicative of theft [10]. The suggested 

approach entails gathering information on electricity usage and training an SVM model to distinguish 

between regular and irregular consumption patterns. The classification of electricity usage data and the 

detection of electricity theft are subsequently performed using the SVM mode [11], [12]. Our research 

focuses on assessing the performance of the suggested SVM-based strategy in identifying electricity theft and 

contrasting it with different kernel functions. 

Electricity theft is a significant problem affecting utilities worldwide, and various methods have 

been proposed to detect and prevent it [13]. Traditional methods of detecting electricity theft, such as 

physical inspection and manual meter reading, are time-consuming, expensive, and error-prone [14]. As such, 

there is growing interest in using machine learning techniques to detect electricity theft. To identify 

electricity theft, several research employ machine learning methods such as artificial neural networks 

(ANNs), decision trees (DTs), SVMs, and random forests (RFs). For example, a study by [15] proposed 

model uses features extracted from monthly consumption data to segregate normal electricity consumption 

(non-theft)and theft customers, selecting the most relevant features using the Pearson’s chi-square feature 
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selection algorithm, and classifying them using the Boosted C5.0 Decision Tree algorithm. This method can 

assist distribution system operators (DSOs) in their fight against electricity theft. 

Another study by Ghaedi et al. [16] proposed a method for electricity theft detection based on a 

combination of an improved crow search algorithm and support vector machines. The proposed method 

analyzed customer electricity consumption data provided by meters and combined the algorithms to classify 

electricity consumption patterns as normal or theft. This study reported pretty good accuracy in classifying 

the consumers. SVMs are also commonly used to detect electricity theft. A study by Nagi et al. [17] used 

SVMs to detect electricity theft by analyzing customer load profiles. The proposed method extracted features 

from load profiles and used SVM to classify electricity consumption patterns as normal or theft. The study 

confirmed reasonable accuracy in detecting electricity theft using SVM. Another study by et al. [18] 

proposed a novel convolutional neural network based (CNN) method with RUSBoost manta-ray foraging 

optimization and RUSBoost bird swarm algorithm for detecting electricity theft by analyzing customers' 

electricity consumption patterns. The proposed method included data preprocessing, feature extraction, 

model training, and standard or abnormal classification of electricity expenditure patterns.  

In summary, machine learning techniques have emerged as a promising solution to the problem of 

electricity theft detection. Several studies have proposed using machine learning algorithms such as ANN, 

decision trees, SVM, and random forest to detect electricity theft. Among these algorithms, proposed 

technique shows promising results in detecting electricity theft in this study, by analyzing customers' 

electricity consumption patterns [19], [20]. 

 

 

2. METHOD  

The technique used in the workflow to identify electricity theft essentially consists of five steps, as 

indicated in Figure 1. It starts with collection of data, preprocessing data, feature extraction, model training 

and finally testing of model. The workflow's components will be described in depth in accordance with 

Figure 1.  

 

 

 
 

Figure 1. A flowchart for the suggested electricity theft detection (ETD) model 

 

 

2.1.  Data collection  

The first step is to collect electricity consumption data from customers. This data can be collected 

from smart meters and other electronic devices that record electricity consumption on a regular basis. For this 

research, Author received data from a Pakistan utility company (MEPCo) that included monthly electricity 

consumption data for a large no. of customers over a three-year period. The temporality range of the data, 

which comprises from May, 2015 to April, 2018 (approximately 36 Months). The file size is 17.3 MB in 

CSV format, with respect to the data structure of the Data set is comprised of normal electricity consumption 

(non-theft) customers amounting 2,117 (77%) and theft customers amounting 646 (23%) as describe in  

Table 1. 
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Table 1. Customers divided into no. of groups 
Total No. of customers Normal electricity consumption (non-theft) Theft customers Test set Training set 

2,763 2,117 646 1,934 829 

 

 

2.2.  Data preprocessing 

This step is very important to convert raw data into useful data set so model can easily learn from 

useful data to generate predictions. Collected data may contain errors, missing values, or outliers that need to 

be addressed before training an SVM model. Preprocess the data to remove missing values and outliers, 

normalize the data, and have all features on the same scale. The interpolation approach, which is illustrated 

by the (2), is used to recover missing values from the dataset of the relevant research. 

 

𝐹(𝑥) = {

(𝑥𝑖+1+𝑥𝑖−1)

2
        𝑖𝑓 𝑥𝑖 ∈ 𝑁𝑎𝑁, 𝑥𝑖−1 𝑎𝑛𝑑  𝑥𝑖+1  ∉  𝑁𝑎𝑁

     0                   𝑖𝑓 𝑥𝑖 ∈ 𝑁𝑎𝑁, 𝑥𝑖−1 𝑜𝑟  𝑥𝑖+1   ∈ 𝑁𝑎𝑁
𝑥𝑖                                                                 𝑖𝑓 𝑥𝑖 ∉

 (2) 

 

where, 𝑥𝑖 represents electricity consumption data and 𝑁𝑎𝑁 represents non-numeric value. 

Additionally, it is discovered that the statistics on power use contain incorrect figures (or outliers). 

Specifically, apply the “three-sigma rule of thumb” to recover the value using (3). 

 

𝑓(𝑥𝑖) = {
𝑎𝑣𝑔(𝑥) + 2. 𝑠𝑡𝑑(𝑥), 𝑖𝑓 𝑥𝑖 > 𝑎𝑣𝑔(𝑥) + 2. 𝑠𝑡𝑑(𝑥)

𝑥𝑖                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

where 𝑎𝑣𝑔(𝑥) represents the average value of x and 𝑠𝑡𝑑(𝑥) represents the standard deviation of 𝑥, and 𝑥 is a 

vector made up of 𝑥𝑖 per day. In (3), only take positive deviation because each user's electricity use is always 

higher than 0. In conclusion, the outliers may be successfully mitigated using this strategy. 

 

2.3.  Feature extraction 

Extracts features from the preprocessed data can be used to train an SVM model. In machine 

learning and signal processing, the process of extracting pertinent information or features from unprocessed 

data is known as feature extraction [21]. It involves transforming the input data into more compact and 

representative feature representation that captures the important characteristics of the data. The extracted 

features include average hourly electricity usage, hourly electricity usage variance, and total daily electricity 

usage, mean, standard deviation, peak to peak, skewness, and kurtosis. Some of important features are 

defined further as follows. 

 

2.3.1. Skewness 

The asymmetry of the dataset or probability distribution is measured by skewness. When the 

skewness of the data is positive, it means that the data is skewed to the right (tail on the right side), and when 

it is negative, it means that the data is skewed to the left. A symmetric distribution is indicated in (4) with a 

skewness value of 0. 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑋𝑖−Ẋ)3𝑁

𝑖=1

𝑁.𝜎3
 (4) 

 

where in the dataset, 𝑥𝑖 stands for every single data point; Ẋ represents the dataset mean or average; N is the 

number of data points; and 𝜎 is the standad deviation of the dataset. 

 

2.3.2. Kurtosis 

Kurtosis quantifies the way flat or peaky a dataset or probability distribution is in comparison to a 

normal distribution. It indicates if the data is more leptokurtic (heavy tails) or platykurtic (light tails) than a 

normal distribution. The kurtosis of a normal distribution is commonly represented by a value of 3, which is 

frequently used as a benchmark. Data with a heavy tail (leptokurtic) value is greater than three, whereas data 

with a light tail (platykurtic) value is less than three. The formula for kurtosis, known as excess kurtosis, is 

typically calculated as in (5). 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑋𝑖−Ẋ)4𝑁

𝑖=1

𝑁.𝜎4
 – 3 (5) 
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where 𝑥𝑖 stand for each individual data point in the dataset, Ẋ is the mean (average) of dataset, 𝑁 is the 

number of data points, and 𝜎 is the standad deviation of the dataset. 

 

2.4.  Training SVM model 

The extracted features from preprocessed data are used to train the SVM model. The SVM model is 

a supervised machine learning algorithm that learns to distinguish between normal and theft electricity 

consumption patterns. Although it can also be used to handle multi-class classification, it works especially 

well at solving binary classification problems [22]. SVM's fundamental goal is to partition data points into 

distinct classes in a high-dimensional feature space by identifying the best hyperplane. The hyperplane is 

selected so as to optimize the margin, or the separation between the hyperplane and the closest data points for 

each class. It identify the data points that are closest to the hyperplane as support vectors.  

Kernel functions are an essential component of several machine learning algorithms, including SVM 

[23]. These functions can transform input data into a higher-dimensional space, enabling the algorithms to 

identify complex hidden relationships in the data and make accurate predictions. In this study four kernel 

functions i.e., RBF, polynomial, sigmoid, and linear kernel functions in the context of SVM are used. 

 

2.5.  Test SVM model 

After the SVM model is trained, test it on the rest of the data to evaluate its performance. Measure 

model accuracy and false positive rate. Based on learned patterns, the SVM model categorizes electricity 

consumption data as normal or abnormal. Abnormal electricity usage patterns indicate electricity theft and 

are flagged for further investigation. Finally, evaluate the performance of the proposed method in terms of 

accuracy, false positive rate, and computational complexity. Comparing the performance of each SVM kernel 

function used in the paper. 

 

 

3. RESULTS AND DISCUSSION 

Electricity theft detection in supervised learning is primarily concerned with the issue of class 

imbalance. The proportion of normal electricity consumption (non-theft) consumers in this situation is really 

different from the amount of these theft ones. Consequently, a straightforward accuracy metric is unreliable 

for assessment. Different performance measures are taken into account in this research. The values of these 

assessment measures are derived from the confusion matrix.  

 

3.1.  Confusion matrix 

A table known as a confusion matrix is used to assess how well a classification algorithm performs. 

It shows the proportion of true positives, true negatives, false positives, and false negatives in a given set of 

forecasts. True positive (TP), the theft customers correctly identified as being theft. False positive (FP), the 

normal customers incorrect identified as thieves. True negative (TN), the normal customers correctly 

identified as being normal. False negative (FN), the theft customers identified as being normal.  

There are other validation parameters such as accuracy, Matthew’s correlation coefficient (MCC), 

area under curve (AUC), area under receiver operating characteristic curve (ROC AUC), area under the 

precision recall curve (PR AUC), precision, recall and F1 score are used in this study. 

− Accuracy is defined as the percentage of correctly predicted data points among all the data points which is 

given in (6). It is a commonly used statistic in the data science profession for categorization issues. Where 

the distribution of labels is unbalanced, it is not regarded as a valid measure. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃
× 100% (6) 

 

− MCC: the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) all four 

components of the confusion matrix are taken into consideration by the Matthews correlation coefficient. 

MCC score ranges between -1 to 1, A value of 1 indicates an accurate prediction, a value of 0 indicates no 

class separation capability, and a value of -1 indicates an incorrect prediction. It is formulated in [24] 

using (7). 

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (7) 

 

− AUC: as given in (8), the area under the ROC curve is a performance parameter that is used to determine 

how well a classification model performs overall. Plotting the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold settings yields the ROC curve. AUC has a range of 0 to 1, with 1 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Machine learning-based electricity theft detection using support vector machines (Safdar Ali Abro) 

1245 

denoting the best possible classifier, 0.5 denoting a random classifier, and 0 denoting the worst possible 

classifier. 

 

𝐴𝑈𝐶 =
∑ 𝑅𝑎𝑛𝑘𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑐𝑙𝑎𝑠𝑠−

𝑀(1+𝑀)

2

𝑀×𝑁
 (8) 

 

− ROC-AUC: it displays a graphical depiction of a model to assess how well it detects. The capacity of the 

classifier to distinguish between two classes is improved when the ROC-AUC is near to 1. The TPR and 

FPR of the model's trade-off are solely summarized by ROC-AUC. 

− PR-AUC: this performance metric calculates the area under the precision-recall curve to assess a 

classification model's general performance. The precision-recall curve is produced by plotting precision 

(positive predictive value) vs recall (true positive rate) at various threshold values. On a scale of 0 to 1, 1 

represents the ideal classifier, 0.5 represents a random classifier, and 0 represents the impossibly 

inaccurate classifier [25]. 

− Precision: in (9), the percentage of true positives (TP) out of all positive predictions (TP + FP) is known 

as precision. In other words, it assesses the precision of the model's successful predictions. A high 

precision indicates that the model has a low rate of false positives and is effective at predicting real 

positives [26]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 

− Recall: recall is the percentage of genuine positive cases that are true positives (TP) as opposed to false 

negatives (FN). In other words, it assesses how well the model can recognize positive situations. A high 

recall indicates that the model finds the majority of positive cases and detects few false negatives. Using 

(10) mentioned in (10). 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐷𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

− F1 score: It is the precision and recall weighted harmonic mean. The F1 score is helpful in circumstances 

when FP and FN are equally significant because it strikes a compromise between accuracy and memory. 

A high F1 score indicates that the model has a high recall and accuracy, which is given in (11). 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 

The outcomes for each comparison techniques are shown in this section. The dataset was divided into 

two sets, the training set and the testing set. Confusion matrix of the four kernel functions used in this research 

on a given dataset is shown in Figure 2. Confusion matrix of RBF kernel function shown in Figure 3. 

 

 

  
  

Figure 2. Confusion matrix of RBF kernel function Figure 3. Confusion matrix of polynomial function 
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Confusion matrix of polynomial function shown in Figure 4. Confusion matrix of sigmoid kernel 

function, and Figure 5 confusion matrix of linear kernel function. In Table 2 shows the comparative analysis 

of the performance of the four kernel functions is presented. 

 

 

  
  

Figure 4. Confusion matrix of sigmoid kernel function Figure 5. Confusion matrix of linear kernel function 

 

 

Table 2. Validation table of the four kernel functions 

Kernel function Accuracy MCC AUC ROC AUC PR AUC 

RBF 83% 0.39 0.88 0.88 0.73 
Sigmoid 79% 0.16 0.53 0.53 0.33 

Polynomial 80% 0.20 0.86 0.86 0.64 

Linear 76% 0.12 0.77 0.77 0.42 

 

 

3.2.  RBF kernel 

The RBF kernel has the highest accuracy, ROC AUC, and PR AUC among the kernels in the table. 

This suggests that it performs the best overall on the given dataset. The MCC value indicates moderate 

agreement between predictions and actual outcomes. 

 

3.3.  Sigmoid kernel 

The Sigmoid kernel exhibits an accuracy of 79%, with an MCC of 0.16, indicating lower agreement 

compared to other kernels. The AUC and ROC AUC values are 0.53, reflecting mediocre discrimination 

ability. The PR AUC of 0.33 suggests a suboptimal precision-recall trade-off, indicating that the sigmoid 

kernel may not be well-suited for this particular dataset. 

 

3.4.  Polynomial kernel 

The polynomial kernel achieves an accuracy of 80%, with an MCC of 0.20, indicating improved 

agreement compared to the sigmoid kernel. The AUC and ROC AUC values of 0.86 suggest good 

discrimination ability, and the PR AUC of 0.64 indicates a favorable precision-recall trade-off. Overall, the 

Polynomial kernel demonstrates a balanced performance on multiple evaluation metrics.   

 

3.5.  Linear kernel 

The linear kernel has the lowest accuracy among the presented kernels at 76%, with an MCC of 

0.12, indicating relatively low agreement. The AUC and ROC AUC values of 0.77 suggest acceptable 

discrimination ability. However, the PR AUC of 0.42 indicates a suboptimal precision-recall trade-off, 

highlighting potential limitations in capturing positive instances effectively. 

The RBF kernel appears to be the best-performing kernel for this dataset, as it has the highest 

accuracy as shown in Figure 6 and the best ROC AUC and PR AUC values. The polynomial kernel also 

performs well, while the sigmoid kernel performs poorly in comparison. The choice of kernel function should 

consider the specific goals of the machine learning task, and further analysis, including hyperparameter 

tuning, may be needed to optimize the model's performance. In Table 3 determined the performance of the 

mentioned kernel functions using three other validation parameters. 
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Figure 6. Comparison graph of SVM kernel functions 

 

 

Table 3. Precision, recall, and F1 score of all four kernel functions 
Kernel function Precision Recall F1 score 

RBF 0.84 0.83 0.78 

Sigmoid 0.75 0.79 0.72 

Polynomial 0.79 0.80 0.73 

Linear 0.72 0.78 0.70 

 

 

3.6.  RBF kernel 

The RBF kernel achieves a high precision, recall, and F1 score. This suggests that it has a good 

balance between making accurate positive predictions (precision) and capturing most of the positive 

instances in the dataset (recall). The F1 score, which combines both precision and recall, also indicates good 

overall performance. 

 

3.7.  Sigmoid kernel 

The Sigmoid kernel has a slightly lower precision compared to the RBF kernel indicating a higher 

rate of false positives. However, its recall is still relatively high, capturing a substantial portion of the actual 

positive instances. The F1 score, while lower than the RBF kernel, indicates decent overall performance.   

 

3.8.  Polynomial kernel 

The polynomial kernel shows good precision and recall values. The F1 score is moderate at 0.73, 

reflecting a balance between precision and recall. It performs well in terms of both precision and recall and 

achieves a respectable F1 score. 

 

3.9.  Linear kernel 

The linear kernel has the lowest precision among the kernels, but it compensates with a relatively 

high recall. However, the F1 score, which combines both precision and recall, is lower compared to the other 

kernels, indicating that it may not perform as well in achieving a balance between precision and recall. The 

choice of kernel function should be based on the specific goals and requirements of the machine learning 

task. If precision is of utmost importance, the RBF kernel appears to be the best choice. If a balance between 

precision and recall is desired, both the RBF and polynomial kernels perform well. The sigmoid kernel also 

performs reasonably well. The linear kernel may be suitable if higher recall is more important than precision, 

but it has a lower F1 score compared to the other kernels. Further analysis and consideration of the 

application context are necessary to make an informed decision about which kernel to use. Figure 7 illustrates 

the comparison of mentioned kernel functions. 
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Figure 7. Comparison of SVM kernel functions 

 

 

4. CONCLUSION 

This research has analyzed the performance results of the support vector machine technique with 

four kernel functions for electricity theft detection. Performance was evaluated using accuracy, precision, 

recall, F1-score, and AUC for all functions. Compared to the results of this study, it can be concluded that 

SVM with the RBF kernel is the most effective kernel function for electricity theft detection. The RBF kernel 

function achieved the highest accuracy rate compared to other kernel functions that were tested in the study. 

The use of SVM with RBF kernel function is a promising approach for electricity theft detection in the power 

sector. Overall, the results of this study demonstrate the potential of SVM with RBF kernel function as a 

reliable and accurate tool for electricity theft detection in the power sector. 
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