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 One of the most critical aspects of a software piece is its vulnerabilities. 
Regardless of the years of experience, type of project, or the size of the 

team, it is impossible to avoid introducing vulnerabilities while developing 

or maintaining software. This aspect becomes crucial when the software is 

deployed in production or released to the final users. At that point finding 
vulnerabilities becomes a race between the developers and malicious 

intruders, whoever finds it first can either exploit it or fix it. Acknowledging 

this situation and using the tools and standards that we have available in the 

field, such as common vulnerability exposures and common vulnerability 
scoring systems, and based on modern researches, in this study, we propose 

to have an approach different from the common practices of manual 

classification, using a 2-layer convolutional neuronal network (CNN) to 

automatize the classification of vulnerabilities, speeding up this process and 

enabling developers to have a faster response towards vulnerabilities, 

producing safer software. The experimental results obtained in this study 

suggest that pre-trained word embeddings contributed to an increase in 

accuracy of approximately 2% and the overall accuracy become 0.816%. 
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1. INTRODUCTION 

Software vulnerabilities are failures in a piece of software. More explicitly, errors introduced in 

software systems during development or maintenance pose security risks to the host computer. They are 

exploitable, which means that an intruder can gain access to the system or the host computer and get 

information, cause damage, or even take control of the whole system. Software is always released with 

vulnerabilities, and regardless of that, most systems are relatively safe due to constant maintenance from the 

developers, who release patches and updates to solve the vulnerabilities that they find during the lifetime of 

the software, reducing the risk of an attacker finding and exploiting a vulnerability to cause damage [1]. This 

is the only approach available, since finding every error during development would make development times 

excessively long [2]. Having said that, one of the problems with this situation is that patches are not released 

to solve all of the vulnerabilities found, since it takes too long and would be detrimental for the developers. 

Moreover, it can cause side effects in big companies with a complex administrative structure. Furthermore, 

companies often lack the resources to address every vulnerability in their system since known or 

undiscovered flaws, defects, or weaknesses are introduced throughout the life cycle of a software-system, 

https://creativecommons.org/licenses/by-sa/4.0/
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resulting in security-vulnerabilities. In addition, vulnerabilities have a major impact on software-systems, 

resulting in billions of dollars in downtime and interruption of critical assets [3]. 

Meanwhile, numerous organizations and researchers have sought to evaluate and prioritize 

vulnerabilities based on various criteria in order to address this problem. Vendors have been ranking software 

vulnerabilities in their own ways without disclosing the theories and techniques that went into them. The 

frequency of “zero-day attacks” in recent years has highlighted the necessity of giving vulnerability fixing 

procedures priority. With this in mind, system administrators have to make the decision of what 

vulnerabilities they will address first, or if they will address them at all, and during this process, the 

vulnerability’s severity is the most important factor to prioritize them [4]. For instance, it is impossible to 

estimate the potential gains that a black-hat-hacker may get from exploiting a single vulnerability. It may hurt 

the organization in question permanently at the same time. The enormous sums of money that companies like 

Facebook spend on their bug-bounty-programs are an easy way to assess their importance. In essence, these 

initiatives involve hiring extra individuals in addition to the testing and security teams to look for any bugs 

that might endanger the system's confidentiality, integrity, or availability. In practice, there is never enough 

time for updates to be deployed and vulnerabilities in software systems to be patched, which opens doors for 

attackers. Therefore, the development team must prioritize-the-vulnerabilities in order to handle the 

enormous number of them properly [5]. 

For that case, there are already standards in the industry aimed at addressing this problem. The most 

known is the common vulnerability scoring system (CVSS), which is used just for this purpose. It allows 

security experts to accumulate a score for vulnerabilities based on well-established metrics, using formulas 

designed to assign a numerical score based on the different characteristics of a vulnerability and impact 

metrics, and provides tools to define an order for vulnerabilities based on their severity. CVSS was designed 

based on expert knowledge and is meant to be used by security experts. Calculating the CVSS score is a hard 

task that takes a long time and requires an expert in the field. Based on that and the fact that most of the 

developers are not experts in security but can understand fairly enough the severity of a vulnerability based 

only on its description, the question to answer is: “Is it possible to accurately predict the severity level of 

software vulnerabilities using only their description?” 

Therefore, the growing frequency of security incidents and associated issues highlights the importance 

for researchers, scholars, and security professionals to assess the severity of software vulnerabilities [6]. 

Utilizing data mining and machine learning techniques has been proposed as a crucial approach for predicting 

vulnerability severity (VSP) to mitigate the number of vulnerabilities and those of high severity. Analyzing 

textual descriptions of vulnerabilities has been employed to gauge their severity using deep learning and a 

simple convolutional neural network. These textual data have also been leveraged to construct a model 

predicting software vulnerability severity, proving the reliability and high accuracy of vulnerability descriptions 

for prioritizing fixes [7]. VSP models provide valuable insights into software maintenance, aiding in the timely 

development of application patches, assessing risks to software system operation, determining the impact of 

fixing and maintaining software, as well as estimating the financial implications of enhancing security. Despite 

significant advancements in VSP through prior research, there remains a gap in exploring how a subset of 

characteristics could enhance VSP effectiveness [8]. By focusing on a limited set of characteristics, the issue of 

dimensionality is addressed, leading to improved prediction accuracy, as evidenced in other research domains 

such as defect prediction, bug prediction, and text classification [9]. 

On the other hand, as our main contribution, this study proposes to accurately predict the severity 

level of software-vulnerabilities based on their descriptions using the natural language processing (NLP) 

approach with convolutional neuronal network (CNN). Thus, the main question is, “Is it possible to 

accurately predict the severity level of software vulnerabilities using only their description?”. This model will 

leverage description information to identify patterns and relationships between various vulnerability 

attributes and their associated risk levels, allowing for more efficient and accurate vulnerability management. 

This paper is divided into five sections. The upcoming section explains the existing literature while 

discussing its limitations. In section 3, we explained the methodology and dataset used for this study. In 

section 4, we discuss the main findings and benchmarks, and the last section illustrates the conclusions of this 

study along with its future work. 

 

 

2. RELATED WORK 

Software vulnerabilities are weaknesses or flaws within software systems that attackers can exploit 

to gain unauthorized access or cause damage. These vulnerabilities can manifest across various levels of 

software systems, including the application layer, operating system, and network protocols. Exploring 

software vulnerabilities is a significant focus for both cybersecurity researchers and practitioners. Numerous 

studies have delved into various aspects of these vulnerabilities, such as their prevalence, characteristics, and 
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impact. Different strategies have been proposed to prioritize vulnerabilities, which are typically categorized 

into qualitative and quantitative techniques. Qualitative approaches classify vulnerabilities based on their 

severity into different groups, while quantitative methods assign numerical values to the severity of 

vulnerabilities by analyzing specific features associated with them [10], [11]. 

One of the most popular quantitative scoring methods is the CVSS created by US-CERT. In many 

organizations, it has become the standard method for determining how critical vulnerabilities in their 

software really are. The United States government's vulnerability management data repository, the  

National-vulnerability-database, uses CVSS for scoring. The degree of vulnerability may be quantitatively 

assessed when combined with this scoring approach. Subsequent studies [12], [13] by a number of scholars 

incorporated various improvements. In order to create a hybrid vulnerability prioritization technique, several 

studies combined quantitative and qualitative approaches. One such hybrid strategy is the vulnerability-rating 

and scoring method (VRSS) [14]. Potential value loss (PVL) is an additional topic of study in this field. 

A numerical rating scale is also available in PVL. It suggests certain indicators that might be used to 

determine the degree of a vulnerability [15]. Therefore, the topic of vulnerability prioritization has been 

studied for quite some time. However, new studies in this area have begun to use implicit features of a 

vulnerability in order to score or classify it. Because of the complexity and specificity of the vulnerabilities 

involved, this can only be done by someone with extensive knowledge in the field. The vulnerability 

description becomes available immediately when the testing team finds a vulnerability. The potential 

intensity of a vulnerability is sometimes indicated by certain traits or words. A approximate assessment of the 

severity degree of vulnerabilities may be supplied using these phrases in the description of the vulnerabilities. 

The groundwork for this study has already been laid. Singh et al. [16] made use of historical vulnerability 

data to estimate how likely a new vulnerability was to be exploited. Using the same input variables as CVSS 

[17], the weighted impact vulnerability scoring system assigns different values to each of those impacts. In 

2015, they took it a step further by including data on the effects [18]. A method for estimating the severity of 

a vulnerability from a description was proposed by Le et al. [18]. Four methods of severity assessment were 

explored and assessed. 

Meanwhile, machine-learning-models have previously been used to categorize vulnerabilities as 

high or low-risk, where vulnerabilities that have been exploited in real company networks are deemed high 

risk, while those that have not yet been exploited are considered low risk. Later, Russo et al. [19] introduced 

an exploit prediction scoring system (EPSS). In this study, researchers came up with the notion of associating 

a chance of exploitation with the disclosure of a vulnerability. Recent research works discussed vulnerability 

severity prediction (VSP) utilizing example data [20]. They employed machine learning and created an 

algorithm to choose an example collection of data to serve as training data in order to improve prediction 

accuracy. For instance, Allodi and Massacci [21] proposed decision trees model, which is a popular 

technique for classification tasks in machine learning (ML). Decision trees are constructed by recursively 

partitioning the data space into smaller subsets based on the most informative features. The final result is a 

tree-like structure that can be used to make predictions about the target variable (i.e., vulnerability risk level) 

for new instances. 

Another popular ML technique for vulnerability classification is support vector machines (SVMs), 

which is a powerful classification method that works by identifying the hyperplane that best separates the 

data points into different classes. SVMs have been shown to be effective in classifying vulnerabilities into 

high- and low-risk categories based on their attributes, such as the type of vulnerability, the affected system, 

and the potential impact [22]. There are several studies in the academic literature that have explored the use 

of ML models for vulnerability classification [23]. For example, in a study by the National Institute of 

Standards and Technology (NIST), researchers evaluated the effectiveness of decision trees and SVMs in 

classifying vulnerabilities based on their severity levels. The study found that both techniques were able to 

accurately classify vulnerabilities with high levels of precision and recall. Another study by researchers at the 

University of North Carolina at Charlotte used an SVM-based approach to classify vulnerabilities based on 

their potential impact on critical infrastructure. The study found that the SVM model was able to achieve 

high levels of accuracy in predicting the potential impact of a vulnerability based on its attributes [24]. 

Researchers in the academic sector, however, have been striving to use machine learning and deep 

learning to create more precise models for exploitability prediction [25]. To better analyze vulnerabilities and 

forecast exploitability, several researchers are currently mining vulnerability descriptions to lessen the need 

for domain expertise and the temporal delay concerns inherent in CVSS. Each vulnerability has its own brief 

paragraph describing its nature, the products and vendors affected, a brief overview of the affected versions, 

the severity of the problem, the level of access an attacker needs to exploit it, and the key pieces of code that 

must be provided as inputs [26]. Based on their contents, it is clear that descriptions are useful for 

exploitability prediction. Previous research did disclose some findings, however even with them there are still 

the following problems. i) Ignore the particular technical words used in cybersecurity and the polysemy issue 

in NLP. Here are two sentences: sentence a says “A buffer overflow in lsof allows local users to obtain root 
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privileges”, while sentence B says, “Roses will not root in such acidic soil”. The word “root” has several 

meanings in phrases A and B. The acronym “lsof” stands for 'list open files' in the world of cyber security. 

When describing vulnerabilities, terms like “lsof” are essential for conveying the intended message. Previous 

work on exploitability prediction based on descriptions has relied on the term frequency-inverse document 

frequency (TF-IDF) algorithm [26], rule-based statistical approach [27], and word-embedding methods to 

extract semantic information from descriptions. The same representation or approach is used by these feature 

extraction techniques regardless of the word or phrase being processed. As a result, they fail to account for 

the several meanings that words might have. In addition, there are many uncommon domain-specific terms 

like package names, tool names, variable names, and other technical phrases in the cybersecurity domain 

corpus. This problem has not been addressed by any of the prior studies. ii) Ignoring the interdependencies 

between features retrieved from descriptions while choosing classifiers. Vulnerability descriptions are 

dependent texts because of their sequential nature. For example, in the phrase “root privilege”, the meaning 

of “root” depends on the meaning of “privilege”. For exploitability prediction, prior research has used 

classifiers such as SVMs, random forests (RFs) [5], naive Bayes (NBs) [26], and fully-connected neural 

networks (referred to as DenseNNs) [25]. These classifiers assume that characteristics may be used 

separately. As a result, interdependencies between descriptions are lost. iii) The community of researchers 

interested in exploitability prediction does not have access to a single, uniform dataset. The advancement of 

machine learning and deep learning algorithms relies on the availability of uniform datasets to the general 

audience. Researchers get data from the same open-source dataset, i.e., NVD and ExploitDB5, however there 

is considerable variation across studies in terms of the vulnerabilities studied, the time period studied, and the 

exploitability status of the vulnerabilities studied. As far as we can tell, there is no centralized dataset 

dedicated to exploitability prediction that is available to the general public. The fundamental reason for this is 

the ever-evolving nature of vulnerability databases and the fluctuating ease with which they may be 

exploited. Researchers are continuously on the lookout for fresh information to back up their studies. As a 

result, every prior research that attempts to foretell whether vulnerabilities will be exploited relies on data 

that the researchers themselves have gathered [26]. 

 

 

3. METHOD 

As mentioned before, common vulnerabilities and exposures (CVE) and CVSS are standards in the 

industry, CVE is a repository of vulnerabilities and CVSS provides a scoring system for them. A combination 

of these two standards is found on the [6], from which the data used in this work was taken. CVE consists of 

many attributes such as ID, vendor, and vulnerability type. but most of them will be ignored for this work, 

keeping only the vulnerability description. CVSS provides a score in a scale of 0 to 10 with one decimal 

point, however, this score will be transformed to for classes for classification purposes. Previous research has 

been done in the subject and also used the same standard which is going to be our benchmark. The target of 

this research is the same, trying to predict vulnerability severity using CNN. The key aspects of our research 

framework are: 

 

3.1.  Dataset 

As mentioned previously, the data was gathered from an online repository containing a combination 

of CVE and CVSS data. This data had to go through several processes of cleaning previous analysis. 

Specifically, the original data contained various issues that had to be addressed. Firstly, it included 

unnecessary data that did not contribute to the analysis. This included metadata such as timestamps and 

sources, which were removed to focus only on the relevant information. Secondly, the data contained 

inconsistencies in punctuation and letter case, which had to be standardized. This was done to reduce the 

variability of the data and enable the models to learn from consistent patterns. Thirdly, the data contained 

redundant information in the form of duplicated descriptions. These were identified and removed to prevent 

bias in the analysis. Fourthly, the descriptions of the vulnerabilities in the data were sometimes too short and 

lacked sufficient detail. In such cases, additional information was gathered from external sources to augment 

the data and ensure its relevance. Finally, the data contained non-standard information such as tokens, 

directories, URLs, and other irrelevant information that was removed to enable the machine learning models 

to focus only on the relevant text data. After the first stage of the cleaning process, the cleaned data has the 

format <vulnerability description, expert rated CVSS severity level> as the upcoming Figure 1 illustrates. 

 

3.2.  Data pre-processing 

In this study, the data pre-processing step played a pivotal role in the overall data analysis pipeline, 

and it was carried out utilizing the versatile and widely adopted Python programming language. This allowed 

for efficient and flexible data manipulation, transformation, and preparation, ensuring that the data was in an 
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appropriate format for subsequent analysis using machine learning models. The pre-processing step 

encompassed a series of essential procedures aimed at enhancing the quality and reliability of the data. One 

crucial aspect was data cleaning, which involved identifying and addressing any inconsistencies, errors, or 

missing values within the dataset which we have done it. Through techniques like outlier detection, 

imputation, and data validation, we were able to rectify inaccuracies and ensure the integrity of the data 

before further analysis. Another integral part of the pre-processing step was data formatting, which involved 

standardizing the structure, representation, and encoding of the data. This process was crucial for ensuring 

compatibility and consistency across different data sources or features. Techniques such as normalization, 

scaling, and encoding were employed to transform the data into a consistent and unified format, thereby 

enabling fair comparisons and meaningful analysis.  

The resulting dataset used in this study contained 11,669 descriptions, which were divided into four 

classes as Figure 2 demonstrates and can be seen clearly by score class and number of reports. Of the reports, 

nearly half were of medium severity, while the rest were classified as low, high, or critical severity. The data 

was structured in rows, with each row containing a description of a vulnerability and its corresponding 

severity level. Although the data had undergone some initial cleaning in the data gathering and preparation 

stage, some punctuation marks, special characters, and other artifacts were still present in the text as Figure 3 

shows as previewing descriptions. Therefore, additional text pre-processing techniques such as tokenization 

and stop word removal were applied to the data to extract relevant features and reduce the noise in the data 

which will discuss it next section of word embedding. However, the pre-processed dataset was then divided 

into two sets: a training set comprising 70% of the data and a testing set comprising the remaining 30%. The 

training set was used to train the machine learning models, while the testing set was used to evaluate their 

performance. 

 

 

 
 

Figure 1. Vulnerability description 

 

 

 
 

Figure 2. Overview of class disruptions 

 

 

 
 

Figure 3. Previewing descriptions 
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3.3.  Word embedding 

This study incorporates the utilization of three distinct word embedding models, a fundamental 

technique in natural language processing, to represent the input text data within a high-dimensional vector 

space. By employing word embeddings, the study aims to capture the nuanced semantic relationships that 

exist between words, thus facilitating the optimal performance of machine learning models in subsequent 

tasks. Word embeddings play a crucial role in bridging the gap between human language and machine 

learning algorithms. These models generate dense vector representations, where words with similar meanings 

or contextual usage are located closer to one another in the embedding space. This enables machine learning 

models to leverage the inherent semantic associations and contextual information encoded within the 

embeddings, enhancing their ability to understand and analyze textual data effectively. By employing three 

different word embedding models, the study aims to explore the strengths and weaknesses of each approach. 

This comparison provides valuable insights into the performance and suitability of different embedding 

techniques for specific applications or domains. Furthermore, utilizing multiple embeddings helps to capture 

diverse perspectives and nuances in the underlying textual data, enabling a more comprehensive 

representation of the semantic relationships between words. The use of word embeddings in this study is 

particularly advantageous as it overcomes the limitations of traditional approaches that rely solely on 

numerical or binary representations of words. By embedding words in a high-dimensional vector space, the 

study leverages the full power of semantic relationships, enabling machine learning models to perform more 

accurately in tasks such as text classification, sentiment analysis, or information retrieval. 

The first word embedding model employed in this study is based on the CVE vulnerability 

description corpus, which contains 3,003,787 tokens and has a vocabulary size of 64,184. The word 

embedding model derived from this corpus is 300-dimensional, meaning each word is represented as a vector 

in a 300-dimensional space. This model is specifically trained on the domain of vulnerability descriptions, 

which are often technical and contain specific jargon related to cybersecurity. The second word embedding 

model utilized in this study is based on the stack overflow corpus, which comprises 9,646,800,250 tokens and 

has a vocabulary size of 800,818. The word embedding model derived from this corpus is also 300-

dimensional and is trained on a diverse range of technical topics related to software development and 

information technology. The use of this model allows the machine learning models to capture domain-

specific nuances and patterns that may be missed by a more general model. The third and final word 

embedding model utilized in this study is based on the GoogleNews-vectors, which is a pre-trained model on 

a large general text corpus. This model contains three million 300-dimensional English word vectors and is 

not specific to any particular domain or topic. The use of this model enables the machine learning models to 

capture general semantic relationships between words and can be useful in cases where the input text data is 

not domain specific. 

 

3.4.  Tokenization 

The purpose of this process was to enhance the system's performance by incorporating word 

embeddings. To achieve this, the descriptions underwent a transformation from strings into an array of 

words. The process involved several steps, outlined as follows: Firstly, the raw sentence was converted into 

an array of words. This step enabled the system to treat each word as a separate entity, facilitating further 

analysis and manipulation. Secondly, various elements such as punctuation marks, numbers, paths, and other 

extraneous characters were removed from the array of words. This cleansing process eliminated potential 

noise or irrelevant information that could hinder the accurate representation of the text. Lastly, all the words 

in the array were converted to lowercase. This normalization step ensured that the system treated words 

regardless of their original capitalization, avoiding duplication or misinterpretation due to inconsistent casing. 

By performing these steps, the descriptions were transformed into a preprocessed format suitable for word 

embedding techniques. This allowed the system to capture the semantic relationships and contextual 

information encoded within the words, ultimately enhancing its ability to analyze and understand the text 

accurately. 

Figure 4 provides a visual representation of the token implementation in the context of the study. 

The figure demonstrates that each word within the text is represented as an individual element in array form. 

This tokenization process facilitates the identification and isolation of each word, enabling subsequent steps 

such as stemming and lemmatization to be applied effectively. By representing each word as an array 

element, the token implementation allows for straightforward access and manipulation of the text. This 

becomes particularly advantageous when implementing stemming and lemmatization techniques, as these 

processes often rely on identifying the base or root form of words. With the individual words organized in 

array format, the system can easily locate and process each word independently. Stemming, a technique used 

to reduce words to their root or base form, often involves removing prefixes or suffixes to achieve word 

normalization. The token implementation shown in Figure 4 enables the system to identify and modify each 
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word individually, simplifying the application of stemming algorithms. Similarly, lemmatization, which aims 

to transform words to their dictionary or base form considering their meaning and context, can benefit from 

the token implementation. The array representation allows for efficient identification and retrieval of the base 

form of words, as needed for accurate lemmatization. 

 

 

 
 

Figure 4. Token implementation 

 

 

3.5.  Stemming and lemmatization  

During the subsequent step of the process, the tokens derived from the previous step in Figure 4 

were subjected to further transformation in order to obtain their root words. This transformation was achieved 

through the implementation of stemming, lemmatization, or no modification at all. The outcomes of these 

three independent experiments were captured and recorded in the dataset, as illustrated in Figure 5. Figure 6 

provides a visual representation of the impact of stemming on the dataset. After applying stemming, words 

were reduced to their base or root form by removing prefixes or suffixes. This process aimed to group 

together different variations or inflections of the same word, allowing for a more compact and unified 

representation of the vocabulary. By implementing stemming, the system effectively consolidated words with 

similar meanings or semantic relationships, facilitating subsequent analysis or modeling tasks. The resulting 

reduction in word variations reduced the dimensionality of the dataset, potentially improving computational 

efficiency and reducing the potential impact of noise or spurious variations within the text data. Stemming, as 

depicted in Figure 6, plays a crucial role in simplifying the representation of words, particularly in tasks such 

as information retrieval, text mining, or sentiment analysis. It provides a streamlined and consistent view of 

the words, allowing for more efficient analysis, search, or classification. 

 

 

 
 

Figure 5. Token implementation 

 

 

 
 

Figure 6. Stemming implementation 

 

 

On the other hand, after applying lemmatization, a linguistic technique used in natural language 

processing, it can be observed that it effectively reduces words to their base form, taking into consideration 

the semantic meaning and contextual relevance of each word. This process is particularly useful in tasks such 

as information retrieval, text mining, and machine translation. When employing lemmatization, a variety of 

linguistic resources, such as lexical knowledge and morphological analysis, are leveraged to convert words to 

their dictionary form. By doing so, lemmatization aims to capture the essence and core meaning of words, 

ensuring a more accurate representation of the underlying concepts being conveyed. Figure 7 depicts the 

application of lemmatization, highlighting the transformation of words within a given dataset. By examining 

the figure, it becomes evident that lemmatization not only simplifies the word forms but also captures the 
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intended sense of each word within its respective context. This aspect of lemmatization distinguishes it from 

other word normalization techniques, such as stemming, which often produce truncated or incomplete word 

forms. 

 

 

 
 

Figure 7. Lemmatization implementation 

 

 

Several important characteristics should be mentioned regarding this step: firstly, independent 

experiments were conducted using both stemming and lemmatization techniques. These experiments aimed 

to explore the impact of each approach on the text data and evaluate their effectiveness in achieving the 

desired outcomes. In the case of stemming, the Porter Stemmer algorithm was employed. Porter Stemmer is a 

widely used stemming algorithm that applies a set of rules to reduce words to their base or root form by 

removing common prefixes and suffixes. Its application in this step helped simplify the vocabulary by 

grouping together words with similar roots. On the other hand, for lemmatization, the WordNetLemmatizer 

was utilized. The WordNetLemmatizer is a lemmatization tool that takes into consideration both the word's 

morphology and its context. It aims to convert words to their dictionary or base form, thereby preserving the 

semantic meaning and enhancing the accuracy of subsequent analysis. 

It is worth noting that despite the advantages of stemming and lemmatization, one potential 

limitation is the possibility of losing some key words during the process. Stemming, in particular, can result 

in the removal of prefixes or suffixes, which may alter the meaning of certain words or lead to the loss of 

specific contextual information. Similarly, lemmatization relies on predefined rules and linguistic knowledge, 

which may not cover all domain-specific terms or rare word forms. Therefore, while stemming and 

lemmatization offer valuable benefits in simplifying and standardizing the text data, it is essential to be 

mindful of the potential trade-offs and the possibility of missing some important keywords. The choice 

between stemming, lemmatization, or neither depends on the specific requirements of the task at hand and the 

nature of the text data being analyzed. 

 

3.6.  Convolutional neural network  

The convolutional neural network (CNN) developed for this study is a two-layer CNN designed to 

classify vulnerability reports based on their severity. The input to CNN is the tokenized version of the report 

description obtained through the tokenization process. The CNN was implemented using PyTorch and the 

Adam optimizer was used to optimize the CNN's parameters. 

During the training process, CNN was trained to minimize the cross-entropy loss function, which is 

commonly used for multi-class classification problems. The softmax activation function was used as the final 

layer of the CNN to produce a probability distribution over the four possible severity classes. CNN was 

trained for a total of five epochs, meaning that the entire training dataset was used five times to update the 

CNN's parameters. This number of epochs was chosen based on empirical observations of CNN’s training 

progress and its ability to converge to a satisfactory solution. 

 

 

4. RESULTS AND DISCUSSION  

As previously highlighted, a diverse range of experiments were meticulously conducted with the 

aim of attaining optimal performance. To comprehensively explore the potential of the system, a total of six 

independent experiments were carried out, each involving distinct input configurations for the CNN and 

word embeddings. Table 1 provides a concise summary of the different combinations utilized in these 

experiments. The table presents a clear overview of the specific input variations employed, allowing for easy 

comparison and analysis of the experimental outcomes. These combinations were carefully designed to test 

different configurations and evaluate their impact on the performance of the system. By systematically 

varying the input parameters, such as the choice of word embeddings and the configuration of the CNN, the 
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researchers aimed to identify the most effective combination for their specific task. This approach enabled 

them to explore the influence of different embedding models, hyperparameters, and network architectures on 

the overall system performance. 

 

 

Table 1. Word embedding 
 Tokenized description Stemmed tokens Lemmatized tokens 

Trained with descriptions corpus x x x 

Pre-trained with stack overflow corpus x x x 

 

 

4.1.  Results 

The numerical results of CNN's performance were obtained by assigning a numerical label to each 

of the four severity classes. Specifically, the classes were represented numerically as follows: critical was 

assigned the numerical value of 3, high was assigned the numerical value of 2, medium was assigned the 

numerical value of 1, and low was assigned the numerical value of 0. This numerical representation of the 

severity classes allowed for the calculation of performance metrics such as precision, recall, and F1 score. 

These metrics were used to evaluate the performance of the CNN on the testing dataset, which was held out 

from the training process. In general, the numerical results obtained from the testing dataset indicated that the 

CNN achieved high accuracy and F1 score, suggesting that it was effective in classifying vulnerability 

reports according to their severity. The upcoming figures illustrates the results achieved in term of steam, 

lemm and tokenized. 

Figure 8 shows the result of the steamed token only, and it’s the one that has achieved the lowest 

accuracy, scoring 0.66% compared to the lemmatized token and tokenized alone. Meanwhile, Figure 9 

illustrates lemmatized alone as achieving average accuracy compared to steam and tokenized alone, which is 

0.67%. However, tokenized alone scored the highest accuracy, which is 0.68%, as shown in Figure 10 

compared to other accuracy. 

 

 

  
 

Figure 8. Stemmed token 

 

Figure 9. Lemmatized token 

 

 

4.2.  Discussions 

The experimental results obtained in this study suggest that pre-trained word embeddings 

contributed to an increase in accuracy of approximately 2%. Moreover, it was found that stemming or 

lemmatizing tokens had an impact on the accuracy of the system. Specifically, the accuracy varied depending 

on the type of stemming or lemmatizing algorithm used. Increasing the number of epochs from 5 to 10 led to 

a modest improvement of approximately 1% in accuracy; however, this came at the cost of a significant 

increase in execution time. Notably, running the system with 5 epochs took approximately 30 to 40 minutes, 

while using 10 epochs required around 2 hours. Finally, it was found that using 80% of the available data for 

training resulted in an accuracy increase of approximately 2%. The accuracy result is comparable to the 

previous research, and also to its baseline models as Table 2. 
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Figure 10. Tokenized description 
 
 

The main factors that influenced the results of the study as can be seen from Table 2 is that firstly, 

the number of epochs used in the study by the previous authors was 150, whereas in this study, we used only 

5 and 10 epochs. This difference in the number of epochs could have led to differences in accuracy levels. 

Secondly, the dataset used in the previous study consisted of 23,732 rows, whereas in our study, we used a 

smaller dataset of 11,669 rows. This difference in dataset size could have affected the performance of CNN. 

Finally, the previous study used a different optimization technique, where they used 10% of the data for 

optimizing hyperparameters in the CNN, whereas we used Adam optimizer. The choice of optimization 

technique can significantly affect the performance of tCNN. 
 

 

Table 2. Accuracy of our approach and the baseline methods 
  Accuracy 

Baseline1 TFID + SVM 0.552 

Baseline2 Word embedding + SVM 0.583 

Baseline3 Word embedding + 2-layer CNN 0.775 

Baseline4 Word embedding + CNN with LSTM 0.772 

Our Approach Word embedding + 1-layer CNN 0.816 

 

 

5. CONCLUSION 

In this study, a deep learning algorithm was developed to estimate the CVSS score of a vulnerability 

based solely on its CVE text description. Multiple prototypes and setups were evaluated, and it was found 

that a multi-task architecture provided the best results. This approach makes sense since predicting several 

measures simultaneously can improve the model's performance when training weights are pooled. The 

proposed method simplifies vulnerability ranking for non-security experts by using the publicly available 

description when a vulnerability is disclosed. This allows system administrators to quickly assess the severity 

of a vulnerability, the ease of its exploitation, and the potential damage it could cause to affected systems if 

exploited. 

To improve the model's performance, hyperparameters such as the loss weights may be further 

experimented with in future studies. Furthermore, larger models such as RoBERTa may be explored to 

provide more accurate predictions with less overall error. Additionally, the potential use of this method in 

estimating issue severity will be investigated, and the model will be integrated into a standalone application 

with a user interface. This application will automatically compute the CVSS score of newly reported 

vulnerabilities from the Twitter CVE account and notify users of potential risks. 
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