
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 1, February 2024, pp. 904~910

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i1.pp904-910  904

Journal homepage: http://ijece.iaescore.com

Reinforcement learning strategies using Monte-Carlo to solve

the blackjack problem

Raghavendra Srinivasaiah1, Vinai George Biju2, Santosh Kumar Jankatti3,

Ravikumar Hodikehosahally Channegowda4, Niranjana Shravanabelagola Jinachandra5
1Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST Deemed to be University,

Bengaluru, India
2MAI, Faculty of Computer Science and Business Informatics, University of Applied Sciences, Würzburg-Schweinfurt, Germany

3Department of Computer Science and Technology, Dayananda Sagar University, Bengaluru, India
4Department of Electronics and Communication Engineering, Dayananda Sagar Academy of Technology and Management,

Bengaluru, India
5Department of Mechanical Engineering, School of Engineering and Technology, CHRIST Deemed to be University, Bengaluru, India

Article Info ABSTRACT

Article history:

Received May 18, 2023

Revised Jul 16, 2023

Accepted Jul 17, 2023

 Blackjack is a classic casino game in which the player attempts to outsmart

the dealer by drawing a combination of cards with face values that add up to

just under or equal to 21 but are more incredible than the hand of the dealer

he manages to come up with. This study considers a simplified variation of

blackjack, which has a dealer and plays no active role after the first two

draws. A different game regime will be modeled for everyone to ten

multiples of the conventional 52-card deck. Irrespective of the number of

standard decks utilized, the game is played as a randomized discrete-time

process. For determining the optimum course of action in terms of policy,

we teach an agent-a decision maker-to optimize across the decision space of

the game, considering the procedure as a finite Markov decision chain. To

choose the most effective course of action, we mainly research Monte Carlo-

based reinforcement learning approaches and compare them with q-learning,

dynamic programming, and temporal difference. The performance of the

distinct model-free policy iteration techniques is presented in this study,

framing the game as a reinforcement learning problem.

Keywords:

Blackjack

Dynamic programming

Monte Carlo

Q-learning

Reinforcement learning

Temporal difference

This is an open access article under the CC BY-SA license.

Corresponding Author:

Raghavendra Srinivasaiah

Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST

Deemed to be University

Mysore Road, Bengaluru-560074, Karnataka, India

Email: raghav.trg@gmail.com

1. INTRODUCTION

The experimental version of blackjack is played as follows: at the beginning of each round, the

agent and dealer will each get two cards from a deck of size, where size equals 52. The first dealer's card

value and the total worth of the dealer's hand both form their features in the construction of state spaces. The

agent can then select from the action space, action (state)=hit or stick, with the resulting consequences of

drawing a new card for the agent's hand or submitting the existing hand for scoring, respectively. Given the

limitations of the game's play, the agent is urged to obtain the maximum squared score possible.

Techniques for reinforcement learning (RL) rely on input from the outside world to help learners

progress. The agent is guided in formulating its policy by feedback, which comes as a monetary reward

signal. A Markov decision process (MDP) is typically used to represent the environment. An MDP comprises

several phases, activities, simulated results, and predicted rewards. Each action has a chance of being chosen

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

 Reinforcement learning strategies using monte-carlo to solve the blackjack … (Raghavendra Srinivasaiah)

905

and a value linked to it that reflects the expected benefit of doing the action. The most beneficial activity is

one that is motivated by greed. The agent must strike a balance between exploring and making use of the

surroundings to learn. The agent tries a greedy approach throughout the exploration to enhance its

assessments of their values.

The agent will update the state values and, in addition to that, state-action values on these methods

independently. We then present the results of applying each technique in terms of the win, draw, and loss

percentage per game regime and each process for each game regime, respectively. The framework to

mathematically formalize this optimization problem is modelled as RL. It was proposed that, given a discrete

step, t, the values of states are linked recursively by the Bellman equation. Value functions allow the agent to

determine the immediate value of being a resident of a state s or acting in a way that starts with s while

adhering to specified norms. These value functions might technically be defined as in (1) and (2):

𝑉𝜋(𝑆) = 𝐸𝜋 { ∑ 𝛾𝑘 𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑆
∞

𝑘=0
} (1)

𝑄𝜋(𝑆, 𝑎) = 𝐸𝜋 { ∑ 𝛾𝑘 𝑟𝑡+𝑘+1 | 𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎
∞

𝑘=0
} (2)

The agent can calculate the predicted benefit using V(S), the state-value function, of being in state s

and following policy. The agent can determine the immediate value of being in state S, acting in method a,

and subsequently carrying out policy based on the action-value function Q*(S, a). The activities that produce

the highest long-term reward make up an optimum policy. The ideal state-value function is denoted by V*(s),

while the perfect action-value part is characterized by Q*(s, a). The properties of different learning

algorithms and their behavior are listed in the following section, namely Monte Carlo (MC) algorithm,

q-learning (QL) algorithm, dynamic programming (DP) algorithm, and temporal difference (TD) learning

algorithm.

The MC technique is used to solve the blackjack problem. It is simple to set up exploration states

that consider all potential outcomes because the episodes are based on simulations of games. In this instance,

the player's total, the dealer's cards, and the player possessing a usable ace are all chosen randomly with the

same chance. The estimated policy that stays on only 20 or 21 from the last blackjack instance is used as the

initial strategy. For all state-action couples, the initial action-value function can be zero.

Consider the situation where we need to approximate v(s), the assessment of state' s' using policy,

having a collection of episodes we acquired by subsequent and transitory through s. A visit to s refers to each

instance of state' s' in an episode. Although s could appear more than once in a single episode, let's guide to

the initial appearance as the first visit to s. Each visit using the MC technique is considered as the average of

the yields after all trips to s, whereas the initial visit MC technique approximates v(s) as the mean of the

returns after initial visits to s. Although the theoretical characteristics of these two MC approaches are

similar, they differ somewhat. The independent estimations for each state are a crucial aspect of MC

techniques. Unlike DP, the estimate for the state does not add to the approximation of other states [1]–[7].

The heuristic moves update the means of all actions performed first on their intersections with the

same color as the first move with the score after a random game with a score rather than updating the mean

of the actions of the random game. Symmetrically, the steps as-first heuristic modifies with the opposite

score the means of all movements performed first on their intersections with various colors from the first

move. Overall, this heuristic updates nearly every move's mean as though it were the initial move in the

random game. This heuristic could be more accurate since it may update two movements with the same score

even if they have distinct impacts based on the timing of their play. Since TD errors in RL are dependent on

estimations of the value function, which are dynamically changing, it is evident that they are pretty noisy.

Furthermore, in this issue, the policy is also altering. Hence one would anticipate that the TD errors

would not be stable. Estimating q(s, a), the predictable return while being in initial state s, using action a, and

after policy, is the goal of the policy analysis problem for action values. The MC techniques are substantially

similar to those previously discussed for matters for states, except we now speak about trips to state-action

duo rather than a state. When a state is reached, and action is reserved in a given episode, the pair of action-

state s is said to have been visited. The value of the action-state duo is estimated by each visit using the MC

technique as the returns average that trailed all the visits to it. The returns after the state were visited and the

action was chosen for the first time in each episode are averaged using the first-visit MC approach. As more

visits are made to each state-action pair, the techniques, as previously, converge quadratically to the valid

anticipated values. The agent is restricted to searching for optimal actions via updates. In other words, the

agent may find an optimal action from trajectories identical to the current state, and this is contrary to QL,

where the agent may search for any state that matches the current rather than being restricted to those states

that arose from identical trajectories.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 904-910

906

The QL algorithm is the TD method that gets the closest to Q*(s, a). Q*(s, a) estimations are

modified at every step using incremental algorithms in TD approaches like QL. Below is a description of the

QL in (3). Given that learning may occur while playing, the QL algorithm is a great way to approximate the

best blackjack strategy. As a result, it is an excellent option for the blackjack problem domain. Blackjack is

phrased as a serialized activity, with each hand's finish signifying the end of a single episode. The agent's

current point total, the dealer's face-up card value, the hand's softness, and the possibility of splitting are all

included in the state representation [8]–[16].

𝑄(𝑠, 𝑎) <= 𝑄(𝑠, 𝑎)+ ∝ [𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎) − 𝑄(𝑠, 𝑎)] (3)

A class of techniques known as DP combines solutions to sub-problems to solve more significant,

complicated issues. A known MDP may be solved using DP approaches in planning by identifying the

optimal value function and its accompanying optimal policy. A fundamental tenet of optimal control is

Bellman's principle, which argues that if an optimum policy has already been chosen, the subsequent choices

must also be optimal in light of the state created by the prior decisions, and this is often referred to as the

discrete-time Hamilton Jacobi Bellman equation or the Bellman optimality equation. The best course of

action would then be as in (4).

ℎ∗(𝑥𝑘) = 𝑎𝑟𝑔 𝑚𝑖𝑛ℎ(.) (𝑟 (𝑥𝑘 , ℎ(𝑥𝑘)) 𝛾𝑉∗
(𝑥𝑘+1) (4)

Bellman's principle in (5) results in a time approach calculated backward for resolving the optimum

control issue since one has to know the ideal policy at time usage to derive the optimal policy at time k. It is

the foundation for the DP techniques widely used in operations research, control system theory, and other

fields. These are offline planning techniques.

𝑉𝜋(𝑆) = 𝐸𝜋 [∑ 𝛾𝑡 𝑟𝑡 | 𝑆0 = 𝑆
∞

𝑡 =0
] = ∑ 𝑃

𝑠𝑠′
𝜋(𝑠)

𝑠′𝜖 𝑆 [𝑅
𝑠𝑠′
𝜋(𝑠)

+ 𝛾 𝑉𝜋 (𝑠′)] (5)

Action-value functions are used to store the policy implicitly. The policy is greedy concerning the

value-action-function Q is known if, for any state' s', a value-action Q (s, a) is accessible for all actions. With

this modification, policies won't need to be stored explicitly. To keep the value function, it should be noted

that moving from V to Q increases the memory need by a factor of |A| [17]–[26].

One approach to solving RL issues is using TD. The predicted long-term payoff for performing a

particular action in a state is estimated by TD techniques using a value function. The TD method is an online

learning approach. The agent updates the state value during a trajectory or episode rather than waiting until

the game is finished and then updating over the explored trajectory sequentially using (6).

𝛿𝑡 = 𝑟𝑡 + 1 + 𝛾𝑄(𝑆𝑡 + 1 , 𝑎𝑡+1) − 𝑄(𝑆𝑡 , 𝑎𝑡) (6)

The value function is trained in TD models by calculating a value-prediction error signal every

instant the agent switches the states. The transformation between the estimated value and the actual value,

which includes the instant reward, as seen during the switchover, is represented by the letter “d”. The

previous state's value estimate can be reorganized based on d to be closer to the observed value. This “d”

signal manifests in response to unexpected rewards, propagates with learning from rewards to pre-emptive

incentives, and modifies in response to variations in predicted reward. The interest of RL is to create the best

possible policy that maximizes value across all possible states. The methods employed could iteratively build

such a policy from data. For the policy to be evaluated by on-policy algorithms, it must primarily be greedy

regarding value function estimations [27]–[35].

2. EXPERIMENTS AND EVALUATION

Hit-and-stick actions are included, and an effort is made to maintain the integrity of the game using

all feasible measures. The following summarizes the reward system: For every action that does not change to

a terminal state, a zero reward is awarded. The agent is rewarded according to the game's outcome when a

terminal condition is attained. For instance, if the agent gains $1 and wins the hand, they are rewarded with a

+1. If the hand is lost, the agent is rewarded -1. Due to the state representation's inability to foresee which

cards may come into subsequent hands, a static betting approach is employed.

The performance of the learning agent was evaluated using two hardcoded players (dealer and

player). The acts of the first player are wholly arbitrary, whereas the second player employs a basic plan.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Reinforcement learning strategies using monte-carlo to solve the blackjack … (Raghavendra Srinivasaiah)

907

Using a basic strategy, the best course of action for the state representation selected reduces the casino edge

to less than one percent. We utilize several runs in the experiment, each consisting of a loop of test and

training hands. During training, the agent interacts with the environment states and uses the same lookup

tables. The agent competes against the player, and the player uses basic strategy during the test hands. After

performing a series of first random trials, every trial places the opening card. While the number of test hands

stays fixed, numerous bets are eventually reached by gradually increasing the amount of training hands

towards each run.

3. RESULTS AND DISCUSSION

Mean-variance optimization in MDPs and work on resilient MDPs both focus on increasing the

safety of policies. However, it should be noted that the method suggests a combined criterion that considers

both the mean and variance of the value function, which is much more expensive to optimize. Furthermore,

even if needed later on, optimal values and policies cannot be retrieved in that work since the value function

is not learned individually. The controllability only influences the action options; the optimal values are

unaffected by controllability values and are done to retain the value function's correctness.

The initial policy of the RL agent is entirely arbitrary. Therefore, it will likely produce similar

results to the random player. Because the QL method closely approximates Q*, the learning agent's strategy

should reach a fundamental approach as the quantity of training hands rises (s, a) and is accurate even for the

best practice, highlighting the difficulty of gaining money when playing blackjack. Based on a comparison

between the two, the learning agent outperforms the random player significantly. It is clear that perhaps the

agent is picking up relevant knowledge during the iteration. The efficiency of the learning agent improves as

it asymptotically approaches that of a player adopting a primary strategy and is the predicted Q* since the QL

process directly approximates the ideal action-value function Q* (s, a).

Figure 1 illustrates the strategy to hit to stick for each card the learner adopts during the game. The

learning is improved over a higher number of iterations. The value function differs when using the ace card,

as shown in Figure 2. The dealer and player values are plotted against the state value. This investigation

involved an agent learning to model a finite MC decision chain. A natural extension is to consider an infinite-

sized deck such that now the agent would attempt to model a Markov chain-MC-based RL; For this; we

expect the agent to find the stationary per-game score value, which appears to be converging. Including

additional blackjack game actions like split and double would make the application more attractive and, in

turn, cause the action space to become A = hit; stick and edge the agent’s policy closer to real-life

application, but in addition to that, exponentially increasing the size of the state space. The snapshot of the

state-action space of the implementation is indicated in Figure 1.

Figure 1. Strategy outcome and state space snapshot

Figure 2. Value function with/without ace

4. CONCLUSION

The blackjack game is studied and explored for optimal strategies using the MC-based RL

technique. The foundation study of different RL techniques like QL, DP, and TD learning is also being

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 904-910

908

carried out in the work. This investigation found that training an agent to play a simplified version of

blackjack produces desirable results; the agent can see a policy p that makes an average win, draw and loss

rate of 38:26 across different policy iteration methods. The best blackjack strategy employing the MC

method was investigated in this study using RL. It has been shown that the learning agent outperformed

random and converged to a nearly ideal policy. Although the results are positive, there is still potential for

development. The outcomes could be improved with a better exploration technique like the Bayesian MC

Learning Algorithm. Additionally, a policy outperforming basic strategy may result from a more robust state

representation combined with a dynamic betting approach. The effect on value function based on the rule

change related to including or not including the ace is also studied.

ACKNOWLEDGEMENTS

I would like to thank CHRIST Deemed to be University for providing me an opportunity and facility

in completing this work.

REFERENCES
[1] V. S. Borkar, “Reinforcement learning - a bridge between numerical methods and Monte Carlo,” in Perspectives In Mathematical

Science I: Probability And Statistics, WORLD SCIENTIFIC, 2009, pp. 71–91.
[2] J. Asmuth and M. Littman, “Learning is planning: near Bayes-optimal reinforcement learning via Monte-Carlo tree search,” arXiv

preprint arXiv:1202.3699, Feb. 2012.

[3] F. Bai, X. Ju, S. Wang, W. Zhou, and F. Liu, “Wind farm layout optimization using adaptive evolutionary algorithm with Monte
Carlo tree search reinforcement learning,” Energy Conversion and Management, vol. 252, Jan. 2022, doi:

10.1016/j.enconman.2021.115047.

[4] N. A. Vien, W. Ertel, V. H. Dang, and T. Chung, “Monte-Carlo tree search for Bayesian reinforcement learning,” Applied
Intelligence, vol. 39, no. 2, pp. 345–353, Feb. 2013, doi: 10.1007/s10489-012-0416-2.

[5] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver, “A Monte-Carlo AIXI approximation,” Journal of Artificial Intelligence

Research, vol. 40, pp. 95–142, Sep. 2011, doi: 10.1613/jair.3125.
[6] I. P. Pinto and L. R. Coutinho, “Hierarchical reinforcement learning with Monte Carlo tree search in computer fighting game,”

IEEE Transactions on Games, vol. 11, no. 3, pp. 290–295, Sep. 2019, doi: 10.1109/TG.2018.2846028.

[7] D. Silver and G. Tesauro, “Monte-carlo simulation balancing,” in ACM International Conference Proceeding Series, Jun. 2009,
vol. 382, doi: 10.1145/1553374.1553495.

[8] D. Zha et al., “RLCard: a toolkit for reinforcement learning in card games,” arXiv preprint arXiv:1910.04376, Oct. 2019.

[9] S. A. Kakvi, “Reinforcement learning for Blackjack,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5709 LNCS, Springer Berlin Heidelberg, 2009, pp. 300–301.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-Learning,” 30th AAAI Conference on

Artificial Intelligence, AAAI 2016, vol. 30, no. 1, pp. 2094–2100, Mar. 2016, doi: 10.1609/aaai.v30i1.10295.
[11] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement learning,” Advances in Neural

Information Processing Systems, vol. 2020-Decem, Jun. 2020.

[12] S. Gu, T. Lillicrap, U. Sutskever, and S. Levine, “Continuous deep q-learning with model-based acceleration,” 33rd International
Conference on Machine Learning, ICML 2016, vol. 6, pp. 4135–4148, Mar. 2016.

[13] H. Xu, X. Zhan, and X. Zhu, “Constraints penalized q-learning for safe offline reinforcement learning,” Proceedings of the 36th

AAAI Conference on Artificial Intelligence, AAAI 2022, vol. 36, no. 8, pp. 8753–8760, Jun. 2022, doi: 10.1609/aaai.v36i8.20855.
[14] C. E. Mariano and E. F. Morales, “DQL: a new updating strategy for reinforcement learning based on q-learning,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
2167, Springer Berlin Heidelberg, 2001, pp. 324–335.

[15] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih, “Combining policy gradient and q-learning,” 5th International

Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 2017, doi: 10.1007/978-1-4842-6809-4_8.
[16] R. Carmona, M. Laurière, and Z. Tan, “Model-free mean-field reinforcement learning: mean-field MDP and mean-field q-

learning,” arXiv preprint arXiv:1910.12802, Oct. 2019.

[17] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement learning and dynamic programming using function
approximators. CRC Press, 2010.

[18] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE Circuits

and Systems Magazine, vol. 9, no. 3, pp. 32–50, 2009, doi: 10.1109/MCAS.2009.933854.
[19] A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, and J. P. How, “A tutorial on linear function approximators for

dynamic programming and reinforcement learning,” Foundations and Trends in Machine Learning, vol. 6, no. 4, pp. 375–454,

2013, doi: 10.1561/2200000042.
[20] H. Lee, C. Song, N. Kim, and S. W. Cha, “Comparative analysis of energy management strategies for HEV: dynamic

programming and reinforcement learning,” IEEE Access, vol. 8, pp. 67112–67123, 2020, doi: 10.1109/ACCESS.2020.2986373.

[21] D. Zhao, D. Liu, F. L. Lewis, J. C. Principe, and S. Squartini, “Special issue on deep reinforcement learning and adaptive dynamic
programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2038–2041, Jun. 2018, doi:

10.1109/TNNLS.2018.2818878.

[22] A. Yamaguchi and C. G. Atkeson, “Neural networks and differential dynamic programming for reinforcement learning
problems,” in Proceedings - IEEE International Conference on Robotics and Automation, May 2016, vol. 2016-June,

pp. 5434–5441, doi: 10.1109/ICRA.2016.7487755.

[23] M. Zolfpour-Arokhlo, A. Selamat, S. Z. Mohd Hashim, and H. Afkhami, “Modeling of route planning system based on q value-
based dynamic programming with multi-agent reinforcement learning algorithms,” Engineering Applications of Artificial

Intelligence, vol. 29, pp. 163–177, Mar. 2014, doi: 10.1016/j.engappai.2014.01.001.

[24] D. K. Sharma, J. J. P. C. Rodrigues, V. Vashishth, A. Khanna, and A. Chhabra, “RLProph: a dynamic programming based

Int J Elec & Comp Eng ISSN: 2088-8708 

 Reinforcement learning strategies using monte-carlo to solve the blackjack … (Raghavendra Srinivasaiah)

909

reinforcement learning approach for optimal routing in opportunistic IoT networks,” Wireless Networks, vol. 26, no. 6,
pp. 4319–4338, Apr. 2020, doi: 10.1007/s11276-020-02331-1.

[25] A. Gonzalez-Garcia, D. Barragan-Alcantar, I. Collado-Gonzalez, and L. Garrido, “Adaptive dynamic programming and deep

reinforcement learning for the control of an unmanned surface vehicle: experimental results,” Control Engineering Practice, vol.
111, p. 104807, Jun. 2021, doi: 10.1016/j.conengprac.2021.104807.

[26] J. Wu, Y. Zou, X. Zhang, T. Liu, Z. Kong, and D. He, “An online correction predictive EMS for a hybrid electric tracked vehicle

based on dynamic programming and reinforcement learning,” IEEE Access, vol. 7, pp. 98252–98266, 2019, doi:
10.1109/ACCESS.2019.2926203.

[27] K. Krawiec and M. Szubert, “Coevolutionary temporal difference learning for small-board Go,” 2010 IEEE World Congress on

Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010, Jul. 2010, doi:
10.1109/CEC.2010.5586054.

[28] I. Menache, S. Mannor, and N. Shimkin, “Basis function adaptation in temporal difference reinforcement learning,” Annals of

Operations Research, vol. 134, no. 1, pp. 215–238, Feb. 2005, doi: 10.1007/s10479-005-5732-z.
[29] M. E. Taylor, S. Whiteson, and P. Stone, “Comparing evolutionary and temporal difference methods in a reinforcement learning

domain,” in GECCO 2006 - Genetic and Evolutionary Computation Conference, Jul. 2006, vol. 2, pp. 1321–1328, doi:

10.1145/1143997.1144202.
[30] Z. Kurth-Nelson and A. D. Redish, “Temporal-difference reinforcement learning with distributed representations,” PLoS ONE,

vol. 4, no. 10, p. e7362, Oct. 2009, doi: 10.1371/journal.pone.0007362.

[31] A. H. Tan, N. Lu, and D. Xiao, “Integrating temporal difference methods and self-organizing neural networks for reinforcement
learning with delayed evaluative feedback,” IEEE Transactions on Neural Networks, vol. 19, no. 2, pp. 230–244, Feb. 2008, doi:

10.1109/TNN.2007.905839.

[32] P. Tano, P. Dayan, and A. Pouget, “A local temporal difference code for distributional reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 2020-Decem, 2020, doi: 10.5555/3495724.

[33] A. Filos, C. Lyle, Y. Gal, S. Levine, N. Jaques, and G. Farquhar, “PsiPhi-learning: reinforcement learning with demonstrations

using successor features and inverse temporal difference learning,” Proceedings of Machine Learning Research, vol. 139,
pp. 3305–3317, Feb. 2021.

[34] K. De Asis, A. Chan, S. Pitis, R. S. Sutton, and D. Graves, “Fixed-horizon temporal difference methods for stable reinforcement

learning,” AAAI 2020 - 34th AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 3741–3748, Sep. 2019, doi:
10.1609/aaai.v34i04.5784.

[35] M. Ruiz-Montiel, L. Mandow, and J. L. Pérez-de-la-Cruz, “A temporal difference method for multi-objective reinforcement

learning,” Neurocomputing, vol. 263, pp. 15–25, Nov. 2017, doi: 10.1016/j.neucom.2016.10.100.

BIOGRAPHIES OF AUTHORS

Raghavendra Srinivasaiah is currently working as associate professor in the

Department of Computer Science and Engineering at CHRIST Deemed to be University,

Bangalore. He completed his Ph.D. degree in Computer Science and Engineering from VTU,

Belgaum, India in 2017 and has more than 18+ years of teaching experience. His interests

include data mining, artificial intelligence and big data. He can be contacted through e-mail:

raghav.trg@gmail.com.

Vinai George Biju is currently pursuing M.S. at University of Applied Sciences,

Faculty of Computer Science and Business Informatics, Germany. He completed his Ph.D.

degree in computer science and engineering from VTU, Belgaum, India in 2021 and has more

than 10 years of teaching experience. His interests include data mining, artificial intelligence

and big data. He can be contacted through e-mail: vinaigb@gmail.com.

Santosh Kumar Jankatti is currently working as associate professor in the

Department of Computer Science and Technology at Dayananda Sagar University, Bangalore.

He completed his Ph.D. degree in computer science and engineering from VTU, Belgaum,

India in 2022 and has more than 12 years of teaching experience and 3 years of IT industry

experience. His interests include data mining, artificial intelligence and big data. He can be

contacted through e-mail: sjankatti@gmail.com.

https://orcid.org/0000-0002-5111-7300
https://scholar.google.com/citations?user=K8tZy5QAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57226367413
https://www.webofscience.com/wos/author/record/2372457
https://orcid.org/0000-0003-4736-6993
https://www.scopus.com/authid/detail.uri?authorId=57190167356
https://orcid.org/0000-0003-3295-6413
https://scholar.google.com/citations?hl=en&user=nM7LpdcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57021885400
https://www.webofscience.com/wos/author/record/HTN-2380-2023

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 904-910

910

Ravikumar Hodikehosahally Channegowda completed his Ph.D. from VTU,

Belagavi in 2021. He has done his masters in VLSI design and embedded systems from VTU

Extension Centre, PESCE, Mandya. His areas of interest are image processing, machine

learning, pattern recognition and multimedia concepts. He is currently working as an assistant

professor at Dayananda Sagar Academy of Technology and Management, Bengaluru. He can

be contacted through e-mail: raviec40@gmail.com.

Niranjana Shravanabelagola Jinachandra completed his Ph.D. from VTU,

Belagavi in 2022. He has done his masters in machine design from VTU, Belagavi. His areas

of interest are image processing, machine learning, and fluid dynamics. He is currently

working as assistant professor in the Department of Mechanical Engineering at CHRIST

Deemed to be University. He can be contacted through e-mail: sjniranjan86@gmail.com.

https://orcid.org/0000-0002-0555-6986
https://scholar.google.com/citations?user=1YeYt0IAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57222373782
https://www.webofscience.com/wos/author/record/HTN-2829-2023
https://orcid.org/0000-0003-2800-3919
https://scholar.google.com/citations?user=3WPj1PcAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57219205309
https://www.webofscience.com/wos/author/record/IZG-1925-2023

