
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 2, April 2024, pp. 1969~1978

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i2.pp1969-1978 1969

Journal homepage: http://ijece.iaescore.com

System call frequency analysis-based generative adversarial

network model for zero-day detection on mobile devices

Akram Chhaybi, Saiida Lazaar

Mathematics, Computer Science and Application (ERMIA Team), Department of Mathematics and Computer Science,
National School of Applied Sciences, AbdelMalek Essaadi University, Tangier, Morocco

Article Info ABSTRACT

Article history:

Received May 15, 2023

Revised Sep 3, 2023

Accepted Dec 18, 2023

 In today's digital age, mobile applications have become essential in

connecting people from diverse domains. They play a crucial role in

enabling communication, facilitating business transactions, and providing

access to a range of services. Mobile communication is widespread due to its

portability and ease of use, with an increasing number of mobile devices

projected to reach 18.22 billion by the end of 2025. However, this

convenience comes at a cost, as cybercriminals are constantly looking for

ways to exploit security vulnerabilities in mobile applications. Among the

several varieties of malicious applications, zero-day malware is particularly

dangerous since it cannot be removed by antivirus software. To detect zero-

day Android malware, this paper introduces a novel approach based on

generative adversarial networks (GANs), which generates new frequencies

of feature vectors from system calls. In the proposed approach, the generator

is fed with a mixture of real samples and noise, and then trained to create

new samples, while the discriminator model aims to classify these samples

as either real or fake. We assess the performance of our model through

different measures, including loss functions, the Frechet Inception distance,

and the inception score evaluation metrics.

Keywords:

Android

Generative adversarial networks

Loss function

Malware

Mobile applications

Security

Zero-day

This is an open access article under the CC BY-SA license.

Corresponding Author:

Akram Chhaybi

Mathematics, Computer Science and Application (ERMIA Team), Department of Mathematics and Computer

Science, National School of Applied Sciences, AbdelMalek Essaadi University
Old Airport Road, Km 10 Ziaten B.P. 1818 Tangier, Morocco

Email: Akram.chhaybi@etu.uae.ac.ma

1. INTRODUCTION

Mobile malware has become a significant security threat, particularly for the open-source operating

system Android. Malware can target mobile systems at multiple levels, posing a considerable user risk.

Mobile malware typically uses two methods to infect victims, which can compromise the security and

integrity of their devices and data. The first method involves tricking the victim and obtaining permissions

from the Android manifest file to access sensitive data. The second approach consists in exploiting phone

vulnerabilities to access user information by granting administrator privileges. Both methods involve passing

system calls between the application and the system [1].

Machine learning solutions can effectively defend against various potential threats, including

classifying malicious applications. Classifiers use multiple techniques to detect such applications, including

signature-based detection, where a dataset of malware and benign signatures is used to train the classifier [2],

[3]. This enables the classifier to identify patterns and characteristics indicative of malicious behavior,

accurately classifying new and unknown applications.

https://creativecommons.org/licenses/by-sa/4.0/
mailto:Akram.chhaybi@etu.uae.ac.ma

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1969-1978

1970

In malware detection, two types of analysis are used: static and dynamic. Static analysis entails

inspecting an executable file without running it. It is carried out by examining the file's code structure,

metadata, and other aspects. Static analysis can discover malware hiding in code or masquerading as

legitimate software. It cannot, however, detect malware that is encrypted or disguised. The process of

evaluating the behavior of an executable file while it is executing is known as dynamic analysis. It is carried

out by running the file in a controlled environment and watching its behavior. Dynamic analysis can discover

malware hiding in code or masquerading as genuine software. It is also capable of detecting malware that has

been encrypted or disguised. Dynamic analysis, on the other hand, can be time-consuming and resource-

intensive [4].

Attackers' use of machine learning is leading to the development of increasingly stealthy and elusive

ways of system penetration. The increasing number of mobile malware variants is undermining the efficiency

of machine-learning approaches, creating a substantial danger. As the number of mobile malware types

grows, machine-learning technologies face a big challenge [5]. Machine learning models are trained on

historical data, and it is possible that those models did not encounter the precise patterns or features of zero-

day attacks during their training period. As a result, these assaults can circumvent detection methods based

on learnt patterns, allowing hostile operations to go unnoticed, where hackers modify certain features of the

original malware, such as byte code, application programming interfaces (APIs), system calls, and different

parts strategies, to evade detection by classifiers. System calls are functions and APIs that request services

from the operating system's kernel, and malware writers aim to fool machine-learning classifiers by

disguising the system calls used between the program and the kernel. To address this problem, we propose a

model that utilizes generative adversarial networks (GANs) to generate new periodicities of system calls. By

doing so, we aim to improve the robustness of malware classifiers against zero-day malware.

GANs consist of two main neural networks operating in a mini-max optimization framework; the

first is called the generator, and the second is the discriminator. The generator aims to produce synthetic

samples that resemble actual data, while the discriminator's task is to distinguish between real and fake data.

Based on the feedback provided by the discriminator, the generator can iteratively refine its output until it

produces data indistinguishable from the genuine samples as shown in Figure 1.

Figure 1. GAN’s flowchart

The structure of this paper is as follows. Section 2 provides some related works. Our proposed

approach and model are described in section 3. Section 4 discusses the results obtained from the simulation.

Finally, we conclude the paper and provide directions for future work.

2. RELATED STUDIES

The popularity of GANs technology is rapidly increasing, as evidenced by the numerous

applications in various fields. For instance, Yin and Yang [6] implemented GANs in mobility data to solve

privacy issues. They designed a model that can train the generator and discriminator to create privacy-

protected data, and they tested their model by comparing it with other works and applying attacks that can

detect the user's location based on the global positioning system (GPS) information.

Int J Elec & Comp Eng ISSN: 2088-8708

 System call frequency analysis-based generative adversarial network model for … (Akram Chhaybi)

1971

In another application, Moti et al. [7] proposed a new approach to using GANs in detecting and

generating malware. They used GANs to create new malware signatures by employing a boundary-seeking

GAN and a convolutional neural network (CNN) to extract features from the dataset collected by internet of

things (IoT) devices, packets, and VX-Heaven. The cycle of their framework starts by reading the header of

the EXE file to contain the signature. CNN extracts the features and sends them to the GAN model to

generate new malware samples in a mini-max game between the generator and the discriminator. Finally,

they train a deep learning model to detect the new samples using the long short-term memory (LSTM)

method.

In study [8], a distributed intrusion detection system (IDS) based on GANs was proposed for IoT

systems, aiming to detect intrusions on every device while preserving privacy. Each IoT device (IoTd) uses

its own dataset without sharing it with others, and the authors define a discriminator in every IoTd and a

central generator. The generator is responsible for creating new data, which is sent to each IoTd for

comparison with real data collected from 30 subjects using smartphones with different features. After the

training phase, the discriminators can act as IDS on the devices, and the central generator no longer needed to

be used, resulting in a lighter IoTd. The distributed IDS achieved an accuracy of 83% for external attacks and

81% for internal attacks, improving the quality of the training dataset with 99.03% accuracy.

Taheri et al. [9] developed a robust architecture called Fed-IIoT (FL) for malware detection on

Android devices using a client/server model. The client-side works as an attack mechanism based on a

generative adversarial network (GAN) system, which generates malicious data to be injected into the dataset.

On the server side, a malware detection model is implemented using a GAN and a federated learning-based

architecture.

In another study, Kim et al. [10] proposed a zero-day malware attack detection method using GANs.

This method employs GANs to generate and learn how to differentiate between fake and real malware.

Learning involves extracting features from actual and counterfeit data using a deep auto-encoder (DAE). The

trained discriminator then passes the detection mechanism to the detector. The results of the study showed an

accuracy of 95.74%.

In their study, Hao et al. [11] proposed an asymmetric encryption function based on GANs to

enhance the security of the IoT. They developed a method to adjust the parameters of the artificial network

and improve reinforcement learning. The method provides a unique system for information exchange based

on blockchain technology and the zero-trust concept. Throughout the sharing process, their protocol

successfully filters out fake information while protecting participants' privacy. Furthermore, inside the

universally composable safe framework, they established formal verification of the protocol's security. They

conducted a number of experiments and analyzed its performance to determine its practicability. The findings

show that the average execution timings for their protocol's three critical phases are 0.059 s, 0.060 s, and

0.032 s, confirming its feasibility for real-world deployment.

Shin et al. [12] proposed a defense procedure against Android pattern attacks using GANs and a

replay buffer from a deep reinforcement learning LSTM network. The network model records the trajectory

and touch pressure of the mobile device. The LSTM receives the data combined with some noise to describe

the features, and the generator generates fake data to pass to the LSTM to capture the features. The

discriminator evaluates the similarity between actual and generated data. The results of the study showed an

accuracy of 95%.

Li et al. [13] proposed a new method called E-MalGAN, which utilizes GANs to generate malware

attacks. This method was inspired by MalGAN [14], which creates black-box adversarial examples of attacks

against Android malware detection. The system model includes a generator that learns from two

discriminators: one functioning as an adversarial example detector and the other as a malware detector. The

loss function of the generator decreases from 0.6 to zero after 120 rounds. Furthermore, the study results

showed that over 95% of the adversarial examples generated were classified as regular programs.

Deb et al. [15] proposed a mobile touch stroke authentication model based on a GAN. The system

architecture consists of two sides: the mobile side and the server side. The mobile side collects the raw touch

stroke data from the user and sends it to the server side, where the features are extracted, and the GAN is

trained. The GAN model is deployed on the mobile platform in a lightweight process. The dataset used

includes 21,158 touch strokes collected from four different Android phones, and the model's performance

ranged between 92% and 98%. The GAN model can be used for privacy, user authentication, and

confidentiality.

A strategy was proposed for the development of malware detection models that can withstand

adversarial attacks [16]. This strategy involved creating twelve distinct malware detection models using

different categorization methods. Subsequently, an adversarial assault was simulated by assuming the role of

an adversary and generating adversarial attacks on the aforementioned detection models using a gradient-

based adversarial attack network. The objective was to alter each malware sample as minimally as possible

while converting the highest number of samples into adversarial ones.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1969-1978

1972

Deep feature selection (DEEPSEL) is a novel method proposed in [17] hat utilizes deep learning to

detect malware and malicious code in Android apps. DEEPSEL employs a set of characteristics to analyze

the behavior of Android apps and classify them as either genuine or malicious. The crucial component of this

method is the utilization of particle swarm optimization for feature selection. To assess the effectiveness of

DEEPSEL, the authors utilized a public malware dataset comprising samples from 39 distinct malware

families. The study's findings demonstrated that the suggested technique achieved high accuracy, with an

approximate accuracy of 83.6% and an F-measure of around 82.5%.

Shahpasand et al. [18] presented a machine-learning model that utilizes the power of generative

adversarial networks (GANs) to launch attacks on malware classifiers. By harnessing the expressive

capabilities of GANs, we generate potent adversarial samples, ensuring that the distortion amount remains

below a predefined threshold. Our results demonstrate that these generated samples successfully evade

detection in 99% of the attempts, using a real dataset of Android applications.

GANs can manifest in various model types, as detailed in [19]. In their comparative study, the

authors explored well-known GAN models, including Wasserstein GAN, conditional GAN, and deep

convolutional GAN. They provided insights into these models' architectures, objective functions, and pivotal

scenarios where they can be employed to bolster the security of mobile applications.

In general, there are two major approaches to using GANs in malware studies. The first approach

aims to increase the efficiency of malware detectors by enlarging the size of the training dataset. The second

approach is to help classifiers detect malware created by GANs, which is potentially indistinguishable from

benign samples.

3. METHOD

Our approach involves applying GANs to generate new system call frequencies primarily used by

zero-day malware. The model comprises two neural networks, as illustrated in Figure 2. The generator takes

a noise signal, z, and a set of frequency examples, S, as input, while the discriminator takes both actual data

and the generator's output as input and performs a comparison. The objective functions for the generator, G,

and the discriminator, D, are described below.

Figure 2. The proposed GAN model

This study uses a feed-forward neural network with weights assigned to both the generator and

discriminator components. Specifically, the generator receives a concatenation of samples and noise as input,

passing through distinct layers within the network. On the other hand, the discriminator takes as input the

adversarial frequencies generated by the generator and the actual frequencies from the dataset, which are then

also processed by different layers in the neural network. The primary function of the discriminator is to

differentiate between the natural frequencies (S) and the generated frequencies (S’).

3.1. Data collection

This section describes how the dataset for the suggested technique was acquired. The dataset

CICMal2017 was used in our technique. The Android samples are divided into four categories: adware,

scareware, SMS malware, and ransomware. To avoid runtime behavior modification of complex malware

samples that might identify the emulator environment, the authors run both malware and benign programs on

actual cellphones. The suggested approach makes use of a comma separated values (CSV) file containing 140

Int J Elec & Comp Eng ISSN: 2088-8708

 System call frequency analysis-based generative adversarial network model for … (Akram Chhaybi)

1973

extracted system call frequencies from 11,599 Android application package (APK) files belonging to four

malware types.

3.2. Data preprocessing

This section involves transforming the data into something that the model can use. This section

focuses on increasing the model's efficiency. Finding missing data, eliminating NULL values or extraneous

data, and importing the appropriate libraries are the general phases of data preparation. Although there were

no missing or NULL values in the dataset used in this study, the frequencies were given as decimal figures.

We converted them to integer numbers to simplify the training process, and we assigned each malware

category to an array, with the four arrays included in a NumPy file.

3.3. Training process

In this section, we establish our generative adversarial network (GAN) model by configuring both

the generator and the discriminator with parameters outlined in the simulation and results section. The entire

training process, specific to GANs, is succinctly captured in algorithm 1, providing a clear and systematic

overview. This configuration involves careful consideration of key variables, shaping the behavior and

performance of our GAN model.

Algorithm1. Training process
1. Initialize generator (G) and discriminator (D) networks with random weights.

2. Repeat until convergence (or a predefined maximum number of iterations):

 a. Generate new system calls (S) by feeding random noise and real samples through G.
 b. Combine real system call samples and generated samples to create a training dataset for D.

 c. Calculate the discriminator's loss by comparing its predictions for real and generated samples.

 d. Update the discriminator's weights using backpropagation and gradient descent.
 e. Generate new system calls (S) by passing random noise through G.

 f. Calculate the generator's loss based on discriminator’s predictions for the generated samples.

 g. Update the generator's weights using backpropagation and gradient descent.
 h. Evaluate the quality of the generated samples using appropriate measures.

 i. Check for convergence: if the difference in losses from the previous iteration is below the convergence threshold, exit the loop.

3. End of algorithm. The generator and discriminator networks are now trained.

In our study, we conducted evaluation tests using the widely-used binary cross entropy loss function

specifically designed for binary classification problems. This function assesses the disparity between

predicted and actual binary classification outcomes, where each instance in the dataset has only two possible

classes, typically labelled as zero or one. It quantifies the deviation between the predicted probability

distribution and the actual probability distribution of binary classification results. It is computed as the

negative log-likelihood of the actual class, given the predicted probability of that class as described in (1).

𝐿𝑜𝑠𝑠 = − [𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)] (1)

where 𝑦 is the actual class label, 𝑝 is the predicted probability of the positive class, and the log is the natural

logarithm. During training, the goal is to minimize the value of the loss function by adjusting the model's

parameters, which helps to improve the model's ability to classify new examples correctly. According to the

notations we settled, our GAN might be stated as a minimax with the value function 𝑉(𝐺, 𝐷) under the

following equality:

 𝑀𝑖𝑛𝐺 𝑀𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑃𝑧
 [log (1 − D(G(z)))] + 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎

 [log (𝐷𝑥)] (2)

On the one hand, the 𝐺 generator tries to understand the distribution by learning from the noise

distribution and adjusting its own output to make it similar to the actual data distribution 𝑃𝑑𝑎𝑡𝑎 . On the other

hand, the discriminator 𝐷 aims to distinguish between generated samples and real data by classifying them as

real or fake. Both the generator and discriminator train their networks during the training phase, following

(2). Consequently, the objective function of GANs can be formulated as a minimax game, involving the

natural data distribution x, the expectation denoted by 𝐸, and the vector 𝑧 originating from the random noise

distribution 𝑃𝑑𝑎𝑡𝑎.

The elements 𝑃𝑧, 𝐺 (𝑧), and 𝐷𝑥 represent the generator's samples and the likelihood that 𝐷

recognizes 𝑥 as actual data, respectively. 𝐷 (𝐺(𝑧)) represents the likelihood that 𝐷 determines the data

generated by 𝐺. To trick the generator 𝐺, the discriminator probability 𝐷 (𝐺 (𝑧)) must be maximized,

therefore log (1 − 𝐷 (𝐺 (𝑧))) will be minimized. A cross entropy function is utilized to discriminate between

𝐺 (𝑧) and 𝑥 for the discriminator 𝐷, and 𝐷 desires 𝑉(𝐷, 𝐺) to be maximized. In reality, 𝐺 is established

firstly, and then the parameters of discriminator 𝐷 are adjusted to optimize 𝐷's accuracy.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1969-1978

1974

It is important to note that the type of malware does not matter since we deal with the requests of

services asked by the applications to the kernel. The system calls were extracted from 5,000 samples installed

in real devices. In our model based on reinforcement learning, the loss function plays a crucial role in

updating the parameters of the value function. Through this process, the generator network learns to generate

better actions or rules, leading to more significant rewards as it progressively refines the loss function. This

iterative procedure empowers the value function's decision-making capabilities to evolve and improve over

time.

3.4. System calls

System calls are functions and APIs that request services from the operating system's kernel.

Security operating centers (SOCs) analyze malware to gain insight into the dynamic behavior of malicious

apps. System calls are considered one of the most effective methods for classifying malware. The research

emphasizes the importance of system calls as an effective strategy for malware classification. Several studies,

including references [20], [21] recognize the use of system calls in recognizing and describing distinct forms

of malware. These findings highlight the significance of system call analysis as a powerful and dependable

way of detecting and categorizing malicious software. Our method employs the frequency of system calls

across different categories of malware. In this study, we experimented with 140 system calls, and the results

are presented in Table 1, which lists each system call with its corresponding value.

While making system calls, we discovered that some of these calls, including 𝐹𝑢𝑡𝑒𝑥(), were

identified as vulnerabilities in the kernel. We investigated further and found that the code vulnerability is

CVE-2021-3347, and the 𝐹𝑢𝑡𝑒𝑥() exploit is classified as a use-after-free (UAF) vulnerability. This occurs

when a program pointer refers to a data set in dynamic memory that has already been erased [22]–[24]. To

ensure the security and stability of the system, it is crucial to be aware of such vulnerabilities and take

appropriate measures to mitigate them. This can include implementing patches and updates, using security-

focused programming practices, and regularly monitoring the system for any suspicious activity.

Table 1. Example of the used system calls and the corresponding values
System call Value

Fetux() Gives a mechanism for waiting till a specific condition is satisfied
Recvfrom() Used to accept data on a socket regardless of whether it is connection-oriented

Sigprocmask() Used to get and/or update the caller thread's signal mask

Prctl() Manipulates many elements of the caller thread's or process's behavior
Ioctl() Manipulates particular files underlying device parameters

Sigprocmask() Used to get and/or modify the caller thread's signal mask

3.5. Malware category

The system calls can be categorized into four distinct groups: adware, ransomware, scareware, and

SMS malware. For this study, we selected malware samples from 42 different families, as outlined in

Table 2. The purpose of incorporating four varied types of malware samples is to ensure the dataset's

diversity and comprehensiveness [25].

Table 2. Example of malware families
Malware category Family

Adware Shuanet family

Youmi family

Mobidash family
Kemoge family

Ransomware

Charger family

Jisut family
Svpeng family

WannaLocker family

Scareware

AndroidSpy.277 family

FakeTaoBao family

Penetho family
FakeApp.AL family

SMS Malware

Nandrobox family

Zsone family
Jifake family

Biige family

Int J Elec & Comp Eng ISSN: 2088-8708

 System call frequency analysis-based generative adversarial network model for … (Akram Chhaybi)

1975

The generator creates new frequencies of system calls (S') that allow a malware classifier to identify

malicious software as benign. The discriminator's role is to differentiate between the newly generated data

(S') and the actual data (S) by comparing them. This process helps to distinguish between fake and actual

data.

3.6. Simulation and dataset

The proposed model was implemented in Python 3.7.15 using the TensorFlow [26] and Keras [27]

packages. We used the Adam optimizer with a learning rate of 0.0001 to optimize the neural network. Further

details regarding the experimental setup can be found in the following section, which provides information

on the specific settings used for the tests.

Activation functions: Sigmoid, ReLU

Loss function: Binary cross entropy

Input Layer: 136

Hidden Layers: 256

Output Layer: 36

Batch size: 100

Epochs: 1200

For our numerical experiments, we employed a Windows 10 machine equipped with an Intel Core

i5-4210 CPU and 4 GB of RAM. To develop our model, we used the Keras deep learning library, specifically

version 2.9.0, which facilitated the seamless implementation of neural network architectures. Furthermore,

TensorFlow, version 2.9.2, served as the underlying framework, harnessing the power of GPU acceleration to

expedite the training process.

To test our model, we focused on Android malware. Specifically, we trained the model using the

CIC-AndMal2017 dataset [28], which includes over 10,854 samples from various markets, 4,354 malware

and 6,500 benign samples. The dataset captures network traffic during three stages: installation, before the

restart, and after the restart, using CICFLOWMeter and network traffic analyzers.

In our experiments, we used system call frequency across 11,599 applications. We divided the

dataset into 80% training and 70% test sets. Table 3 shows the system call frequencies for selected malware

and their families.

Table 3. List of the system calls used in the proposed model
System call Description Frequencies Fake installer Plnktom

Write Write to a file descriptor 2,840 4,034 604

Access Check user’s permissions for a file 362 26 93
Getpid Get process identification 1,120 1,796 1,221

getpriority Gets the high priority by any process 134 41 26

gettimeofday Get and set the time. 3,720 32 465
ioctl Manipulates particular file's underlying device parameters 2,010 2,147 3,811

Getuid32 Get the effective user ID of the calling process. 1,110 1,371 1,871

4. RESULTS AND DISCUSSION

Our model employs two activation functions: the sigmoid and rectified linear unit (ReLU). We

evaluated the effectiveness of our model by analyzing the loss functions of both the generator and

discriminator, which are presented in our results. To further assess the quality of our model, we used the

Frechet inception distance (FID) and inception score (IS) metrics, and the corresponding performance results

are included. More details are presented below.

4.1. Tests performed with sigmoid function

Figure 3 depicts the generator and discriminator loss functions with the sigmoid activation function.

The generator loss function decreases from 0.77 to 0.41 after 120 epochs, while the discriminator loss

function decreases from 1.6 to 0.50 after 850 epochs. These observations indicate the model's effectiveness

and highlight the significant progress made in reducing the loss over time.

4.2. Tests performed with ReLU function

Figure 4 illustrates the generator and discriminator loss functions achieved with the ReLU activation

function. The generator loss function starts at 0.17, increases to 0.62, and then decreases to 0.34 at epoch 40.

In comparison, the discriminator loss function starts at 9.7 and decreases to 2.1 after 20 epochs.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1969-1978

1976

When comparing the generator loss function results between the two activation functions, we

conclude that ReLU outperforms sigmoid. However, the discriminator loss function results are better with the

sigmoid function. These observations highlight the importance of selecting the appropriate activation

function for each model component to achieve optimal results.

Figure 3. The generator and discriminator loss

functions using sigmoid

Figure 4. Generator and discriminator loss functions

using ReLU

4.3. Evaluation metric FID

There are several commonly used methods for evaluating GANs. In this paper, we applied the FID

to evaluate the performance of our model. FID is a metric widely used for assessing the quality of the

produced pictures established expressly to assess the performance of the generative adversarial networks

[29]. It measures the similarity between the generated samples' distribution and the training dataset's

distribution in the feature space of a pre-trained deep neural network. A lower FID score indicates that the

generated samples are more similar to the training dataset. The FID score is calculated using (3).

𝐹𝐼𝐷 = ‖𝑚𝑥 − 𝑚𝑦‖
2

2
+ 𝑇𝑟 (𝐶𝑥 + 𝐶𝑦 − 2 √𝐶𝑥𝐶𝑦) (3)

where 𝑚𝑥 and 𝑚𝑦 refer to the feature wise mean of the real and generated images; the 𝐶𝑥 and 𝐶𝑦 are the

covariance matrix for the real and generated feature vectors; and 𝑇𝑟 is the trace of the matrix corresponding

to the sum of the elements along the main diagonal of the square matrix.

We assessed the similarity between the distribution of adversarial frequencies and the distribution of

the training malware dataset. The resulting score for 100 epochs is 2.34 in Figure 5, indicating a low value

that suggests a slight difference between the adversarial frequencies and the actual frequencies employed by

zero-day malware. This observation highlights the effectiveness of our model in generating adversarial

examples that can closely mimic the behavior of real-world malware.

Figure 5. Representation of FID versus epochs

https://en.wikipedia.org/wiki/Covariance_matrix

Int J Elec & Comp Eng ISSN: 2088-8708

 System call frequency analysis-based generative adversarial network model for … (Akram Chhaybi)

1977

4.4. Inception score

The inception score is a metric used to evaluate the quality and diversity of generated images by a

generative adversarial network [30]. It is calculated by feeding the generated images through a pre-trained

convolutional neural network and measuring the Kullback–Leibler divergence (KL-divergence) between the

conditional label distribution and the marginal label distribution of the CNN's SoftMax output. The inception

score considers both the accuracy and diversity of the generated images, with higher scores indicating better

quality and diversity.

We utilized our simulation's NumPy and Keras deep learning libraries to evaluate the inception

score (IS). The obtained IS value for 100 epochs with the sigmoid activation function is 7.65, which we

consider satisfactory. This indicates that our model can effectively generate synthetic images similar to actual

ones.

5. CONCLUSION

Over the last decade, mobile applications have experienced significant technological advancements.

However, with the increasing prevalence of zero-day attacks, anti-malware systems need to be continuously

strengthened to tackle these scalable threats. GANs provide a proactive approach to understanding how

malware writers operate. During the training process, the generator creates new types of malwares, which are

then used to train the discriminator to differentiate between benign programs and those infected with

previously unknown viruses. In this study, we proposed a new model to detect zero-day Android malware

using GANs by generating new feature vectors of the system call frequencies. We experimented with

sigmoid and ReLU activation functions and evaluated the model's performance using the FID metric and IS

score. Our results showed higher IS values and lower FID values (versus epochs), indicating the feasibility

and potential of this approach. Overall, this study provides a promising solution for enhancing mobile

security and reducing the impact of zero-day mobile malware. Our study demonstrated the potential of using

GANs to detect mobile malware; in future work, we will develop an advanced intrusion detection system

based on GANs to protect mobile applications against malware attacks, applying several loss functions and

metrics to evaluate its performance. Furthermore, we will implement this IDS in a constrained environment,

adding an extra layer of security to mobile devices.

REFERENCES
[1] X. Liu and K. Liu, “A permission-carrying security policy and static enforcement for information flows in Android programs,”

Computers & Security, vol. 126, Mar. 2023, doi: 10.1016/j.cose.2022.103090.

[2] S. Lazaar, “Contribution of wavelets to cybersecurity: Intrusion detection systems using neural networks,” General Letters in
Mathematics, vol. 10, no. 2, pp. 24–30, Jun. 2021, doi: 10.31559/glm2021.10.2.2.

[3] P. R. K. Varma, K. P. Raj, and K. V. S. Raju, “Android mobile security by detecting and classification of malware based on

permissions using machine learning algorithms,” in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), Feb. 2017, pp. 294–299, doi: 10.1109/I-SMAC.2017.8058358.

[4] K. Shaukat, S. Luo, and V. Varadharajan, “A novel deep learning-based approach for malware detection,” Engineering
Applications of Artificial Intelligence, vol. 122, Jun. 2023, doi: 10.1016/j.engappai.2023.106030.

[5] S. Zhao, J. Li, J. Wang, Z. Zhang, L. Zhu, and Y. Zhang, “attackGAN: Adversarial attack against back-box IDS using generative

Adversarial networks,” Procedia Computer Science, vol. 187, pp. 128–133, 2021, doi: 10.1016/j.procs.2021.04.118.
[6] D. Yin and Q. Yang, “GANs based density distribution privacy-preservation on mobility data,” Security and Communication

Networks, vol. 2018, pp. 1–13, Dec. 2018, doi: 10.1155/2018/9203076.

[7] Z. Moti et al., “Generative adversarial network to detect unseen internet of things malware,” Ad Hoc Networks, vol. 122, Nov.

2021, doi: 10.1016/j.adhoc.2021.102591.

[8] A. Ferdowsi and W. Saad, “Generative adversarial networks for distributed intrusion detection in the internet of things,” in 2019

IEEE Global Communications Conference (GLOBECOM), Dec. 2019, pp. 1–6, doi: 10.1109/GLOBECOM38437.2019.9014102.
[9] R. Taheri, M. Shojafar, M. Alazab, and R. Tafazolli, “Fed-IIoT: A robust federated malware detection architecture in industrial

IoT,” IEEE Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8442–8452, Dec. 2021, doi: 10.1109/TII.2020.3043458.

[10] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using transferred generative adversarial networks based on deep
autoencoders,” Information Sciences, vol. 460–461, pp. 83–102, Sep. 2018, doi: 10.1016/j.ins.2018.04.092.

[11] X. Hao, W. Ren, R. Xiong, T. Zhu, and K.-K. R. Choo, “Asymmetric cryptographic functions based on generative adversarial

neural networks for internet of things,” Future Generation Computer Systems, vol. 124, pp. 243–253, Nov. 2021, doi:
10.1016/j.future.2021.05.030.

[12] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Android-GAN: Defending against android pattern attacks using multi-modal generative

network as anomaly detector,” Expert Systems with Applications, vol. 141, Mar. 2020, doi: 10.1016/j.eswa.2019.112964.
[13] H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, “Adversarial-example attacks toward android malware detection system,” IEEE

Systems Journal, vol. 14, no. 1, pp. 653–656, Mar. 2020, doi: 10.1109/JSYST.2019.2906120.

[14] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box attacks based on GAN,” in International Conference
on Data Mining and Big Data, 2022, pp. 409–423.

[15] D. Deb and M. M. Guirguis, “Use of auxiliary classifier generative adversarial network in touchstroke authentication,” in 2020

19th IEEE International Conference on Machine Learning and Applications (ICMLA), Dec. 2020, pp. 252–257, doi:
10.1109/ICMLA51294.2020.00049.

[16] H. Rathore, A. Samavedhi, S. K. Sahay, and M. Sewak, “Robust malware detection models: learning from adversarial attacks and

defenses,” Forensic Science International: Digital Investigation, vol. 37, Jul. 2021, doi: 10.1016/j.fsidi.2021.301183.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 2, April 2024: 1969-1978

1978

[17] M. A. Azad, F. Riaz, A. Aftab, S. K. J. Rizvi, J. Arshad, and H. F. Atlam, “DEEPSEL: A novel feature selection for early

identification of malware in mobile applications,” Future Generation Computer Systems, vol. 129, pp. 54–63, Apr. 2022, doi:
10.1016/j.future.2021.10.029.

[18] M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial attacks on mobile malware detection,” in 2019 IEEE 1st

International Workshop on Artificial Intelligence for Mobile (AI4Mobile), Feb. 2019, pp. 17–20, doi:
10.1109/AI4Mobile.2019.8672711.

[19] A. Chhaybi, S. LAZAAR, and M. Hassine, “A recent benchmark study of GANs models for securing mobile applications,” in

Proceedings of the 6th International Conference on Networking, Intelligent Systems & Security, May 2023, pp. 1–5, doi:
10.1145/3607720.3607730.

[20] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting android malware using sequences of system calls,” in

Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile, Aug. 2015, pp. 13–20, doi:
10.1145/2804345.2804349.

[21] M. Nunes, P. Burnap, P. Reinecke, and K. Lloyd, “Bane or boon: Measuring the effect of evasive malware on system call

classifiers,” Journal of Information Security and Applications, vol. 67, Jun. 2022, doi: 10.1016/j.jisa.2022.103202.
[22] T. expert team, “Yet another Futex vulnerability found in the Kernel (CVE-2021-3347),” TuxCare. Accessed: Nov. 03, 2022.

[Online]. Available: https://tuxcare.com/yet-another-futex-vulnerability-found-in-the-kernel-cve-2021-3347/

[23] CVE, “CVE-2021-3347,” CVE, https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=futex (accessed Nov. 03, 2022).
[24] NIST, “National vulnerability database (NVD).” https://nvd.nist.gov/vuln/detail/CVE-2020-14381 (accessed Jun. 06, 2023).

[25] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware concept drift using system calls: Detection, characterization

and challenges,” Expert Systems with Applications, vol. 206, Nov. 2022, doi: 10.1016/j.eswa.2022.117200.
[26] “TensorFlow.” Accessed: Nov. 01, 2022. [Online]. Available: https://www.tensorflow.org/

[27] “Keras.” Accessed: Nov. 01, 2022. [Online]. Available: https://keras.io/

[28] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward developing a systematic approach to generate benchmark
android malware datasets and classification,” in 2018 International Carnahan Conference on Security Technology (ICCST), Oct.

2018, pp. 1–7, doi: 10.1109/CCST.2018.8585560.
[29] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge

to a local nash equilibrium,” Advances in neural information processing systems, 2017.

[30] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training GANs,”
Advances in neural information processing systems, 2016.

BIOGRAPHIES OF AUTHORS

Akram Chhaybi is now pursuing his Ph.D. at ERMIA Team from ENSA of

Tangier, AbdelMalek Essaadi University, Morocco. His primary research interests are mobile

security, malware, and system security using artificial intelligence techniques. In 2020, he

obtained his master's degree in cybersecurity and cybercrime from Morocco's National School

of Applied Sciences of Tangier, AbdelMalek Essaadi University. He can be reached at

akramchhaybi1@gmail.com.

Saiida Lazaar holds a Ph.D. in applied mathematics from Aix Marseille I

University in France and currently serves as a full professor at AbdelMalek Essaadi University

in the Department of Mathematics and Computer Sciences, at ENSA of Tangier, Morocco.

With extensive expertise in the field of cybersecurity, Dr. Lazaar has played a role as the head

of the master’s program in CyberSecurity and CyberCrime. Her track record includes notable

research positions such as CNRS and IFP in France, as well as ONDRAF in Belgium.

Throughout her career, she has demonstrated an exceptional passion for advancing the field of

cybersecurity. She can be reached at slazaar@uae.ac.ma or s.lazaar2013@gmail.com.

mailto:akramchhaybi1@gmail.com
mailto:slazaar@uae.ac.ma
mailto:s.lazaar2013@gmail.com
https://orcid.org/0000-0002-7937-1108
https://scholar.google.com/citations?hl=fr&user=ijVweTIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58475366000
https://www.webofscience.com/wos/author/record/JRW-0612-2023
https://orcid.org/0000-0002-3426-4050
https://scholar.google.com/citations?user=r93_NGIAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=22834820300
https://www.webofscience.com/wos/author/record/15222659

