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 In today's digital age, mobile applications have become essential in 

connecting people from diverse domains. They play a crucial role in 

enabling communication, facilitating business transactions, and providing 

access to a range of services. Mobile communication is widespread due to its 

portability and ease of use, with an increasing number of mobile devices 

projected to reach 18.22 billion by the end of 2025. However, this 

convenience comes at a cost, as cybercriminals are constantly looking for 

ways to exploit security vulnerabilities in mobile applications. Among the 

several varieties of malicious applications, zero-day malware is particularly 

dangerous since it cannot be removed by antivirus software. To detect zero-

day Android malware, this paper introduces a novel approach based on 

generative adversarial networks (GANs), which generates new frequencies 

of feature vectors from system calls. In the proposed approach, the generator 

is fed with a mixture of real samples and noise, and then trained to create 

new samples, while the discriminator model aims to classify these samples 

as either real or fake. We assess the performance of our model through 

different measures, including loss functions, the Frechet Inception distance, 

and the inception score evaluation metrics. 
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1. INTRODUCTION 

Mobile malware has become a significant security threat, particularly for the open-source operating 

system Android. Malware can target mobile systems at multiple levels, posing a considerable user risk. 

Mobile malware typically uses two methods to infect victims, which can compromise the security and 

integrity of their devices and data. The first method involves tricking the victim and obtaining permissions 

from the Android manifest file to access sensitive data. The second approach consists in exploiting phone 

vulnerabilities to access user information by granting administrator privileges. Both methods involve passing 

system calls between the application and the system [1]. 

Machine learning solutions can effectively defend against various potential threats, including 

classifying malicious applications. Classifiers use multiple techniques to detect such applications, including 

signature-based detection, where a dataset of malware and benign signatures is used to train the classifier [2], 

[3]. This enables the classifier to identify patterns and characteristics indicative of malicious behavior, 

accurately classifying new and unknown applications. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:Akram.chhaybi@etu.uae.ac.ma
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In malware detection, two types of analysis are used: static and dynamic. Static analysis entails 

inspecting an executable file without running it. It is carried out by examining the file's code structure, 

metadata, and other aspects. Static analysis can discover malware hiding in code or masquerading as 

legitimate software. It cannot, however, detect malware that is encrypted or disguised. The process of 

evaluating the behavior of an executable file while it is executing is known as dynamic analysis. It is carried 

out by running the file in a controlled environment and watching its behavior. Dynamic analysis can discover 

malware hiding in code or masquerading as genuine software. It is also capable of detecting malware that has 

been encrypted or disguised. Dynamic analysis, on the other hand, can be time-consuming and resource-

intensive [4]. 

Attackers' use of machine learning is leading to the development of increasingly stealthy and elusive 

ways of system penetration. The increasing number of mobile malware variants is undermining the efficiency 

of machine-learning approaches, creating a substantial danger. As the number of mobile malware types 

grows, machine-learning technologies face a big challenge [5]. Machine learning models are trained on 

historical data, and it is possible that those models did not encounter the precise patterns or features of zero-

day attacks during their training period. As a result, these assaults can circumvent detection methods based 

on learnt patterns, allowing hostile operations to go unnoticed, where hackers modify certain features of the 

original malware, such as byte code, application programming interfaces (APIs), system calls, and different 

parts strategies, to evade detection by classifiers. System calls are functions and APIs that request services 

from the operating system's kernel, and malware writers aim to fool machine-learning classifiers by 

disguising the system calls used between the program and the kernel. To address this problem, we propose a 

model that utilizes generative adversarial networks (GANs) to generate new periodicities of system calls. By 

doing so, we aim to improve the robustness of malware classifiers against zero-day malware. 

GANs consist of two main neural networks operating in a mini-max optimization framework; the 

first is called the generator, and the second is the discriminator. The generator aims to produce synthetic 

samples that resemble actual data, while the discriminator's task is to distinguish between real and fake data. 

Based on the feedback provided by the discriminator, the generator can iteratively refine its output until it 

produces data indistinguishable from the genuine samples as shown in Figure 1. 

 

 

 
 

 

Figure 1. GAN’s flowchart 

 

 

The structure of this paper is as follows. Section 2 provides some related works. Our proposed 

approach and model are described in section 3. Section 4 discusses the results obtained from the simulation. 

Finally, we conclude the paper and provide directions for future work. 

 

 

2.  RELATED STUDIES 

The popularity of GANs technology is rapidly increasing, as evidenced by the numerous 

applications in various fields. For instance, Yin and Yang [6] implemented GANs in mobility data to solve 

privacy issues. They designed a model that can train the generator and discriminator to create privacy-

protected data, and they tested their model by comparing it with other works and applying attacks that can 

detect the user's location based on the global positioning system (GPS) information. 
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In another application, Moti et al. [7] proposed a new approach to using GANs in detecting and 

generating malware. They used GANs to create new malware signatures by employing a boundary-seeking 

GAN and a convolutional neural network (CNN) to extract features from the dataset collected by internet of 

things (IoT) devices, packets, and VX-Heaven. The cycle of their framework starts by reading the header of 

the EXE file to contain the signature. CNN extracts the features and sends them to the GAN model to 

generate new malware samples in a mini-max game between the generator and the discriminator. Finally, 

they train a deep learning model to detect the new samples using the long short-term memory (LSTM) 

method. 

In study [8], a distributed intrusion detection system (IDS) based on GANs was proposed for IoT 

systems, aiming to detect intrusions on every device while preserving privacy. Each IoT device (IoTd) uses 

its own dataset without sharing it with others, and the authors define a discriminator in every IoTd and a 

central generator. The generator is responsible for creating new data, which is sent to each IoTd for 

comparison with real data collected from 30 subjects using smartphones with different features. After the 

training phase, the discriminators can act as IDS on the devices, and the central generator no longer needed to 

be used, resulting in a lighter IoTd. The distributed IDS achieved an accuracy of 83% for external attacks and 

81% for internal attacks, improving the quality of the training dataset with 99.03% accuracy. 

Taheri et al. [9] developed a robust architecture called Fed-IIoT (FL) for malware detection on 

Android devices using a client/server model. The client-side works as an attack mechanism based on a 

generative adversarial network (GAN) system, which generates malicious data to be injected into the dataset. 

On the server side, a malware detection model is implemented using a GAN and a federated learning-based 

architecture. 

In another study, Kim et al. [10] proposed a zero-day malware attack detection method using GANs. 

This method employs GANs to generate and learn how to differentiate between fake and real malware. 

Learning involves extracting features from actual and counterfeit data using a deep auto-encoder (DAE). The 

trained discriminator then passes the detection mechanism to the detector. The results of the study showed an 

accuracy of 95.74%. 

In their study, Hao et al. [11] proposed an asymmetric encryption function based on GANs to 

enhance the security of the IoT. They developed a method to adjust the parameters of the artificial network 

and improve reinforcement learning. The method provides a unique system for information exchange based 

on blockchain technology and the zero-trust concept. Throughout the sharing process, their protocol 

successfully filters out fake information while protecting participants' privacy. Furthermore, inside the 

universally composable safe framework, they established formal verification of the protocol's security. They 

conducted a number of experiments and analyzed its performance to determine its practicability. The findings 

show that the average execution timings for their protocol's three critical phases are 0.059 s, 0.060 s, and 

0.032 s, confirming its feasibility for real-world deployment. 

Shin et al. [12] proposed a defense procedure against Android pattern attacks using GANs and a 

replay buffer from a deep reinforcement learning LSTM network. The network model records the trajectory 

and touch pressure of the mobile device. The LSTM receives the data combined with some noise to describe 

the features, and the generator generates fake data to pass to the LSTM to capture the features. The 

discriminator evaluates the similarity between actual and generated data. The results of the study showed an 

accuracy of 95%. 

Li et al. [13] proposed a new method called E-MalGAN, which utilizes GANs to generate malware 

attacks. This method was inspired by MalGAN [14], which creates black-box adversarial examples of attacks 

against Android malware detection. The system model includes a generator that learns from two 

discriminators: one functioning as an adversarial example detector and the other as a malware detector. The 

loss function of the generator decreases from 0.6 to zero after 120 rounds. Furthermore, the study results 

showed that over 95% of the adversarial examples generated were classified as regular programs. 

Deb et al. [15] proposed a mobile touch stroke authentication model based on a GAN. The system 

architecture consists of two sides: the mobile side and the server side. The mobile side collects the raw touch 

stroke data from the user and sends it to the server side, where the features are extracted, and the GAN is 

trained. The GAN model is deployed on the mobile platform in a lightweight process. The dataset used 

includes 21,158 touch strokes collected from four different Android phones, and the model's performance 

ranged between 92% and 98%. The GAN model can be used for privacy, user authentication, and 

confidentiality. 

A strategy was proposed for the development of malware detection models that can withstand 

adversarial attacks [16]. This strategy involved creating twelve distinct malware detection models using 

different categorization methods. Subsequently, an adversarial assault was simulated by assuming the role of 

an adversary and generating adversarial attacks on the aforementioned detection models using a gradient-

based adversarial attack network. The objective was to alter each malware sample as minimally as possible 

while converting the highest number of samples into adversarial ones. 
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Deep feature selection (DEEPSEL) is a novel method proposed in [17] hat utilizes deep learning to 

detect malware and malicious code in Android apps. DEEPSEL employs a set of characteristics to analyze 

the behavior of Android apps and classify them as either genuine or malicious. The crucial component of this 

method is the utilization of particle swarm optimization for feature selection. To assess the effectiveness of 

DEEPSEL, the authors utilized a public malware dataset comprising samples from 39 distinct malware 

families. The study's findings demonstrated that the suggested technique achieved high accuracy, with an 

approximate accuracy of 83.6% and an F-measure of around 82.5%. 

Shahpasand et al. [18] presented a machine-learning model that utilizes the power of generative 

adversarial networks (GANs) to launch attacks on malware classifiers. By harnessing the expressive 

capabilities of GANs, we generate potent adversarial samples, ensuring that the distortion amount remains 

below a predefined threshold. Our results demonstrate that these generated samples successfully evade 

detection in 99% of the attempts, using a real dataset of Android applications. 

GANs can manifest in various model types, as detailed in [19]. In their comparative study, the 

authors explored well-known GAN models, including Wasserstein GAN, conditional GAN, and deep 

convolutional GAN. They provided insights into these models' architectures, objective functions, and pivotal 

scenarios where they can be employed to bolster the security of mobile applications. 

In general, there are two major approaches to using GANs in malware studies. The first approach 

aims to increase the efficiency of malware detectors by enlarging the size of the training dataset. The second 

approach is to help classifiers detect malware created by GANs, which is potentially indistinguishable from 

benign samples. 

 

 

3. METHOD 

Our approach involves applying GANs to generate new system call frequencies primarily used by 

zero-day malware. The model comprises two neural networks, as illustrated in Figure 2. The generator takes 

a noise signal, z, and a set of frequency examples, S, as input, while the discriminator takes both actual data 

and the generator's output as input and performs a comparison. The objective functions for the generator, G, 

and the discriminator, D, are described below. 

 

 

 

 
 

Figure 2. The proposed GAN model 

 

 

This study uses a feed-forward neural network with weights assigned to both the generator and 

discriminator components. Specifically, the generator receives a concatenation of samples and noise as input, 

passing through distinct layers within the network. On the other hand, the discriminator takes as input the 

adversarial frequencies generated by the generator and the actual frequencies from the dataset, which are then 

also processed by different layers in the neural network. The primary function of the discriminator is to 

differentiate between the natural frequencies (S) and the generated frequencies (S’). 

 

3.1.  Data collection 

This section describes how the dataset for the suggested technique was acquired. The dataset 

CICMal2017 was used in our technique. The Android samples are divided into four categories: adware, 

scareware, SMS malware, and ransomware. To avoid runtime behavior modification of complex malware 

samples that might identify the emulator environment, the authors run both malware and benign programs on 

actual cellphones. The suggested approach makes use of a comma separated values (CSV) file containing 140 
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extracted system call frequencies from 11,599 Android application package (APK) files belonging to four 

malware types. 

 

3.2.  Data preprocessing 

This section involves transforming the data into something that the model can use. This section 

focuses on increasing the model's efficiency. Finding missing data, eliminating NULL values or extraneous 

data, and importing the appropriate libraries are the general phases of data preparation. Although there were 

no missing or NULL values in the dataset used in this study, the frequencies were given as decimal figures. 

We converted them to integer numbers to simplify the training process, and we assigned each malware 

category to an array, with the four arrays included in a NumPy file. 

 

3.3.  Training process 

In this section, we establish our generative adversarial network (GAN) model by configuring both 

the generator and the discriminator with parameters outlined in the simulation and results section. The entire 

training process, specific to GANs, is succinctly captured in algorithm 1, providing a clear and systematic 

overview. This configuration involves careful consideration of key variables, shaping the behavior and 

performance of our GAN model. 

 

Algorithm1. Training process 
1. Initialize generator (G) and discriminator (D) networks with random weights. 

2. Repeat until convergence (or a predefined maximum number of iterations): 

   a. Generate new system calls (S) by feeding random noise and real samples through G. 
   b. Combine real system call samples and generated samples to create a training dataset for D. 

   c. Calculate the discriminator's loss by comparing its predictions for real and generated samples. 

   d. Update the discriminator's weights using backpropagation and gradient descent. 
   e. Generate new system calls (S) by passing random noise through G. 

   f. Calculate the generator's loss based on discriminator’s predictions for the generated samples. 

   g. Update the generator's weights using backpropagation and gradient descent. 
   h. Evaluate the quality of the generated samples using appropriate measures. 

   i. Check for convergence: if the difference in losses from the previous iteration is below the convergence threshold, exit the loop. 

3. End of algorithm. The generator and discriminator networks are now trained. 

 

In our study, we conducted evaluation tests using the widely-used binary cross entropy loss function 

specifically designed for binary classification problems. This function assesses the disparity between 

predicted and actual binary classification outcomes, where each instance in the dataset has only two possible 

classes, typically labelled as zero or one. It quantifies the deviation between the predicted probability 

distribution and the actual probability distribution of binary classification results. It is computed as the 

negative log-likelihood of the actual class, given the predicted probability of that class as described in (1). 

 

𝐿𝑜𝑠𝑠 =  − [𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)] (1) 

 

where 𝑦 is the actual class label, 𝑝 is the predicted probability of the positive class, and the log is the natural 

logarithm. During training, the goal is to minimize the value of the loss function by adjusting the model's 

parameters, which helps to improve the model's ability to classify new examples correctly. According to the 

notations we settled, our GAN might be stated as a minimax with the value function 𝑉(𝐺, 𝐷) under the 

following equality: 

 

 𝑀𝑖𝑛𝐺 𝑀𝑎𝑥𝐷  𝑉(𝐷, 𝐺) = 𝐸𝑧~𝑃𝑧
 [log ( 1 − D(G(z)))] + 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎

 [log ( 𝐷𝑥)] (2) 

 

On the one hand, the 𝐺 generator tries to understand the distribution by learning from the noise 

distribution and adjusting its own output to make it similar to the actual data distribution 𝑃𝑑𝑎𝑡𝑎 . On the other 

hand, the discriminator 𝐷 aims to distinguish between generated samples and real data by classifying them as 

real or fake. Both the generator and discriminator train their networks during the training phase, following 

(2). Consequently, the objective function of GANs can be formulated as a minimax game, involving the 

natural data distribution x, the expectation denoted by 𝐸, and the vector 𝑧 originating from the random noise 

distribution  𝑃𝑑𝑎𝑡𝑎. 

The elements 𝑃𝑧, 𝐺 (𝑧), and 𝐷𝑥 represent the generator's samples and the likelihood that 𝐷 

recognizes 𝑥 as actual data, respectively. 𝐷 (𝐺(𝑧)) represents the likelihood that 𝐷 determines the data 

generated by 𝐺. To trick the generator 𝐺, the discriminator probability 𝐷 (𝐺 (𝑧)) must be maximized, 

therefore log (1 − 𝐷 (𝐺 (𝑧))) will be minimized. A cross entropy function is utilized to discriminate between 

𝐺 (𝑧) and 𝑥 for the discriminator 𝐷, and 𝐷 desires 𝑉(𝐷, 𝐺) to be maximized. In reality, 𝐺 is established 

firstly, and then the parameters of discriminator 𝐷 are adjusted to optimize 𝐷's accuracy. 
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It is important to note that the type of malware does not matter since we deal with the requests of 

services asked by the applications to the kernel. The system calls were extracted from 5,000 samples installed 

in real devices. In our model based on reinforcement learning, the loss function plays a crucial role in 

updating the parameters of the value function. Through this process, the generator network learns to generate 

better actions or rules, leading to more significant rewards as it progressively refines the loss function. This 

iterative procedure empowers the value function's decision-making capabilities to evolve and improve over 

time. 

 

3.4.  System calls 

System calls are functions and APIs that request services from the operating system's kernel. 

Security operating centers (SOCs) analyze malware to gain insight into the dynamic behavior of malicious 

apps. System calls are considered one of the most effective methods for classifying malware. The research 

emphasizes the importance of system calls as an effective strategy for malware classification. Several studies, 

including references [20], [21] recognize the use of system calls in recognizing and describing distinct forms 

of malware. These findings highlight the significance of system call analysis as a powerful and dependable 

way of detecting and categorizing malicious software. Our method employs the frequency of system calls 

across different categories of malware. In this study, we experimented with 140 system calls, and the results 

are presented in Table 1, which lists each system call with its corresponding value. 

While making system calls, we discovered that some of these calls, including 𝐹𝑢𝑡𝑒𝑥(), were 

identified as vulnerabilities in the kernel. We investigated further and found that the code vulnerability is 

CVE-2021-3347, and the 𝐹𝑢𝑡𝑒𝑥() exploit is classified as a use-after-free (UAF) vulnerability. This occurs 

when a program pointer refers to a data set in dynamic memory that has already been erased [22]–[24]. To 

ensure the security and stability of the system, it is crucial to be aware of such vulnerabilities and take 

appropriate measures to mitigate them. This can include implementing patches and updates, using security-

focused programming practices, and regularly monitoring the system for any suspicious activity. 

 

 

Table 1. Example of the used system calls and the corresponding values 
System call Value 

Fetux() Gives a mechanism for waiting till a specific condition is satisfied 
Recvfrom() Used to accept data on a socket regardless of whether it is connection-oriented 

Sigprocmask() Used to get and/or update the caller thread's signal mask 

Prctl() Manipulates many elements of the caller thread's or process's behavior 
Ioctl() Manipulates particular files underlying device parameters 

Sigprocmask() Used to get and/or modify the caller thread's signal mask 

 

 

3.5.  Malware category 

The system calls can be categorized into four distinct groups: adware, ransomware, scareware, and 

SMS malware. For this study, we selected malware samples from 42 different families, as outlined in 

Table 2. The purpose of incorporating four varied types of malware samples is to ensure the dataset's 

diversity and comprehensiveness [25]. 

 

 

Table 2. Example of malware families 
Malware category Family 

Adware Shuanet family 

Youmi family 

Mobidash family 
Kemoge family 

 

Ransomware 

Charger family 

Jisut family 
Svpeng family 

WannaLocker family 
 

Scareware 

AndroidSpy.277 family 

FakeTaoBao family 

Penetho family 
FakeApp.AL family 

 

SMS Malware 

Nandrobox family 

Zsone family 
Jifake family 

Biige family 
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The generator creates new frequencies of system calls (S') that allow a malware classifier to identify 

malicious software as benign. The discriminator's role is to differentiate between the newly generated data 

(S') and the actual data (S) by comparing them. This process helps to distinguish between fake and actual 

data. 

 

3.6.  Simulation and dataset 

The proposed model was implemented in Python 3.7.15 using the TensorFlow [26] and Keras [27] 

packages. We used the Adam optimizer with a learning rate of 0.0001 to optimize the neural network. Further 

details regarding the experimental setup can be found in the following section, which provides information 

on the specific settings used for the tests. 

 

Activation functions: Sigmoid, ReLU 

Loss function: Binary cross entropy  

Input Layer: 136 

Hidden Layers: 256 

Output Layer: 36 

Batch size: 100 

Epochs: 1200 

 

For our numerical experiments, we employed a Windows 10 machine equipped with an Intel Core 

i5-4210 CPU and 4 GB of RAM. To develop our model, we used the Keras deep learning library, specifically 

version 2.9.0, which facilitated the seamless implementation of neural network architectures. Furthermore, 

TensorFlow, version 2.9.2, served as the underlying framework, harnessing the power of GPU acceleration to 

expedite the training process. 

To test our model, we focused on Android malware. Specifically, we trained the model using the 

CIC-AndMal2017 dataset [28], which includes over 10,854 samples from various markets, 4,354 malware 

and 6,500 benign samples. The dataset captures network traffic during three stages: installation, before the 

restart, and after the restart, using CICFLOWMeter and network traffic analyzers. 

In our experiments, we used system call frequency across 11,599 applications. We divided the 

dataset into 80% training and 70% test sets. Table 3 shows the system call frequencies for selected malware 

and their families. 

 

 

Table 3. List of the system calls used in the proposed model 
System call Description Frequencies Fake installer Plnktom 

Write Write to a file descriptor 2,840 4,034 604 

Access Check user’s permissions for a file 362 26 93 
Getpid Get process identification 1,120 1,796 1,221 

getpriority Gets the high priority by any process 134 41 26 

gettimeofday Get and set the time. 3,720 32 465 
ioctl Manipulates particular file's underlying device parameters 2,010 2,147 3,811 

Getuid32 Get the effective user ID of the calling process. 1,110 1,371 1,871 

 

 

4. RESULTS AND DISCUSSION 

Our model employs two activation functions: the sigmoid and rectified linear unit (ReLU). We 

evaluated the effectiveness of our model by analyzing the loss functions of both the generator and 

discriminator, which are presented in our results. To further assess the quality of our model, we used the 

Frechet inception distance (FID) and inception score (IS) metrics, and the corresponding performance results 

are included. More details are presented below. 

 

4.1.  Tests performed with sigmoid function 

Figure 3 depicts the generator and discriminator loss functions with the sigmoid activation function. 

The generator loss function decreases from 0.77 to 0.41 after 120 epochs, while the discriminator loss 

function decreases from 1.6 to 0.50 after 850 epochs. These observations indicate the model's effectiveness 

and highlight the significant progress made in reducing the loss over time. 

 

4.2.  Tests performed with ReLU function 

Figure 4 illustrates the generator and discriminator loss functions achieved with the ReLU activation 

function. The generator loss function starts at 0.17, increases to 0.62, and then decreases to 0.34 at epoch 40. 

In comparison, the discriminator loss function starts at 9.7 and decreases to 2.1 after 20 epochs. 
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When comparing the generator loss function results between the two activation functions, we 

conclude that ReLU outperforms sigmoid. However, the discriminator loss function results are better with the 

sigmoid function. These observations highlight the importance of selecting the appropriate activation 

function for each model component to achieve optimal results. 

 

 

  
 

Figure 3. The generator and discriminator loss 

functions using sigmoid 

 

Figure 4. Generator and discriminator loss functions 

using ReLU 

 

 

4.3.  Evaluation metric FID 

There are several commonly used methods for evaluating GANs. In this paper, we applied the FID 

to evaluate the performance of our model. FID is a metric widely used for assessing the quality of the 

produced pictures established expressly to assess the performance of the generative adversarial networks 

[29]. It measures the similarity between the generated samples' distribution and the training dataset's 

distribution in the feature space of a pre-trained deep neural network. A lower FID score indicates that the 

generated samples are more similar to the training dataset. The FID score is calculated using (3). 

 

𝐹𝐼𝐷 =  ‖𝑚𝑥 − 𝑚𝑦‖
2

2
+  𝑇𝑟 (𝐶𝑥 +  𝐶𝑦 − 2 √𝐶𝑥𝐶𝑦 ) (3) 

 

where 𝑚𝑥  and 𝑚𝑦  refer to the feature wise mean of the real and generated images; the 𝐶𝑥 and 𝐶𝑦 are the 

covariance matrix for the real and generated feature vectors; and 𝑇𝑟 is the trace of the matrix corresponding 

to the sum of the elements along the main diagonal of the square matrix. 

We assessed the similarity between the distribution of adversarial frequencies and the distribution of 

the training malware dataset. The resulting score for 100 epochs is 2.34 in Figure 5, indicating a low value 

that suggests a slight difference between the adversarial frequencies and the actual frequencies employed by 

zero-day malware. This observation highlights the effectiveness of our model in generating adversarial 

examples that can closely mimic the behavior of real-world malware. 

 

 

 
 

Figure 5. Representation of FID versus epochs 

https://en.wikipedia.org/wiki/Covariance_matrix
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4.4.  Inception score 

The inception score is a metric used to evaluate the quality and diversity of generated images by a 

generative adversarial network [30]. It is calculated by feeding the generated images through a pre-trained 

convolutional neural network and measuring the Kullback–Leibler divergence (KL-divergence) between the 

conditional label distribution and the marginal label distribution of the CNN's SoftMax output. The inception 

score considers both the accuracy and diversity of the generated images, with higher scores indicating better 

quality and diversity. 

We utilized our simulation's NumPy and Keras deep learning libraries to evaluate the inception 

score (IS). The obtained IS value for 100 epochs with the sigmoid activation function is 7.65, which we 

consider satisfactory. This indicates that our model can effectively generate synthetic images similar to actual 

ones. 

 

 

5. CONCLUSION  

Over the last decade, mobile applications have experienced significant technological advancements. 

However, with the increasing prevalence of zero-day attacks, anti-malware systems need to be continuously 

strengthened to tackle these scalable threats. GANs provide a proactive approach to understanding how 

malware writers operate. During the training process, the generator creates new types of malwares, which are 

then used to train the discriminator to differentiate between benign programs and those infected with 

previously unknown viruses. In this study, we proposed a new model to detect zero-day Android malware 

using GANs by generating new feature vectors of the system call frequencies. We experimented with 

sigmoid and ReLU activation functions and evaluated the model's performance using the FID metric and IS 

score. Our results showed higher IS values and lower FID values (versus epochs), indicating the feasibility 

and potential of this approach. Overall, this study provides a promising solution for enhancing mobile 

security and reducing the impact of zero-day mobile malware. Our study demonstrated the potential of using 

GANs to detect mobile malware; in future work, we will develop an advanced intrusion detection system 

based on GANs to protect mobile applications against malware attacks, applying several loss functions and 

metrics to evaluate its performance. Furthermore, we will implement this IDS in a constrained environment, 

adding an extra layer of security to mobile devices. 
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