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 The locations of pigs in the group housing enable activity monitoring and 

improve animal welfare. Vision-based methods for tracking individual pigs 

are noninvasive but have low tracking accuracy owing to long-term pig 

occlusion. In this study, we developed a vision-based method that accurately 

tracked individual pigs in group housing. We prepared and labeled datasets 

taken from an actual pig farm, trained a faster region-based convolutional 

neural network to recognize pigs’ bodies and heads, and tracked individual 

pigs across video frames. To quantify the tracking performance, we 

compared the proposed method with the global optimization (GO) method 

with the cost function and the simple online and real-time tracking (SORT) 

method on four additional test datasets that we prepared, labeled, and made 

publicly available. The predictive model detects pigs’ bodies accurately, 

with F1-scores of 0.75 to 1.00, on the four test datasets. The proposed 

method achieves the largest multi-object tracking accuracy (MOTA) values 

at 0.75, 0.98, and 1.00 for three test datasets. In the remaining dataset, the 

proposed method has the second-highest MOTA of 0.73. The proposed 

tracking method is robust to long-term occlusion, outperforms the 

competitive baselines in most datasets, and has practical utility in helping to 

track individual pigs accurately. 
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1. INTRODUCTION 

The global pig industry is valued at US$ 254 billion in 2022 and is estimated to reach US$ 418 

billion by 2028 [1]. In commercial farming, pigs are raised in closed pens and are subjected to stress and 

illness. Pig locations across time can reveal the pigs’ activities and well-being [2]–[8] and enable a farm to 

detect a disease early [9]–[14]. The accurate tracking of individual pigs benefits the billion-dollar industry. 

The tracking of individual farm pigs is challenging. Pigs of similar size and age were raised in the 

same pen to manage their growth [10]. However, similar pigs are difficult to differentiate and track 

individually [3]. In addition, the outline shape of a pig changes according to the pig’s activity. A dynamic 

shape complicates a vision-based tracker, which identifies an object as a pig based on it is appearance. 

Finally, the trajectory of the pig was random. Two pigs that meet momentarily may depart in unpredictable 

directions and cause the tracker to switch the pigs’ identities incorrectly. Individual pig tracking aims to 

accurately detect and track each pig over time. Detection accuracy is commonly measured by the false 

positive ratio (FPR), false negative ratio (FNR), precision, recall, and F1-score. Tracking accuracy is 

commonly measured by FPR, FNR, mostly tracked trajectory (MTT), number of identity switches (NIS), and 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 279-293 

280 

multi-object tracking accuracy (MOTA) [15]–[19]. To be accurate, a tracker must overcome appearance 

similarity, dynamic pig shape, and random pig movement.  

Tracking individual pigs can be handled using the framework of multi-object tracking (MOT) [18]–[23], 

which is divided into invasive and noninvasive methods. Invasive methods implant a unique radio frequency 

identification (RFID) tag or place a specific mark on an animal, and install an RFID reader to interrogate tags 

or a video camera to capture the marks [24], [25]. For farms that place distinct ear tags on the pigs, a previous 

study [24] applies a convolutional network to recognize the tags and track individual pigs. RFID and marks 

increase the tracking accuracy and reduce identity switching. However, they disturb animals and become 

futile if tags or marks are detached from the animals [26]. Noninvasive methods require the installation of 

one or more video cameras in a pen to identify and localize individual pigs in each video frame and track the 

pigs over time [15], [27]–[29]. The locations of the pigs are relative to the pixel coordinates and, if needed, 

can be transformed into the physical coordinates of the pen. If the video processing and the tracking occur at 

a centralized unit, a large amount of video data can be compressed using convolutional neural networks 

(CNN) [30] or other techniques before transmission. Noninvasive methods minimize animal suffering and 

can be applied to large farms. Considering animal welfare, noninvasive methods are appealing. 

Several variations of noninvasive methods exist for tracking pigs and other animals. In [15], a 

fingerprinting technique was proposed that mitigates identification (ID) switching in unmarked individual fish 

during their interaction and grouping. The fingerprinting technique uses both the position and direction of the 

fish to confirm its identity. The fish’s position is extracted from the background, whereas the fish’s direction is 

extracted from a style of motion including exclusion, occlusion, and interaction. The tracking method is 

appropriate for fishes and animals that occlude one another for a short duration, but is unsuitable for pigs, which 

engage in long-term occlusion. To cope with occlusion, the method [31] automatically and dynamically builds 

representations that enable the robust and effective tracking of animals. This method uses a Gaussian mixture 

model and expectation maximization for background subtraction and tracking, respectively. Images for this 

method must conform to a specific color model, namely the YUV color model, which separates the luminance 

component (Y) from the two chrominance components (U and V). The YUV color model with appropriate 

lighting control is required to minimize false negatives during background subtraction. Without lighting control, 

this method faces the problem of disconnected foreground blobs for a single object. More importantly, the 

method is efficient only when the animals have simple shapes and move in regular motion patterns. This 

method is unsuitable for pigs with complex shapes. To address illumination changes, long-term occlusion, and 

ID switching, a study [32] developed a collaborative tracking algorithm to track multiple objects in the presence 

of inter-occlusion using a color-based particle filter. The position of each detected object is represented by a 

blob, that is, a rectangular bounding box, which is used to build the tracker model. The distance between the 

blobs is used to determine the type of occlusion, including overlapping, partial occlusion, and full occlusion. An 

appropriate tracking method was selected based on the occlusion type. A drawback of this method is that it 

requires several complex algorithms to deal with multiple tasks. To develop a tracking method that is simple, 

and robust to illumination changes and long-term occlusions, machine learning approaches are used to detect 

animals or objects of interest in video frames. Common methods include faster region-based convolutional 

neural network (faster R-CNN) [33]–[38], you only look once (YOLO) [39]–[43], single-shot multi-box 

detector (SSD) [44]–[47], and feature pyramid network (FPN) [48]–[51]. After training with a dataset, these 

methods recognize the external appearance of an object or animal of interest, and predict the blob position, size, 

and boundary of each animal. In [43], YOLOX-S and YOLO v5s detectors have been used in detecting and 

classifying pig activities. In [36], the Faster R-CNN model was applied to automatically localize individual pigs 

from a side-view video and track them in a situation where, owing to a detection error, some pigs were lost from 

a video frame. Faster R-CNN can process frames at a speed of 0.2 sec per frame [36]. With this speed, faster R-

CNN achieves near real-time detection and is attractive. 

Although much work has been done on animal and pig tracking, existing work is fundamentally 

limited. The previous work constructed a rectangular bounding box around a pig and represented the pig’s 

location by the centroid of the box. As two pigs are nearby and aligned diagonally, the centroid of a bounding 

box for one pig may be located on the body of another pig, leading to ID switching after the two pigs depart. 

A new method that resolves these limitations will increase tracking accuracy. 

In this paper, we propose a method that tracks individual pigs and is robust to long-term occlusions. 

We prepared datasets and trained a faster R-CNN to recognize pigs in a farm environment. The model detects 

the pigs’ bodies and heads in each video frame and differs from existing models that detect a combination of 

the body and head as one unit. The proposed method represents each pig’s location using a bounding box 

around the pig’s body, as opposed to a single centroid in the existing work. The enlarged representation of 

the location alleviates ID switching. We evaluated the performance of the proposed tracking method against 

state-of-the-art methods and found that the proposed method outperformed existing methods. The main 

contributions are the following: 
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− Labeled datasets, which are publicly available [52] to measure the accuracy of pig detection and tracking. 

− An individual-pig tracking method, which is robust to a long-term pig-to-pig occlusion. 

− Performance evaluation of the proposed method, showing superior performance compared to state-of-the-

art methods. 

The proposed method can detect and track pigs accurately, even for pigs in an environment different from 

that used in training the predictive model. These contributions may improve farm practices and pig welfare. 

The remainder of this paper is organized: section 2 describes the problem statement, the dataset for 

training a pig-recognition model, and the proposed pig-tracking method. Section 3 describes the datasets for 

testing the model, evaluates the performance of the proposed method for detection and tracking, discusses the 

results, and suggests future research directions. Section 4 concludes the paper and summarizes important 

findings. 

 

 

2. METHOD 

The research method entails problem formulation (subsection 2.1), preparation of the training 

dataset (subsection 2.2), and design of the tracking method (subsections 2.3–2.5). As an overview, the 

proposed pig-tracking method identifies the head and body of each pig in video frames using a faster R-CNN 

model specifically trained for pig recognition. The proposed method matches the bounding boxes over the 

pigs’ bodies across frames and repeats the matching for the bounding boxes over the heads of the pigs. 

Finally, it matches the body and head of the pig in each frame. Each part of the research method is described 

in detail below. 

 

2.1.  Problem statement 

The system model is illustrated in Figure 1. The pen is closed, has a video camera attached to the 

ceiling, and contains N pigs of similar size and appearance. The video camera provides K frames of  

red-green-blue (RGB) images, denoted by F [1..K], for pig tracking. Each frame contains all N pigs, possibly 

with pig-to-pig occlusions. The multi-tracking system takes video frames F [1..K] as input, detects, and 

tracks individual pigs in video frames. The output is a unique identifier, i, of each pig, where 1≤i ≤N, and the 

bounding box with respect to the pixel coordinates in each frame of the ith identified pig. Our aim is to 

design a method to track individual pigs accurately. 

 

 

 
 

Figure 1. A system to track individual pigs takes a video as an input 

 

 

2.2.  Training a model 

To train a model to recognize pigs’ bodies and heads, we prepared a training video dataset. The 

videos were taken from a 2×2 square-meter pen consisting of N=10 pigs. The breed of the eight pigs was a 

mix of Landrace and Large White. The breed of the two pigs was a mix of Duroc and Hamshire. Each pig 

weighed 8-16 kg. Training videos were collected in the morning, noon, and afternoon with 696 video frames 

in total, covering different activities and lighting conditions. 

To identify an object as a pig, we manually annotated the pig’s head and body boundaries in the 

video frames using the Pascal Visual Object Classes Challenge 2007 as shown in Figure 2. Pigs that are 

heavily occluded are not annotated to improve boundary detection. The annotated head and body boundaries 
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assume a rectangular shape parallel to the image sides and cover the major head and body areas. For pigs that 

are oriented in roughly the same direction, the length and width of their boundaries are labeled as 

approximately the same size. This approach helps improve the accuracy of faster R-CNN boundary detection. 

In our prepared dataset, the total number of bounding boxes over either the head or body is approximately 

6,500, a large quantity, coming from 10 pigs/image×696 images, subtracted by the number of heads and the 

number of bodies, respectively, that are heavily occluded. 

 

 

 
 

Figure 2. Video frames were labelled and used for training a neural network to recognize pigs’ bodies and 

heads 

 

 

Seventy percent of the 696 images were used for training the faster R-CNN model, while the 30% 

remaining images were used for testing the model. In the training stage, the learning rate was set to 0.0002 

and the batch size was set to 1. The learning rate was small and appropriate because when pigs stayed in a 

group, their appearances were similar. The batch size can be increased to suit the computing power of the 

training machine. In the training and testing stages, the lost value obtained from 200,000 rounds of 

processing was used to determine the accuracy of the generated faster R-CNN model. We use appropriate 

parameters to train the model. 

 

2.3.  Tracking algorithm 

The tracking algorithm is shown in Algorithm 1. The algorithm uses video frames F [1..K] and the 

number N of pigs as inputs, where F [k] denotes the image at the kth video frame for 1≤k≤K. The output was 

an array D[1..N, kst..K] of structures, where D[n, k] contains information about the bounding boxes over the 

head and body of pig n in frame k. Line 1 applies the faster R-CNN model to predict the boundaries 𝐵body 

and 𝐵head around the pigs’ bodies and heads, respectively. The variables 𝐵body [1..M, 1..K], 𝐵head [1..M, 

1..K], nˆbody[1..K], and nˆhead[1..K] are arrays, where M is the maximum number of detectable pigs in video 

frames. For a given frame 1≤k≤K, the variables nˆbody[k] and nˆhead[k] are the numbers of detected pigs’ bodies 

and heads, respectively, in the kth video frame. Variable 𝐵body [n, k] is the structure of the bounding boxes 

over the body of the nth detectable pig in the kth video frame, where 1≤n≤nˆbody[k]; and variable 𝐵head [n, k] 

is the analogous structure over the pig’s head, where 1≤n≤nˆbody[k]. Structures 𝐵body [n, k] and 𝐵head [n, k] 

contain the points (xmin, ymin) in the upper-left corner, (xmax, ymax) in the lower-right corner, and (cx, cy) 

in the centroid of the bounding box. Line 2 determines the index kst of the first video frame that contains N 

pigs’ bodies and N pigs’ heads. We consider that the number of frames is sufficiently large such that kst exists. 
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Algorithm 1. Individual pig tracking 
Input: F[1..K], N 

Output: D[1..N, kst..K] 

1: (Bbody, nˆbody, Bhead, nˆhead)=Faster-R-CNN(F) 

2: kst=the minimum index such that both nˆbody[kst] and nˆhead[kst] equal N  

3: (Cbody, Chead)=BlobRepairing(Bbody, nˆbody, Bhead, nˆhead, kst) 

4: match=Body-Head Matching(Cbody, Chead, kst) 

5:  Initialize D[n, k] to contain information of the body Cbody[n, k] and 

  head Chead[match[n, k], k], for each kst≤k≤K and 1≤n≤N 
 

Next, the algorithm calls the method of blob repair, which maps the bodies of the same pig across 

different frames to the same identification number and maps the heads of the same pig across different frames 

to the same identification number. The output variables 𝐶body [1..N, kst..K] and 𝐶head [1..N, kst..K] are arrays of 

structures containing information about the bodies and heads, respectively, of N pigs in each frame, starting 

from the kstth frame to the last frame. Fields of structures 𝐶body [n, k] and 𝐶head [n, k] are (xmin, ymin), 

(xmax, ymax), (cx, cy), and a new field id, which is the unique identification of the pig’s body and head, 

respectively. For flexibility in blob repair, the unique identification of the pig’s body may differ from that of 

the pig’s head, even though they identify the same pig. This discrepancy will be resolved in the next step, line 

4, which matches the identification number of the pig’s body to the corresponding identification number of the 

pig’s head for the same pig. Finally, line 5 consolidates the body and head of the same pig into the same unit 

and outputs array D[1..N, kst..K] of structures. The structure D[n, k] contains the body and head positions in 

frame k of the pig, whose unique identification is n. This algorithm terminates and completes the tracking task. 

 

2.4.  Blob repairing 

Body-blob repair aims to match a pig’s body in a given frame with the corresponding pig’s body in 

the next frame. Head-blob repair aims to perform analogous matching for pigs’ heads. See Figure 3 for an 

illustration. The word “repairing” emphasizes the most important step in body-to-body and head-to-head 

matching: to repair a lost body blob, a lost head blob, an excessive body blob, and an excessing head blob. 

Blob repairing matches either the heads or the bodies across different frames. 

 

 

 
 

Figure 3. Blob repairing maps body and head blobs among consecutive frames, shown for N=3 pigs. The 

lines indicate body or head blobs that belong to the same pig 

 

 

The proposed method of blob repair appears in algorithm 2 and is based on the following ideas. 

First, the start frame, that is, the kstth frame, has N head blobs and N body blobs by construction, and has 

already been repaired. Blob repairing progressively matches pigs’ bodies and heads in a current frame, k, 

with the bodies and heads in the previous frame, k-1, for kst+1≤k≤K. Second, if the number of body blobs in 

the current frame does not equal N, pigs in the current frame must be heavily occluded so that the faster  

R-CNN model either fails to detect or excessively detects a pig’s body. In this case, the body blobs in the 

current frame are unreliable. Blob repairing will equate the positions of the pigs’ bodies and heads in the 

current frame to those in the previous frame. See lines 3 and 4 of Algorithm 2. Third, if the number of body 

blobs in the current frame is N, the body blob in the current frame is matched to the nearest body blob in the 

previous frame. In line 8 of the algorithm, the notion of “nearest” is measured by the average displacement 

between the bounding-box coordinates: 

 

𝑓(𝑛, 𝑗, 𝑘) =
1

4
∑ (𝐵𝑏𝑜𝑑𝑦[𝑛, 𝑘]. 𝑠 − 𝐵𝑏𝑜𝑑𝑦[𝑗, 𝑘 − 1]. 𝑠 )𝑠  (1) 
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where the summation index s covers fields s {xmin, ymin, xmax, ymax}. In the algorithm, the set of 

unmatched indices is stored in variable U, which initially equals a full set {1, 2, 3 ..., N} and is reduced by 

one element at a time to the empty set-in lines 6-12. Fourth, the number of detectable pigs’ heads in the 

current frame may differ from that in the previous frame. Blob repairing matches pigs’ heads in the previous 

frame with the nearest ones in the current frame. Here, the notation of “nearest” for pigs’ heads is the 

distance between the centroids of the bounding boxes (line 15 of the algorithm). 

 

𝑔(𝑛, 𝑗, 𝑘) = √∑ (𝐵head[𝑛, 𝑘]. 𝑡 − 𝐵head[𝑗, 𝑘 − 1]. 𝑡)2
𝑡  (2) 

 

The summation index t covers fields t  {cx, cy}. Using different measures f and g for the body and head 

blobs is appropriate because the pig’s body may be rotated within the blob, making the centroid an unfit 

representation of the body’s blob position. In addition, the pigs’ heads are smaller than their bodies and will 

not rotate much within the blob, making a centroid a suitable choice to capture the head position. Fifth, if the 

number of detectable pigs’ heads in the current frame is smaller than that of the previous frame, the 

unmatched head blobs and their identities in the previous frame are copied to the current frame, as shown in 

lines 20-24. On the other hand, if the number of detectable pigs’ heads in the current frame is larger than that 

of the previous frame, the unmatched head blobs and their identities in the current frame are discarded. The 

outputs of the algorithms are arrays 𝐶body [1..N, 1..K] and 𝐶head [1..N, 1..K], where 𝐶body [n, k] and 𝐶head [n, 

k] are the structures of the nth blob for the pig’s body and head, respectively, at the kth frame, where 1≤n≤N 

and kst≤k≤K. 

 

Algorithm 2. Blob repairing 
Input: Bbody[1..M, 1..K], nˆbody[1..K], Bhead[1..M, 1..K], nˆhead[1..K], kst 

Output: Cbody[1..N, kst..K], Chead[1..N, kst..K] 

1: Initialize Cbody[n, kst]= Bbody[n, kst], Cbody[n, kst].id=n, Chead[n, kst]=Bbody[n, kst], 
 and Chead[n, kst].id=n, for each 1≤n≤N 

2:  for k=kst+1 to K do 

3:  if nˆbody=N then 

4:   Initialize Cbody[n, k]= Cbody[n, k−1] and Chead[n, k]=Chead[n, k−1], for each 
  1≤n≤N 

5:  else 

6:   U={ 1, 2, 3, . . . , N } 

7:   for n=1 to N do 

8:    J=arg minj∈U f(i, j, k) 

9:    Cbody[n, k]=Bbody[n, k] 

10:    Cbody[n, k].id= Cbody[J, k−1].id 

11:    U=U\{ J } 

12:   end for 

13:   V={1, 2, 3, . . . , nˆhead[k]} 

14:   for n=1 to nˆhead[k−1] do 

15:    J=arg minj∈V g(n, j, k) 

16:    Chead[J, k]=Bhead[J, k] 

17:    Chead[J, k].id=Chead[n, k−1].id 

18:    V=V\{ J } 

19:   end for 

20:   m=N−nˆhead[k] 

21:   if nˆhead[k]<N then 

22:    Let j1, j2, . . . , jm denote the elements of V 

23:    Chead[nˆhead[k]+i, k]=Chead[ji, k], for each 1≤i≤m 

24:   end if 

25:  end if 

26: end for 

 

2.5.  Matching of pig’s body to it is head 

The matching stage aims to match a body’s blob to a head’s blob in the same frame such that the 

same pig has it is body and head paired together. The key idea in the proposed matching is to examine the 

intersection of union (IoU) as well as to minimize the distance between the head and body’s blobs. The top 

three IoU values are used to find the head blob with the closest distance to the body blob. Next, we describe 

the algorithm used for the matching stage in detail. 

The algorithm for the matching stage appears in algorithm 3 and is illustrated in Figure 4. The inputs 

are the index of the start frame kst, and arrays 𝐶body and 𝐶head of structures, containing information about the 

body’s blobs and head’s blobs. The output is an array match [1..N, 1..K] of integers to indicate the matching. 

For each frame k, the value of match [n, k]=j indicates that the body blob 𝐶body [n, k] and the head blob 𝐶head 

[j, k] belong to the same pig. The algorithm matching the body’s blobs and head’s blobs in the same frame is 
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shown in lines 1–33. The index of the frame under matching is denoted by variable k, which runs from kst to 

K, as shown in line 1. The inner loop of the algorithm iterates through variable i, which is the index of the 

body’s blob and ranges from 1 to N, as shown in lines 2–32. In line 5, set U of unmatched head indices is 

initialized to equal a full set {1, 2, 3, . . . , N }. Lines 6–9 calculate the value of IoU from each pair of blobs 

of the body and head. The three largest IoUs, namely IoU[j1]≥IoU[j2]≥IoU[j3], were selected for further 

matching, as shown in line 10. If frame k is the start frame, the matching is based only on IoU[j1] because the 

minimum distance to the previous frame is unavailable, as shown in lines 14–16. In line 14, the index of the 

already-matched head is removed from set U. For a subsequent frame k>kst, the distances of the head’s blobs 

in the current and previous frames are considered, as presented in lines 17–19. Figure 4(a) illustrates the pigs 

in the previous frame, where the bodies have already been matched to the heads. The distance between the 

head’s blobs in the current and previous frames is calculated. Figure 4(b) illustrates the pigs in the current 

frame, where each pig’s body is to be matched based on the distance with a head. The distances under 

consideration have three values stored in variables dist1, dist2 and dist3, where 

 

distℓ = √∑ (𝐶head[jlast, 𝑘 − 1]. 𝑢 − 𝐶head[𝑗ℓ, 𝑘]. 𝑢)2
𝑢  (3) 

 

for u  {xmin, xmax} and ℓ=1, 2, 3. All three values are further compared to determine the closest distance 

based on the three conditions presented in lines 21-30. In the first condition, if dist1 is smaller than both dist2 

and dist3, then index j1 is matched with the body’s blob at index i, and the already-matched index j1 is 

removed from set U. The second and third conditions are for cases where dist2 and dist3, respectively, are the 

minima among the three distances. Figure 4(c) is an example of a pig’s head that best matches the pig’s body 

under consideration. After the algorithm finds the best body-to-head matching, a single ID is assigned to the 

body and head blobs of the same pig, as shown in Figure 4(d). Overall, the algorithm processes each frame 

and maps the IDs of the body and head blobs. 

 

Algorithm 3. Body-head matching 
Input: kst, Chead, Cbody 

Output: match[1..N, 1..K] array of integers to indicate the index of the head 

that matches to the index of the body 

1:  for k=kst to K do 

2: for n=1 to N do 

3: Initialize IoU[j]=0, for each j=1, 2, 3, . . ., K 

4: body=rectangle with the corners (Cbody[n, k].xmin, Cbody[n, k].ymin) and 

 (Cbody[n, k].xmax, Cbody[n, k].ymax) 

5:  U={ 1, 2, 3, . . . , N  } 

6: for j=1 to N do 

7: head=rectangle with the corners at (Chead[j, k].xmin, Chead[j, k].ymin) 

 and (Chead[j, k].xmax, Chead[j, k].ymax) 

8:   IoU[j]=area(body ⋂ head)/area( body ⋃ head) 
9: end for 

10: Pick the indices j1, j2, j3 such that j1 ∈ U, j2 ∈ U, j3 ∈ U, and 
 IoU[j1]≥IoU[j2]≥IoU[j3]>0 are the three largest positive IoUs 

11: if (cannot find such j1, j2, j3) then 

12: Unable to match the head-and-body for this frame. Go to line 1  

 for the next value of k 

13: end if 

14: if (k equals kst) then 

15: match [n, k]=j1 

16: U=U\{j1} 

17: else 

18: jlast=match[n, k–1] 

19: Calculate distℓ according to (3) for ℓ=1, 2, 3 

20: distmin=min {distℓ:ℓ=1, 2, 3} 

21: if distmin=dist1 then 

22: match[n, k]=j1 

23: U=U\{j1} 

24: else if distmin=dist2 then 

25: match[n, k]=j2 

26: U=U\{ j2 }   

27: else 

28: match[n, k]=j3 

29: U=U\{j3} 

30: end if 

31: end if 

32: end for 

33: end for 
 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 1, February 2024: 279-293 

286 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 4. The matching stage (a) considers the previous frame, (b) selects each body bounding box in the 

current frame, (c) matches the body to a head, and (d) assigns the same ID to the matching head and body 

 

 

3. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed tracking method, we took steps to ensure fairness. 

First, we prepared test datasets that were disjointed from the dataset used in section 2.2 for training the  

pig-detection model. Then, we evaluated the performance of the proposed detection model and the proposed 

pig tracking method on the test datasets. 

 

3.1.  Test datasets 

We prepared four datasets (Videos 1-4) to evaluate the pig identification and tracking methods. 

Each video contained 10 frames, down-sampled from 5,000 continuous frames, of pigs of the same number 

and mixed breads. Videos 1-3 were captured in the morning, midday, and evening, respectively. The pig, 

pen, and camera setup in videos 1-3 are the same as those in the videos used in training the Faster R-CNN 

model (section 2.2). Video 4 has a different camera setup, pen, and pigs from the video used in training the 

Faster R-CNN model. Videos 1-3 were taken from an environment familiar to the pig detection model, while 

video 4 was not. 

Table 1 lists the characteristics of the datasets used for the pig detection. A different time of the day 

leads to a different pig behavior and the occlusion ratio (OR), which measures the degree to which a pig’s 

part overlaps with the same part of another pig. The head OR equals 

∑ 𝑑𝑘
𝐾
𝑘=1

∑ 𝑛𝑘
𝐾
𝑘=1

 where dk is the number of pigs’ 

heads that overlap with the heads of any other pig in frame k, and nk=N is the total number of pigs in frame k. 

The body OR is defined similarly, but on the pigs’ bodies. The higher the OR, the greater the overlap, and the 

more difficult it is to detect a pig. The body-to-body OR is largest at 0.40 on video 2, because at noon, pigs 

tend to lay down, rest, and cause body-to-body occlusion. Videos 1-4 test the abilities of the detection and 

tracking methods under various conditions. We made the test datasets available to other researchers [52]. 
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Table 1. Test datasets consist of four videos of different characteristics (bbox=bounding box) 
Dataset Capturing Environment Head Body 

# of bboxes OR # of bboxes OR 

VDO 1 Morning on familiar pen and pigs 100 0.04 100 0.26 

VDO 2 Midday on familiar pen and pigs 100 0.13 100 0.40 

VDO 3 Afternoon on familiar pen and pigs 100 0.12 100 0.24 
VDO 4 Afternoon on unfamiliar pen and pigs 100 0.06 100 0.22 

 

 

3.2.  Performance metrics 

We considered six performance metrics for pig detection: true positive ratio (TPR), FPR, FNR, 

precision, recall, and F1-score. In addition, we considered six performance metrics for pig tracking: TPR, 

FPR, FNR, MTT, NIS, and MOTA. The performance metrics for detection and tracking were obtained from 

the predicted bounding boxes and ground truth, without human intervention, for reproducibility. In this 

section, we describe the method to obtain these performance metrics. 

During detection, in a given video frame f, the ground truth bounding boxes g1, g2, . . . , gN are 

matched with the predicted bounding boxes p1, p2, . . . , pn, where n is the number of predicted bounding 

boxes in frame f. The matching method is the greedy maximum-weight bipartite-graph matching, where the 

two disjoint sets of vertices are {g1, g2, . . . , gN} and {p1, p2, . . ., pn}. The weight wi,j between vertices gi and 

pj favors, first, the IoU and, second, the centroid between bounding boxes. In particular, wi,j is a tuple (ai,j, bi,j) 

where ai,j is the IoU between gi and pj, if the IoU is ≥0.6; and ai,j is zero, otherwise. The element bi,j is the 

distance between the centroids of the bounding boxes gi and pj. An IoU threshold of 0.6 is suitable, meaning 

that the two bounding boxes are significantly overlapped [36]. A comparison between the two weights begins 

with the IoU comparison and, in the case of a tie, is settled by the distance comparison. Following the greedy 

implementation, we repeatedly add an edge to the matching, starting from the maximum-weighted edge to a 

smaller-weighted edge, as long as the added edge preserves bipartite matching. The matching process 

establishes the pairs (gi, pm(i)) between the ground truth and the predicted bounding box, where m(i) is the 

corresponding matched vertex. After the matching, true positive (TP), false positive (FP), FN are obtained 

from the IoU between each bounding-box pair (gi, pm(i)), using standard definitions of these metrics [53], 

where the IoU threshold is set to 0.6. TPR, FPR, and FNR are the ratios of TP, FP, and FN, respectively, to 

the number of ground truth bounding boxes, which is 100 as shown in Table 1. Maximum matching ensures 

that the TPR is at the largest possible value, and that the FPR and FNR are the smallest. The TPR, FPR, and 

FNR in the detection can serve as the ultimate limits for the analogous tracking metrics. 

To evaluate the tracking performance, we rearranged the predicted pig IDs to match those in the 

ground truths; and then evaluated the TP, FP, FN, MTT, and NIS. The step to rearrange the predicted pig IDs 

ensures fairness because the tracker and ground truth may name the same pig by two different numbers 

consistently through the video frames. Matching occurs between the predicted bounding boxes and the 

ground truth at the earliest ground-truth video frame where the predicted model detects all N pigs. The 

matching is the greedy maximum-weight bipartite-graph matching with the same weight construction used by 

the detection metrics. Having N predicted pigs means that the matching is perfect: every pig’s predicted ID is 

matched to a unique ground-truth pig ID. The predicted pig IDs were renamed to match the ground truth IDs. 

After perfect matching, the ground truth bounding box gi and predicted bounding pi for the same 

index i are deemed to identify the same pig. Then, the TP, FP, and FN are obtained in each frame using the 

standard definitions of these metrics [53], with an IoU threshold of 0.6. In computing the MTT, the predicted 

trajectory of a given pig is considered mostly tracked if 80% of the predicted bounding boxes significantly 

overlap with the ground truths. Again, the two boxes overlap significantly if their IoU is ≥0.6 [36]. To obtain 

an NIS for a test video, we sum the NISs of the individual pigs. For example, Table 2 contains the predicted 

pig IDs, the NIS for each pig, and the NIS for video 1 and the proposed tracker. To obtain an NIS of a given 

pig, we match the pig’s predicted bounding boxes to the ground-truth’s bounding boxes in each ground-truth 

video frame, using the greedy maximum-weight bipartite-graph matching; and count the number of ID 

switches. Finally, MOTA is obtained from 1–x [36], where x is the ratio between the sum of FP, FN, and NIS 

to the sum of the total ground truth bounding boxes and the maximum possible NIS value. The total number 

of ground-truth bounding boxes is MN, and the maximum possible NIS value is (M-1)N, where M=10 is the 

total number of ground-truth frames as shown in Table 1. The method for computing the detection and 

tracking metrics is appropriate. 

 

3.3.  Detection evaluation 

Figure 5 shows examples of bounding boxes that were generated by our model to detect the heads 

and bodies of pigs. Images of pigs in subfigures 5(a)–5(d) are taken from videos 1 to 4, respectively, and 

show a group of pigs in similar positions. A green bounding box is the detected pig’s body, while a cyan box 
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is the detected pig’s head. The proposed method accurately detects pigs’ bodies even when the pigs are 

congregated in a group and experience pig-to-pig occlusion. Detecting a pig’s head is more difficult than 

detecting a pig’s body. In Figure 5(d), video 4 contains mistakes in head detection: two bounding boxes 

intended for pigs’ heads appear at the buttocks; and one bounding box is missing from the pig’s head. Visual 

inspection showed that the proposed pig detection model made few mistakes and performed well in these 

video frames. 

 

 

Table 2. To obtain the NIS, predicted pig IDs are matched to ground-truth’s, shown for video 1 and the 

proposed tracker. The ID of zero means that the tracker loses track of a pig 
Ground-truth frame Ground-truth pig ID 

1 2 3 4 5 6 7 8 9 10 
500 1 2 3 4 5 6 7 8 9 10 

1,000 1 2 3 4 5 6 7 8 9 10 
1,500 1 2 3 8 5 6 7 4 9 10 
2,000 7 2 3 8 5 6 1 4 9 10 
2,500 7 2 3 8 5 6 1 4 9 10 
3,000 7 0 0 8 5 6 1 4 9 10 
3,500 7 3 0 8 5 6 1 4 9 10 
4,000 7 8 3 0 5 6 1 4 9 10 
4,500 7 8 3 4 5 6 1 0 9 10 
5,000 7 0 3 8 5 6 1 4 9 10 

NIS for each pig 1 4 2 4 0 0 1 3 0 0 
Sum=NIS 15 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. The bounding boxes cover the detected pigs’ bodies and heads, shown as an example for frames 

taken from (a) VDO1, (b) VDO2, (c) VDO3, and (d) VDO4 
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Table 3 shows the overall detection performance of the pigs’ heads and bodies. The ORs reported in 

Table 1 affect the FPR and FNR of pig detection. A high OR tends to lead to an error in boundary detection 

and, hence, a large FPR. The FNR is zero because the predictive model outputs N bounding boxes for heads 

and bodies, although some bounding boxes are not at the correction positions, and hence a non-zero FPR. 

The different lighting conditions in videos 1-3 did not significantly affect the F1-score, showing the 

robustness of the detection model to the lighting condition. The precision, recall, and F1-score for body 

detection are generally larger than those for head detection. For example, in video 3, the F1-scores are 0.99 

on body detection and 0.83 on head detection. Furthermore, for unfamiliar video 4, the F1-score for body 

detection had the best value of 1.00, whereas the F1-score for head detection was 0.29. Bodies are larger and 

hence easier to detect than heads. The proposed algorithm appropriately uses the bodies of pigs for tracking. 

 

 

Table 3. Detecting the pigs’ bodies is more accurate than detecting the pigs’ heads (Prec.=Precision) 
Part Dataset TPR FPR FNR Prec. Recall F1 

Body VDO1 0.94 0.06 0.00 0.94 1.00 0.97 
VDO2 0.95 0.05 0.00 0.95 1.00 0.97 

VDO3 0.99 0.01 0.00 0.99 1.00 0.99 

VDO4 1.00 0.00 0.00 1.00 1.00 1.00 
Head VDO1 0.78 0.22 0.00 0.78 1.00 0.88 

VDO2 0.72 0.28 0.00 0.72 1.00 0.84 
VDO3 0.71 0.29 0.00 0.71 1.00 0.83 

VDO4 0.17 0.83 0.00 0.17 1.00 0.29 

 

 

Table 4. In tracking, the proposed method outperforms the state-of-the-art methods in most test datasets 
Dataset Method TPR FPR FNR MTT NIS MOTA 
VDO1 Proposed 

SORT 

GO 

0.64 

0.90 

0.55 

0.36 

0.00 

0.45 

0.00 

0.10 

0.00 

5 

10 

4 

15 

20 

23 

0.73 

0.84 

0.66 
VDO2 Proposed 

SORT 

GO 

0.70 

0.63 

0.53 

0.30 

0.27 

0.47 

0.00 

0.10 

0.00 

5 

4 

3 

18 

23 

36 

0.75 

0.68 

0.58 

VDO3 Proposed 

SORT 

GO 

0.99 

0.92 

0.77 

0.01 

0.08 

0.23 

0.00 

0.00 

0.00 

10 

8 

6 

2 

3 

22 

0.98 

0.94 

0.78 
VDO4 Proposed 

SORT 

GO 

1.00 

0.82 

0.05 

0.00 

0.18 

0.95 

0.00 

0.00 

0.00 

10 

8 

0 

0 

2 

34 

1.00 

0.89 

0.34 

 

 

3.4.  Tracking evaluation 

We compared the proposed method with the state-of-the-art methods [17], [36] which track moving 

animals of a similar appearance without lighting control. The global optimization (GO) method in [17] is a 

deterministic method using the Hungarian algorithm, whereas the simple online and real-time tracking 

(SORT) method in [36] is a probabilistic method using a combined Hungarian algorithm and Kalman filter. 

The existing methods are competitive trackers. 

The results of the individual pig tracking are shown in Table 4, where the best performance for each 

metric is indicated in bold. The FNRs of the proposed method and the GO method are zero for every test 

video, while the FNRs of the SORT method are 0.10 for videos 1-2 and 0.0 for videos 3-4. The proposed and 

GO methods track all N pigs in each video frame, while the SORT method fails to track 10% of the pigs, i.e., 

10 out of the 100 pigs in total as shown in Table 1, in either video 1 or video 2. With a large FPR and a small 

FPR, the proposed method places correct bounding boxes on the areas where the pigs of the intended IDs are 

located. The TPR of the proposed methods are 0.70, 0.99, and 1.00, which are the largest values in test videos 

2, 3, and 4, respectively. In Video 1, the TPR of the proposed method is 0.64, which is the second largest 

value after the TPR of 0.90, achieved by the SORT method. The overall tracking accuracy was captured by 

MOTA. The proposed method has the largest MOTAs in three out of four test videos and a perfect MOTA of 

1.00 in video 4. The proposed method performs exceptionally well on video 4, which contains different pigs 

in a different pen from those used by the Faster R-CNN. The exceptional performance indicates that the 

proposed method is a robust pig tracker in an unfamiliar environment. The proposed method outperformed 

the state-of-the-art methods for most videos. 

In the GO method, tracking pigs from their heads is inaccurate. As shown in Table 3, detecting a 

pig’s head is more difficult than detecting a pig’s body, which is confirmed by the low TPR of head 

detection. For example, in Video 4, the TPR for detecting the pigs’ heads was 0.17. If the pigs must be both 

detected and tracked, the tracking TPR will not exceed 0.17. In Table 4, the tracking TPR of the GO method 
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was 0.05, which is ≤0.17. The detection TPRs in Table 3 are the upper bounds of the tracking TPRs. As 

shown in Table 4, tracking pigs by their bodies, as in the proposed and SORT methods, generally 

outperforms tracking the pigs by their heads. 

Figures 6 and 7 are examples of the trajectories obtained from fine manually labeled ground truth 

(dashed line) and the various trackers (solid lines) on selected pigs and videos. The x- and y-axes are the 

image x- and y-coordinates in pixels. The trajectories of the ground truth, proposed, and SORT methods are 

taken from the centroids of the pig’s bodies. On the other hand, the trajectory of the GO method is from the 

centroids of the pig’s heads. The proposed method tracks a pig accurately in Figures 6(a) and 7(a), as the 

ground truth’s trajectories agree with the trajectories produced by the proposed method. A broken line on the 

trajectory indicates a loss of tracking, which contributes to a false negative (FN). A sharp transition on the 

trajectory indicates an unusual pig’s movement and is caused by ID switches. The proposed method does not 

have a tracking loss on these exemplary trajectories. In contrast, the SORT method suffers from a tracking 

loss in Figures 6(b) and 7(b). The tracking loss of pig ID 4 in either Figure 6(b) or Figure 7(b) does not 

contradict the FNR of 0.00 in Table 4 for the SORT method on Videos 3-4, because the FNR in Table 4 is the 

average of the FNRs of N pigs and is rounded to two decimal places, due to the 100 available ground-truth 

frames in the test datasets. Furthermore, the GO method has a low tracking accuracy and produces a 

trajectory that is far from the ground truth. A discrepancy comes from ID switches, i.e., a different pig was 

tracked in Figure 6(c) (also observed in Figures 6(b) and 7(c)), and from an error in the positions of the head 

bounding boxes in Figure 7(c). A poor trajectory in Figure 7(c) is consistent with a large FPR of head 

detection on video 4 as shown in Table 3. Indeed in Table 4, the GO method has an MTT of zero; it does not 

track any trajectory correctly for any pig on 100 ground-truth frames as shown in Table 1. The proposed 

method is the most accurate tracker. 

 

 

   
(a) (b) (c) 

 

Figure 6. The trajectories of pig ID 6 on test Video 3 show that (a) the proposed method is most accurate than 

(b) the SORT and (c) GO methods 

 

 

   
(a) (b) (c) 

 

Figure 7. The trajectories of pig ID 4 on test video 4 show that (a) the proposed method is most accurate than 

(b) the SORT and (c) GO methods 
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Several factors play a role in increasing the tracking accuracy of the proposed method. The proposed 

method uses a rectangle to mark the boundary of each pig. In contrast, existing methods mark each pig by 

using its centroid alone. As a pig moves, its centroid may become closer to one another and cause an ID 

switch. A rectangular boundary captures a larger portion of the body and is more robust to ID switching. 

These advantages improved the tracking performance of the proposed method. 

There are several directions to extend this research. The proposed method for pig tracking is 

sufficiently general to be applied to other animals, provided that the animal’s head can be distinguished from 

its body. Future research can entail tracking other animals that have great economic, societal, or cultural 

importance. In addition, the process of head matching and body matching can be achieved simultaneously 

across several frames, as opposed to being done on each pair of adjacent frames. To reduce the complexity of 

the matching, a metaheuristic algorithm such as the giant trevally optimizer (GTO) [54] can be applied. 

Moreover, the number of animals in each pen was fixed and known in this study. Future research may cover 

unknown or changing numbers of animals. Finally, future research can use knowledge of the animal’s 

tracked location as a feature to determine its activity. These future studies will extend the proposed tracking 

method to a broader context. 

 

 

4. CONCLUSION  

Farm animals living in closed pens have high opportunities to fight or be injured. Individual pig 

tracking can increase animal welfare and provide a basis for behavioral monitoring and disorder diagnosis. 

However, individual pig tracking is difficult to achieve accurately because of the similarity in pig appearance 

and the tendency of pigs to remain in a group and create an occlusion. A method that can accurately track 

individual pigs has an advantage for animals and farm owners. 

Using a top-view video, this study developed a method to track each pig in a realistic farm 

environment. To detect pigs in a given video, we created and labeled a dataset of pigs on an actual farm and 

trained a Faster R-CNN to recognize an object as a pig. The key idea in dataset preparation is to label only 

the visible pigs to increase detection accuracy. To evaluate the performance of the proposed detection 

method, we tested the model on separate videos and found that detection performance increased significantly 

when the pigs’ bodies were used for identification. This finding matches the intuition that the pig’s body 

occupies a large portion and serves to better identify a pig. The developed model detected pigs well across all 

test videos and stipulated that the body was the main feature for pig identification. 

The proposed tracking method builds on the strength of the pig detection model and specific 

tracking ideas. The position of a pig in the next frame is difficult to forecast. To mitigate this difficulty, the 

proposed method detects both the head and body of each pig and uses only the frames in which the pig under 

consideration is detectable. Furthermore, to improve tracking accuracy, the proposed method uses a 

rectangle, as opposed to a centroid, to locate each pig. The proposed method is superior to state-of-the-art 

methods, namely, the SORT and GO methods. The identity of an individual pig can be tracked, even in the 

case of pig-to-pig occlusion. Given this advantage, the complete trajectory of each pig can be obtained and 

used for behavior monitoring, pig activity classification, and disease detection. 
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