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 Accurate estimation of forest canopy height is essential for monitoring forest 

ecosystems and assessing their carbon storage potential. This study evaluates 

the effectiveness of different remote sensing techniques for estimating forest 

canopy height in tropical dry forests. Using field data and remote sensing data 

from airborne lidar and polarimetric synthetic aperture radar (SAR), a random 

forest (RF) model was developed to estimate canopy height based on different 

indices. Results show that the normalize difference build-up index (NDBI) 

has the highest correlation with canopy height, outperforming other indices 
such as relative vigor index (RVI) and polarimetric vertical and horizontal 

variables. The RF model with NDBI as input showed a good fit and predictive 

ability, with low concentration of errors around 0. These findings suggest that 

NDBI can be a useful tool for accurately estimating forest canopy height in 
tropical dry forests using remote sensing techniques, providing valuable 

information for forest management and conservation efforts. 
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1. INTRODUCTION 

The evaluation of the structure and dynamics of a forest ecosystem is crucial to understand its 

functioning and response to different disturbances and climate changes [1]. In this context, remote sensing 

technologies have become fundamental tools to obtain accurate and continuous information on the structure 

and dynamics of forests [2], [3]. Light detection and ranging (LIDAR) and synthetic aperture radar (SAR) have 

proven to be useful for obtaining precise measurements of the height and structure of forests in different types 

of forest ecosystems [4], [5]. 

This article presents an evaluation of the relationship between height metrics obtained through the 

global ecosystem dynamics investigation (GEDI), LIDAR sensor and SAR images from the L-band advanced 

land observing satellite-2 phased array type L-band synthetic aperture radar (ALOS PALSAR-2) sensor in the 

tropical dry forest of Caldas Department, Colombia. To analyze this relationship, the random forest algorithm 

is used, known for its ability to analyze large datasets and generate accurate predictive models [6]. The capacity 

of this algorithm to estimate canopy height from these different data sources is evaluated [7]. 

The estimation of canopy height is fundamental for sustainable forest management and understanding 

forest dynamics [8]. However, direct measurements of canopy height can be costly, labor-intensive, and even 

impossible in remote or extensive areas [9]. For this reason, satellite-based approaches have been developed to 

estimate canopy height at global and regional scales. The use of satellite data can be considered an indirect 

method for estimating forest canopy heights, which has become increasingly accurate with the evolution of 

satellite technologies [10]. 

https://creativecommons.org/licenses/by-sa/4.0/
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In this context, the GEDI by National Aeronautics and Space Administration (NASA) [11] has stood 

out for providing valuable information on forest height through medium-resolution time series [12]. Although 

field validation is important to correlate two types of satellite data, the lack of it does not invalidate the 

usefulness of GEDI as an input for canopy height estimation [13]. GEDI datasets are improving height models 

and offering an important tool for global and regional forest management [4]. 

In the search to improve the accuracy of canopy height models, a combination of LIDAR and SAR 

data [14] has been used, which offer detailed information on the structure and dynamics of tropical forests. 

These data allow identifying patterns in the vertical distribution of forests and improving the accuracy of 

canopy height models [15]. Despite the advances achieved with this methodology, there are still challenges in 

terms of model accuracy. In particular, the lack of structural information on the forest has been a significant 

obstacle to improving the accuracy of such models [16]. The combination of LIDAR and SAR data offers a 

unique synergy for the evaluation of canopy height and texture in any type of forest [12], allowing for detailed 

information on structure and its vertical distribution. SAR data from the ALOS PALSAR-2 sensor [17], through 

the generation of various polarimetric indices, are suitable for texture detection, improving the accuracy of 

canopy height models [13]. 

The estimation of canopy height in tropical forests is valuable for the management and conservation 

of natural resources, including the identification and monitoring of biodiversity, assessment of forest 

productivity, and carbon monitoring. GEDI and SAR data provide information at global and regional scales, 

but machine learning algorithms are needed to fully evaluate the information. The evaluation of the relationship 

between GEDI height metrics and SAR polarimetric indices using machine learning techniques is crucial for 

improving the understanding of tropical forests and promoting their sustainable conservation and management. 

The article is organized as follows: section 2 presents the materials and methods used for the 

development of the research. In section 3, the results of the study are shown and discussed. Section 4 presents the 

conclusions. 

 

 

2. MATERIALS AND METHODS 

2.1.  Study area 

The study area corresponds to the tropical dry forest ecosystem in the eastern part of the Caldas 

Department in Colombia. This is an area of great biological and environmental importance, which makes it 

suitable for investigating its dynamics, functioning, and response of this type of ecosystem to environmental 

changes. It is characterized by a prolonged dry season, high temperatures, and limited availability of water 

[18]. It is in the valley of the Magdalena River, one of the most important rivers in the country, at an elevation 

ranging from 150 to 400 meters above sea level. The spatialization of the study area was elaborated by the [18], 

as part of the project called “Conservation status of the floristic component in the tropical dry forest of Caldas,” 

as shown in Figure 1. 

 

 

 
 

Figure 1. Location of the study area, tropical dry forest, Caldas, Colombia 
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The tropical dry forest is characterized as an ecosystem with a closed tree canopy and vegetation that 

varies between semi-deciduous and fully deciduous foliage. Despite its ecological importance, the tropical dry 

forest has been one of the least studied ecosystems, even though it has been highly intervened by human 

activity. In this sense, it is crucial to investigate and better understand the dynamics and functioning of this 

ecosystem in the selected study area in order to generate scientific knowledge that contributes to its 

conservation and sustainable management. The dry forest area is highly fragmented due to human activity, 

which has led to the creation of multiple polygons with isolated extensions and distributions [19]. To facilitate 

image processing and data extraction, a quadrant was delimited that covers the multiple polygons. However, it 

is emphasized that the analyses and results obtained correspond exclusively to the dry forest area. 

 

2.2.  Data acquisition 

In the present research, two satellite images were used: the GEDI and the ALOS PALSAR-2. It should 

be noted that the image processing and data extraction were performed through Google earth engine (GEE), 

which allowed for greater efficiency and speed in the image analysis [20]. “GEDI is a data collection containing 

measurements of surface height acquired through the instrument aboard the NASA ICESat-2 satellite [21]. This 

instrument uses a laser system to measure the distance between the satellite and the earth's surface, and from 

these measurements, vegetation height can be determined [22]. The selected image consists of a collection of 

images obtained through GEE with a spatial resolution of 25 meters and a temporal range from 2019 to 2020. 

The rh95 metric was used because, according to previous studies, it has shown better results compared to other 

metrics [13]. 

The ALOS PALSAR-2 image is acquired by a satellite from the Japan Aerospace Exploration Agency-

JAXA [23], which uses a SAR technology in L-band to capture images of the earth’s surface [24]. The image is 

a collection obtained through GEE, with a spatial resolution of 25 meters and standard pre-processing provided 

by JAXA, which includes geometric and terrain slope corrections [25]. The image collection is available 

annually and has been constructed using a mean filter that combines images acquired from 2015 to 2020. 

 

2.3.  Data processing 

The methodological scheme in Figure 2 shows the development of data processing. To process the 

ALOS PALSAR-2 image, several activities were carried out, including structuring the image collection in 

GEE. First, the collection was filtered by dates and region of interest to select the most suitable images for 

analysis and their corresponding composition during the aforementioned analysis period. Subsequently, the 

Pauli polarimetric decomposition technique was used to obtain a new polarization (VV) from the original 

polarizations (horizontal receive (HH) and vertical receive (HV)). 

 

 

 
 

Figure 2. General workflow used in the research 
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This technique allows for the decomposition of the polarimetric scattering matrix into three 

backscattering matrices, which in turn facilitates the analysis of the polarimetric data of the image and 

highlights important features of the land surface, such as the forest structure of a forest [26]. Various 

polarimetric indices were generated from the HH, HV, and VV polarizations, providing complementary 

information about the forest composition [10]. Polarimetric indices provide a quantitative measure of the 

polarimetric properties of the land surface and are used to characterize the physical properties of objects in the 

image [27]. Additionally, they can be used to analyze specific features such as the asymmetry of surface 

backscattering, object shape, and orientation [28]. This can be directly associated with the structure and 

composition of the tropical dry forest. Table 1 presents the polarizations from ALOS PALSAR platform and 

Table 2 the polarimetric indices employed in the research. 

Figure 3 shows a view of the quadrant that includes the study area. On the right, a sentinel-2 image is 

observed in red, green, and blue (RGB) combination, while on the left, a section of the study area is presented 

in different frames. In this section, the generated polarimetric indices are visualized in a color scale, and the 

tropical dry forest area is delimited with a black contour. 

 

 

Table 1. ALOS PALSAR polarizations 
Polarizations Description 

HH Horizontal transmission and horizontal reception 

HV Horizontal transmission and vertical reception 

VV Vertical transmission and vertical reception 

 

 

Table 2. Generated polarimetric indexes 
Name Formula 

Radar vegetation index (RVI) (4*HV)/(HH+HV) 

Radar forest degradation index (RFDI) (HH-HV)/(HH+HV) 

Normalized differential backscatter index (NDBI) (HH-HV)/(HH*HV) 

Anisotropy index (AI) (HH-VV)/(HH+VV) 

Double bounce index (DI) (2*HV)/(HH+VV) 

 

 

 
 

Figure 3. Visualization of polarimetric indexes accompanied by a true color sentinel-2 scene 

 

 

From the polarizations and the generated polarimetric indices, they were compiled into an image stack 

that allows all the obtained information to be visualized together. Additionally, it is important to highlight that 

in order to improve the image quality and reduce the noise produced by the speckle phenomenon, a filtering 

technique based on the improved sigma lee filter was applied. This technique allowed obtaining sharper and 
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clearer images, facilitating the identification and analysis of objects and features present in the image [29]. 

Finally, two image conversions were performed to improve interpretation Figure 4: from linear units to decibel 

units to expand the dynamic range and highlight areas of higher or lower signal intensity, and from decibels to 

power backscatter to show the amount of energy backscattered by objects in the scene, following the 

methodology of study [10]. 

A two-step process was carried out to process the GEDI image collection and ensure accurate data 

integration. First, the collection was structured using GEE and the rh95 metric was selected as the variable of 

interest. Subsequently, geospatial processing procedures were carried out for vectorization of the selected 

metrics, followed by their export as a shapefile. To ensure spatial consistency and accurate alignment,  

co-registration of GEDI and ALOS PALSAR imagery was performed prior to integration into a multiband 

raster file. This process ensured that each pixel of both images corresponded to exactly the same geographic 

location within the dry forest study area [30]. The final stack included the height metrics (rh95) and polarimetric 

indices mentioned previously. Once the shapefile was imported as an asset to GEE, the corresponding data 

from the image stack was extracted. This allowed for the creation of a CSV database with the GEDI and ALOS 

PALSAR-2 data, which was used to structure the regression algorithm in Python in Google Colaboratory, 

allowing for detailed and precise analysis of the information. 

 

 

 
 

Figure 4. On the left is a visualization of the ALOS PALSAR-2 image in polarization combination. In the 

center, all metrics within the quadrant are presented. On the right, the metrics within the specific dry forest 

area are shown 

 

 

2.4.  Structuring of the random forest algorithm 

After importing the shapefile as an asset in GEE, an exploratory analysis of the dataset was conducted, 

which included obtaining descriptive statistics as well as creating and analyzing histograms and boxplots for 

each variable. The goal was to evaluate the presence of missing and outlier values. Values that could affect the 

quality of the results were removed. After the exploratory analysis, various activities were carried out to further 

analyze the obtained data. Firstly, the Shapiro-Wilk test was used to evaluate the normality of the data [31]. 

Secondly, Spearman correlation was calculated to evaluate the nonlinear relationship between two variables, 

and scatter plots were generated to visualize the relationship between canopy height and SAR bands [32]. These 

activities allowed identifying the key relationships between the variables, which contributed to the selection of 

the most relevant variables for the structure of the random forest algorithm. 

Once the variables were selected, we proceeded to implement the random forest model to predict 

canopy height. Using the Scikit-learn library in Python, the independent variables (‘HH’, ‘HV’, ‘VV’, ‘RVI’, 

‘RFDI’, ‘NDBI’, ‘AI’, and ‘DI’) were assigned to the X variable, while the dependent variable ‘GEDI rh95’ 

was assigned to the Y variable. The model implementation was based on the random forest regressor class of 
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Scikit-learn. To improve the results, a function was created that allowed iterating between different values of 

hyperparameters such as number of trees, maximum depth and random seed, allowing to select the model that 

best fit the data. This strategy helped to select the model that best fit the data and optimally captured the 

relationships between the independent variables and the dependent variable. In addition, a 5-iteration  

cross-validation was applied to assess the accuracy of the model. This technique allowed comparing the results 

obtained with the values of the rh95 metric and evaluating the predictive capacity of the model using a specific 

metric on different data sets to reduce the risk of overfitting and increase the reliability of the results. 

Subsequently, the model was fitted using all training data and predictions were made. Evaluation metrics, such 

as the coefficient of determination (R2), root mean squared error (MSE) and root mean squared error (RMSE), 

were calculated to assess model performance. In addition, graphs comparing actual values with predicted 

values were generated, allowing visualization of the quality of the predictions and the relationship between 

observed and estimated values. 

 

 

3. RESULTS AND DISCUSSION 

After carrying out the descriptive data analysis that included several activities, such as obtaining 

descriptive statistics, generating and analyzing histograms and boxplots, and removing outliers for each 

variable, the Shapiro-Wilk test was performed to assess the normality of the data. The initial number of records 

in the dataset was a total of 1,028. After removing outliers, a total of 957 records remained in the dataset  

Figure 5. For this analysis, a significance level of 0.05 was used to evaluate the normality of the data using the 

Shapiro-Wilk, Anderson-Darling, Cramér-von Mises, and Kolmogorov-Smirnov tests. This test generated a 

test statistic and a p-value, where if the p-value is less than 0.05, the null hypothesis that the data come from a 

normal distribution can be rejected. After applying the test, the variables HH, NDBI, AI, DI, and GEDI rh95 

result in not normality. Upon finding that more than 50% of the data did not meet the normality assumption, it 

was decided to use non-parametric statistics. Therefore, the Spearman correlation test [32] was performed to 

evaluate the relationship between the variables of interest, which is suitable for non-normally distributed 

variables. However, it was also decided to calculate the Spearman correlation matrix to observe the positive 

and negative correlations between the variables. 

 

 

 
 

Figure 5. Box plots for each variable before and after outlier cleanup 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Assessing the performance of random forest regression for estimating … (Christian Javier Pinza-Jiménez) 

6793 

After applying the Spearman correlation test to the research data, a correlation matrix was generated 

that allowed the identification of positive and negative correlations between variables. This is important for 

selecting the variables to be included in the model for estimating heights with GEDI and ALOS PALSAR-2, 

avoiding the inclusion of variables with a high degree of correlation among them, which can affect the accuracy 

of the model and generate multicollinearity. The Spearman correlation matrix showed that the dependent 

variable “GEDI rh95” positively correlates with the variable RVI and negatively correlates with the variables 

RFDI and NDBI. The p-values of these correlations were significant, suggesting that these variables are 

relevant in estimating forest height. These correlations are also useful in identifying variables that have high 

correlation with each other and reducing the complexity of the model. 

 

3.1.  Random forest model application 

The random forest machine learning algorithm was used, which combines the prediction of multiple 

decision trees to improve accuracy and reduce overfitting [6]. The scikit-learn library of Python was used to 

build the model, and the k-fold cross-validation technique was applied to evaluate its predictive ability. For 

each independent variable (HH, HV, VV, RVI, RFDI, NDBI, AI, and DI), a for loop was executed to build a 

model and obtain specific metrics and scatter plots. A random forest model with 100 trees was constructed, 

and 5-fold cross-validation was used for each independent variable. This process involves dividing the data 

into k subsets and training the model on k-1 subsets, using the other subset as a validation set. This was repeated 

k times to obtain a more accurate evaluation of the model’s generalization ability. 

Scatter plots were generated for each of the eight independent variables obtained from the SAR bands 

and vegetation height obtained by GEDI (rh95) to analyze their relationship. Each plot allows visualizing the 

relationship between an independent variable and vegetation height in the study area, and a total of eight plots 

were obtained, one for each independent variable. Subsequently, the model was fit with all training data, and 

predictions were made with all data. To evaluate the predictive ability of the model, evaluation metrics (R2, 

MSE, and RMSE) were calculated for each independent variable. The results were plotted, showing the actual 

vs. predicted values for each independent variable in a scatter plot Figure 5. Overall, a positive relationship 

was observed between the actual and predicted values for all independent variables. Figure 6 shows the eight 

scatter plots, where the corresponding independent variable for each SAR band is on the x-axis, and the 

vegetation height (rh95) obtained by GEDI is on the y-axis. Each plot shows the scatter plot of data points and 

the fitted regression line, which represents the relationship between the independent variable and canopy 

height. 

Based on the results obtained, it can be observed that the variables with the highest relationship to 

GEDI rh95 are NDBI and RVI, with R2 values of 0.76 and 0.72, respectively. These polarimetric indices are 

related to the response of the tropical dry forest because NDBI is based on the difference in backscattering 

between horizontal and vertical waves, allowing the detection of degraded areas [33]. In the case of RVI, this 

index is related to the density and vertical structure of vegetation, making it a good measure for evaluating 

forest biomass [34]. 

On the other hand, the variables with a lower relationship to GEDI rh95 are VV and HV, with R2 

values of 0.53 and 0.57, respectively. These polarizations are related to the response of the dry forest because 

SAR polarimetry is sensitive to the structure and geometry of vegetation, allowing the detection of changes in 

forest structure [27]. However, in this case, it can be observed that the relationship with GEDI rh95 is lower, 

which may be due to the low density of vegetation in the tropical dry forest ecosystem. Regarding the other 

variables, it can be observed that they have a moderate relationship with GEDI rh95, with R2 values ranging 

between 0.61 and 0.64. These polarimetric indices are related to the response of the tropical dry forest because 

SAR polarimetry allows for the characterization of vegetation structure and geometry, which can detect 

changes in forest structure. However, it is observed that the relationship with GEDI rh95 is lower than that of 

NDBI and RVI, suggesting that these indices may not be as sensitive for evaluating forest biomass in the 

tropical dry forest ecosystem. Taking this into account, NDBI is the variable with the best relationship for 

predicting canopy height measured from rh95. Performance plots of the model are presented in Figure 7. In the 

real value distribution plot, it can be observed that most values are between 2.5 and 30, with a higher 

concentration around 17.5. On the other hand, the predicted value distribution plot shows a similar distribution, 

which suggests that the model can predict rh95 values with some precision. In the error distribution plot, it can 

be observed that most errors are around 0, indicating that the model does not have a systematic tendency to 

overestimate or underestimate rh95 values. 

In summary, it can be concluded that the NDBI variable is the one that best explains the relationship 

with rh95, as evidenced by the high R2 value obtained. The evaluation of the performance graphs supports this 

conclusion by showing a similar distribution between the actual and predicted values, and a low concentration 

of errors around 0. The RF model with this input variable shows a good fit and predictive capacity and can be 

used to estimate forest height with reasonable accuracy.  
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Figure 6. Scatter plots for each independent variable and its relationship to rh95 

 

 

 
 

Figure 7. Performance graphs of the NDBI variable with the rh95 metric 

 

 

4. CONCLUSION 

After carefully examining the study's findings, it can be said that using polarimetric indices to estimate 

vegetation height is a useful and promising method. Estimates of the height of the forest canopy can be more 

accurately and thoroughly determined thanks to the extra information about the structure and composition of 

vegetation that is provided by polarimetric analysis of SAR data. In particular, the regression between 

polarimetric indices and the dependent variable GEDI rh95 has found use of the RF algorithm to be a valuable 
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tool. The method is a good choice for this kind of study since it can manage a large number of independent 

variables and their intricate non-linear relationships with the dependent variable. It is crucial to remember that 

the accuracy and dependability of vegetation height estimations in tropical forests can be increased by 

combining data from several sources, such as that collected from SAR satellites and GEDI mission data. The 

management and maintenance of these ecosystems can benefit greatly from the information that these analysis 

approaches can offer. Additionally, the significance of using the Google Earth Engine platform for effectively 

processing and scaling up enormous volumes of data is emphasized. This platform allowed for the rapid and 

accurate completion of this research since it allowed for the processing and analysis of a sizable volume of 

SAR pictures and GEDI data in a reasonable length of time. In conclusion, this study highlights the significance 

of RF algorithm and SAR polarimetry for increasing the precision of vegetation height estimation in tropical 

forests. These findings highlight the necessity of combining various data sources and analysis methods in order 

to better comprehend and monitor forest ecosystems. 
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