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 One of the economic alternatives to improve the quality of ruminant feed is 

combining grass as the main feed with high-protein forages such as 

sorghum. To get a quality sorghum harvest during the period, it must be 

right when it has good biomass content, nutrients, and digestibility. The 

problem is that measuring quality in the laboratory has additional costs and 

time, which is not short, causing delays. An approach with machine learning 

using a convolutional neural network can be a better solution. This research 

uses a convolutional neural network algorithm with the right architecture to 

estimate sorghum harvest time from imaging results of unmanned aerial 

vehicles. The stages of this research include data collection, pre-processing, 

modeling, and finally, the evaluation stage. This research compares the 

results of several convolutional neural network (CNN) algorithm 

architectural models: simple CNN, ResNet50 V2, visual geometry group-16 

(VGG-16), MobileNet V2, and Inception V3. The result is determining the 

CNN algorithm architectural model that can estimate sorghum harvest time 

with maximum accuracy. The best result is the simple CNN architectural 

model with an accuracy of 0.95. This research shows that the classification 

model obtained from the CNN algorithm with a simple CNN architecture is 

the choice model for estimating sorghum harvest time. 

Keywords: 

Convolutional neural network 

Estimated harvest 

Forage sorghum 

Machine learning 

Sorghum bicolor 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Kahfi Heryandi Suradiradja 

Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University 

Jl. Agatis, IPB Campus Darmaga Bogor 16680, Indonesia  

Email: kahfi.heryandi@apps.ipb.ac.id 

 

 

1. INTRODUCTION 

Animals, feed, and land are the main concerns in the livestock industry. Grass is the core feed in the 

cattle breeding industry, but it has a high crude fiber content and low protein, causing low livestock 

digestibility. Increasing nutrition's value must be combined with additional feed or concentrated feed such as 

corn, dregs, and other similar feeds, but of course, this will increase production costs. According to [1], there 

is a solution to improve livestock performance and reduce ration production costs by lowering concentrate 

ingredients by providing quality forage by combining main feed and Gramineae, one of which is sorghum. In 

Indonesia, sorghum plants can be planted in marginal and dry areas [2]. The best solution to provide forage 

for ruminants is by choosing sorghum as the main feed [3]. According to [4], sorghum has a greater biomass 

than corn. Forage sorghum can be harvested from the flowering stage [5]. One of the uses of information 

technology support in agriculture and animal farming is applying one of the algorithm models from machine 

learning, namely computer programming using historical data [6]. According to [7], machine learning 

methodology generally involves learning from training data. Machine learning can assist with quick plant 

phenotyping, agricultural monitoring, and yield prediction [8]. Previous studies using machine learning 
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solutions on sorghum plant objects were by [9] and [10]. Several other studies related to predictions in 

agriculture and animal husbandry are predictions of wheat yields [11], crop disease prediction [12], and [13]. 

One widely used algorithm for forecasting or predicting the target value is the convolutional neural network 

(CNN). Inspired by that, this research primarily estimates the harvest time of forage sorghum using CNN. 

Contributing to this field has developed our profound interest. 

The harvesting must be done appropriately to obtain suitable fiber for livestock digestibility and 

high-quality biomass. The decision to determine the right time to harvest is based on the laboratory analysis 

results and will take several days. It is an obstacle because the decision-making time for harvesting must be 

noticed.  

Some studies related to sorghum used machine learning, such as sorghum yield prediction and 

machine learning [14], sorghum biomass prediction research [10], [15], and sorghum head detection and 

counting [9], [16], [17]. Using machine learning models, we developed a CNN model that can be used to 

predict or estimate the classification of harvest time based on the image of sorghum crop fields from drones. 

This research compares the best type of architecture from the five CNN architectures for estimating the 

harvest time of sorghum plants. 

 

 

2. METHOD  

There are four stages in the research methodology: a data collection stage, a pre-processing stage, a 

modeling stage, and an evaluation stage, which is shown in Figure 1. Briefly, from the flow stages of 

Figure 1 starting from the data that has been collected, pre-processing is carried out first. Then, at the 

modeling stage, the focus is on conducting research with several CNN algorithm architectural models. 

Several architectural models were compared to find the maximum accuracy value at the evaluation stage. 

 

 

 
 

Figure 1. Research steps 

 

 

3.1.  Data collection 

The dataset used in this research is obtained from direct observation of samurai-1 sorghum fields, 

shown in Figure 2. The research location is in Jonggol, Bogor, Indonesia. The drone captures the image data 

at 80 meters from the ground and has dimensions of 5464×3640 pixels. Data collection starts from January 

2021 to February 2021, with collection times around 10.00 to 12.00 when the sorghum crops are not yet 

harvested (January 28, 2021), shown in Figure 2(a), at harvest time (February 10, 2021) shown in 

Figure 2(b), and past harvest time (February 21, 2021) shown in Figure 2(c).  
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(a) (b) (c) 

 

Figure 2. Example of data collection when the sorghum field is in the period of (a) not enough harvest time, 

(b) harvest time, and (c) harvest late 

 

 

3.2.  Pre-process 

At this stage, the catches are sorted from several photos for classification based on shooting. It takes 

time before, during, and after the harvest has passed, but the harvest has yet to take place. From the sliced 

photos with 224×224 pixels, 231 images as pre-processing datasets are produced. These images are separated 

into 208 training and 23 test data images, as shown in Figure 3. 

 

 

 
 

Figure 3. Sliced drone image pre-process 

 

 

3.3.  Modeling 

The pre-processed dataset will be a source for input into each CNN algorithm with various 

architectures, shown in Figure 4. There is the CNN algorithm with simple architectures [18], the CNN 

algorithm with a residual network-50 (ResNet50) architecture [19], [20], the CNN algorithm with a visual 

geometry group (VGG) 16 architecture [21], the CNN algorithm with convolutional neural networks for 

mobile vision applications (MobileNet) architecture [22] and CNN algorithm with an inception architecture 

[23]. Comparison graphically, the visualization CNN model architectures are simple architectures shown in 

Figure 4(a), ResNet50 architecture that shown in Figure 4(b), VGG16 architecture that shown in Figure 4(c), 

MobileNet architecture that shown in Figure 4(d), and Inception architecture that shown in Figure 4(e). 
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(a) (b) 

 

  
(c) (d) 

 

 
(e) 

 

Figure 4 Comparing CNN architecture model in (a) simple architecture, (b) ResNet50 architecture, 

(c) VGG16 architecture, (d) MobileNet architecture, and (e) Inception architecture 

 

 

The dataset was analyzed with CNN and developed with Python programming language version 3.7 

using the scikit-learn library. It contains some main class packages for training and testing separate data sets 

as training data and tests data with each data according to its classification. Process with simple architecture 

with input_shape parameters, image size 224×224 pixels, activation type = ReLU, dropout to avoid 

overfitting = 0.9, and target output three classifications with SoftMax and epoch activation types of 100. In 

the observation model, the early stop parameter is used with a value of 15, so during the model process, the 

process will be stopped if the loss value for each epoch has a fixed value. Meanwhile, the modeling process 

with ResNet50 V2, VGG16, MobileNet, and inception architecture using parameters such as weights = 

ImageNet, image size 224×224 pixels, and target output three classifications with SoftMax, and uses 

optimizer = Adam, and epoch activation types of 100. Use the early stop parameter if it is stable at a loss 

during 15 epochs have a fixed value.  
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3.1.  Evaluation 

The classification model was evaluated using a confusion matrix. The confusion matrix is an n×n 

matrix that is used to measure the performance of the classification model by calculating the values: i) true 

positive (TF) is a positive actual and predicted value; ii) true negative (TN) means negative actual and predicted 

values; iii) false positive (FP) means that the actual value is negative, but the predicted value is positive; and  

iv) false negative (FN) indicates the actual value is positive, but the predicted value is negative. 

Furthermore, based on the performance value between the prediction and the actual performance 

value can be calculated for precision, recall and F1-Score. The precision measures formula, as shown in (1), 

is the percentage of the main sorghum image successfully validated out of an overall optimistic prediction 

[24]. The higher precision indicates the lower FP [25]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

 

The recall measures formula as in (2) represents how many positive records are predicted correctly, 

the higher recall indicates the higher probability for the accurate image classification in the model [25]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 

F1-score formula in (3) is the weighted average of precision and recall [26]. 

 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =  
2𝑥(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 

They use the measurement evaluation method to obtain an accuracy of dataset classification with the 

confusion matrix as a tool in the form of a matrix measuring 3(×)3. The confusion matrix evaluates the 

classification model by determining which test objects are predicted to be true and false [27]. Using the 

confusion matrix as a measuring tool determines the precision, accuracy, and F-measures value. According to 

[28], an accuracy value between 0.90 and 1.00 indicates an excellent; 0.80 and 0.90 for good classification; 

0.70 and 0.80 for proper; 0.60 and 0.70 for bad; and 0.50 and 0.60 for failure. 

 

 

3. RESULTS AND DISCUSSION 

The simple CNN modeling process stops when epoch=88. The accuracy of each epoch visualization 

and confusion matrix result is shown in Figure 5. The following modeling process with ResNet50 model 

algorithm. The modeling process stops when epoch=40. Graphically, the accuracy of each epoch 

visualization and confusion matrix result is shown in Figure 6. 

The third modeling process is the VGG16 model algorithm. The modeling process stops when 

epoch=24. Graphically, the accuracy and loss of each epoch visualization and confusion matrix result of this 

observation with VGG16 architecture is shown in Figure 7. 

The fourth modeling process is the MobileNet V2 model algorithm. The modeling process stops 

when epoch=45. Graphically, the accuracy and loss of each epoch visualization and confusion matrix result 

of this observation with MobileNet V2 architecture is shown in Figure 8. 

The fifth modeling process is the inception V3 model algorithm. The modeling process stops when 

epoch=28. Graphically, the accuracy and loss of each epoch visualization and confusion matrix result of this 

observation with inception V3 architecture is shown in Figure 9. 

 

 

 
 

Figure 5. CNN with simple architecture modeling result 
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Figure 6. CNN with ResNet50 architecture modeling result 

 

 

 
 

Figure 7. CNN with VGG16 architecture modeling result 

 

 

 
 

Figure 8. CNN with MobileNet V3 architecture modeling result 

 

 

 
 

Figure 9. CNN with Inception architecture modeling result 

 

 

The evaluation of the modeling results from each architecture is calculated into accuracy and lost 

measurement values. It is shown in Table 1. A comparison of the simple CNN architecture, ResNet50 V2 

architecture, VGG16 architecture, MobileNet architecture and Inception architecture, which has the highest 
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accuracy value, is the simple CNN architecture. So based on this research, the simple CNN architecture is the 

best architectural model for use in estimating the harvest time classification of sorghum (sorghum bicolor) 

cultivar samurai-1. 

 

 

Table 1. Metric comparison result 
Metric Score Simple CNN ResNet50 V2 VGG16 MobileNet V2 Inception V3 

Precision      

Harvest 0.72 0.83 0.74 0.74 0.74 
Late 1.00 0.00 1.00 1.00 0.00 

Yet 0.20 0.50 1.00 1.00 0.33 

Weighted Avg 0.62 0.72 0.81 0.80 0.62 
Recall      

Harvest 0.76 0.88 1.00 1.00 0.82 

Late 0.00 0.00 0.00 0.00 0.00 
Yet 0.20 0.40 0.00 0.00 0.20 

Weighted Avg 0.61 0.73 0.74 0.74 0.65 

F1-Score      

Harvest 0.74 0.85 0.85 0.85 0.78 

Late 0.00 0.00 0.00 0.00 0.00 

Yet 0.20 0.44 0.00 0.00 0.25 
Weighted Avg 0.59 0.73 0.63 0.63 0.63 

Accuracy 0.95 0.78 0.74 0.74 0.91 

 

 

4. CONCLUSION 

This study evaluated various combinations of CNN model architectures to obtain a model for 

predicting sorghum harvest time: simple CNN, ResNet50 V2, VGG16, MobileNet V2, and Inception V3. 

All architectural models use the same parameters: image size, pre-termination state, maximum epoch, and 

optimizer. The experimental results show that the simple CNN architecture has the best accuracy. That 

model can be recommended as a choice of algorithm models to estimate sorghum harvest time. We plan to 

experiment with other models and find the best accuracy for future work, such as DenseNet and 

XceptionNet. 
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